Mycoplasma bovis Invades Non-Phagocytic Cells by Clathrin-Dependent Endocytic Pathways and Escapes from Phagocytic Vesicles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells and Bacterial Strain
2.2. Minimum Bactericidal Concentration
2.3. Cell Invasion Assay
2.4. Intracellular Survival Assay
2.5. MTA Plate Counts Test
2.6. Confocal Microscopy
2.7. High-Content Live Cell Imaging and Analysis System
2.8. Transmission Electron Microscopy
2.9. Endocytosis Inhibitor Test
2.10. siRNA Transfection and Invasion Assays
2.11. Statistics Analysis
3. Results
3.1. Screening Results of Optimal Conditions for M. bovis Invasion Cells
3.2. M. bovis Survival Inside Cells
3.3. Invasion Rate in Different Cells According to Plate Count Test
3.4. Observation Results of Confocal Microscopy
3.5. Observations from Transmission Electron Microscopy
3.6. Invasion Process of PG45-GFP According to Confocal Microscopy
3.7. Invasion Process of PG45-GFP According to High-Content Live Cell Imaging System
3.8. Invasion Process of PG45 According to TEM
3.9. Effect Test of Different Endocytic Inhibitors
3.10. Experimental Results of Clathrin siRNA Interference
4. Discussion
4.1. Ability of M. bovis to Invade Host Cells
4.2. Pathways by Which M. bovis Invades Host Cells
4.3. Toxic Effect of M. bovis on Cells
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abu-Amero, K.K.; Abu-Groun, E.A.; Halablab, M.A.; Miles, R.J. Kinetics and distribution of alcohol oxidising activity in Acholeplasma and Mycoplasma species. FEMS Microbiol. Lett. 2000, 183, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Didkowska, A.; Klich, D.; Nowak, M.; Wojciechowska, M.; Prolejko, K.; Kwiecień, E.; Rzewuska, M.; Olech, W.; Anusz, K. A serological survey of pathogens associated with the respiratory and digestive system in the Polish European bison (Bison bonasus) population in 2017–2022. BMC Vet. Res. 2023, 19, 74. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.; MacGlover, C.; Peckham, E.; Killion, H.; Allen, S.E.; Creekmore, T.; Edwards, W.H.; Blaeser, M.; Davison, M.; Schwalbe, E. Source and seasonality of epizootic mycoplasmosis in free-ranging pronghorn (Antilocapra americana). J. Wildl. Dis. 2022, 58, 524–536. [Google Scholar] [CrossRef] [PubMed]
- Malmberg, J.L.; O’Toole, D.; Creekmore, T.; Peckham, E.; Killion, H.; Vance, M.; Ashley, R.; Johnson, M.; Anderson, C.; Vasquez, M. Mycoplasma bovis infections in free-ranging pronghorn, Wyoming, USA. Emerg. Infect. Dis. 2020, 26, 2807. [Google Scholar] [CrossRef] [PubMed]
- Cantón, G.; Llada, I.; Margineda, C.; Urtizbiría, F.; Fanti, S.; Scioli, V.; Fiorentino, M.A.; Uriarte, E.L.; Morrell, E.; Sticotti, E. Mycoplasma bovis-pneumonia and polyarthritis in feedlot calves in Argentina: First local isolation. Rev. Argent. Microbiol. 2022, 54, 299–304. [Google Scholar] [CrossRef]
- Gelgie, A.E.; Korsa, M.G.; Dego, O.K. Mycoplasma bovis mastitis. Curr. Res. Microb. Sci. 2022, 3, 100123. [Google Scholar] [CrossRef]
- Nishi, K.; Okada, J.; Iwasaki, T.; Gondaira, S.; Higuchi, H. Characteristics of Mycoplasma bovis, Mycoplasma arginini, and Mycoplasma californicum on immunological response of bovine synovial cells. Vet. Immunol. Immunopathol. 2023, 260, 110608. [Google Scholar] [CrossRef]
- Angelos, J.A. Infectious bovine keratoconjunctivitis (pinkeye). Vet. Clin. Food Anim. Pract. 2015, 31, 61–79. [Google Scholar] [CrossRef]
- Maeda, T.; Shibahara, T.; Kimura, K.; Wada, Y.; Sato, K.; Imada, Y.; Ishikawa, Y.; Kadota, K. Mycoplasma bovis-associated suppurative otitis media and pneumonia in bull calves. J. Comp. Pathol. 2003, 129, 100–110. [Google Scholar] [CrossRef]
- Stalheim, O.; Proctor, S. Experimentally induced bovine abortion with Mycoplasma agalactiae subsp bovis. Am. J. Vet. Res. 1976, 37, 879–883. [Google Scholar]
- Hale, H.; Helmboldt, C.; Plastridge, W.; Stula, E. Bovine mastitis caused by a Mycoplasma species. Cornell Vet. 1962, 52, 582–591. [Google Scholar] [PubMed]
- Kinnear, A.; Waldner, M.; McAllister, T.A.; Zaheer, R.; Register, K.; Jelinski, M. Application of four genotyping methods to Mycoplasma bovis isolates derived from western canadian feedlot cattle. J. Clin. Microbiol. 2021, 59, e0004421. [Google Scholar] [CrossRef] [PubMed]
- Register, K.B.; Parker, M.; Patyk, K.A.; Sweeney, S.J.; Boatwright, W.D.; Jones, L.C.; Woodbury, M.; Hunter, D.L.; Treanor, J.; Kohr, M. Serological evidence for historical and present-day exposure of North American bison to Mycoplasma bovis. BMC Vet. Res. 2021, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bürki, S.; Gaschen, V.; Stoffel, M.H.; Stojiljkovic, A.; Frey, J.; Kuehni-Boghenbor, K.; Pilo, P. Invasion and persistence of Mycoplasma bovis in embryonic calf turbinate cells. Vet. Res. 2015, 46, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Askar, H.; Chen, S.; Hao, H.; Yan, X.; Ma, L.; Liu, Y.; Chu, Y. Immune evasion of Mycoplasma bovis. Pathogens 2021, 10, 297. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Y.; Wang, L.; Zou, M.; Sun, Y.; Sun, H.; Guo, Q.; Peng, X. Mycoplasma gallisepticum escapes the host immune response via gga-miR-365-3p/SOCS5/STATs axis. Vet. Res. 2022, 53, 103. [Google Scholar] [CrossRef]
- Qin, L.; Chen, Y.; You, X. Subversion of the immune response by human pathogenic mycoplasmas. Front. Microbiol. 2019, 10, 1934. [Google Scholar] [CrossRef]
- Vinod, V.; Vijayrajratnam, S.; Vasudevan, A.K.; Biswas, R. The cell surface adhesins of Mycobacterium tuberculosis. Microbiol. Res. 2020, 232, 126392. [Google Scholar] [CrossRef]
- Willment, J.A. Fc-conjugated C-type lectin receptors: Tools for understanding host–pathogen interactions. Mol. Microbiol. 2022, 117, 632–660. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, Y.; Qin, L.; Zhu, C.; You, X. Infection strategies of mycoplasmas: Unraveling the panoply of virulence factors. Virulence 2021, 12, 788–817. [Google Scholar]
- Vozandychova, V.; Stojkova, P.; Hercik, K.; Rehulka, P.; Stulik, J. The Ubiquitination System within Bacterial Host-Pathogen Interactions. Microorganisms 2021, 9, 638. [Google Scholar] [CrossRef] [PubMed]
- Pizarro-Cerdá, J.; Cossart, P. Listeria monocytogenes: Cell biology of invasion and intracellular growth. Microbiol. Spectr. 2018, 6, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Mittal, R.; Debs, L.H.; Patel, A.P.; Nguyen, D.; Blackwelder, P.; Yan, D.; Weckwerth, P.H.; Liu, X.Z. Otopathogenic Staphylococcus aureus invades human middle ear epithelial cells primarily through cholesterol dependent pathway. Sci. Rep. 2019, 9, 10777. [Google Scholar] [CrossRef] [PubMed]
- Raymond, B.; Turnbull, L.; Jenkins, C.; Madhkoor, R.; Schleicher, I.; Uphoff, C.; Whitchurch, C.; Rohde, M.; Djordjevic, S. Mycoplasma hyopneumoniae resides intracellularly within porcine epithelial cells. Sci. Rep. 2018, 8, 17697. [Google Scholar] [CrossRef]
- Taylor, J.R.; Skeate, J.G.; Kast, W.M. Annexin A2 in virus infection. Front. Microbiol. 2018, 9, 2954. [Google Scholar] [CrossRef]
- Perez-Casal, J. Pathogenesis and Virulence of Mycoplasma bovis. Vet. Clin. Food Anim. Pract. 2020, 36, 269–278. [Google Scholar] [CrossRef]
- Hegde, S.; Hegde, S.; Spergser, J.; Brunthaler, R.; Rosengarten, R.; Chopra-Dewasthaly, R. In vitro and in vivo cell invasion and systemic spreading of Mycoplasma agalactiae in the sheep infection model. Int. J. Med. Microbiol. 2014, 304, 1024–1031. [Google Scholar] [CrossRef]
- Ikejima, H.; Yamamoto, H.; Terakubo, S.; Kaku, M.; Shimada, J.; Ishida, K. Comparison of in-vitro activities of SCH27899 and other antibiotics against Mycoplasma pneumoniae. J. Infect. Chemother. 2001, 7, 121–123. [Google Scholar] [CrossRef]
- Lan, S.; Li, Z.; Hao, H.; Liu, S.; Huang, Z.; Bai, Y.; Li, Y.; Yan, X.; Gao, P.; Chen, S. A genome-wide transposon mutagenesis screening identifies LppB as a key factor associated with Mycoplasma bovis colonization and invasion into host cells. FASEB J. 2023, 37, e23176. [Google Scholar] [CrossRef]
- Brenner, C.; Neyrolles, O.; Blanchard, A. Mycoplasmas and HIV infection: From epidemiology to their interaction with immune cells. Front. Biosci. 1996, 1, 42–54. [Google Scholar]
- Sim, K.-Y.; Byeon, Y.; Bae, S.-E.; Yang, T.; Lee, C.-R.; Park, S.-G. Mycoplasma fermentans infection induces human necrotic neuronal cell death via IFITM3-mediated amyloid-β (1–42) deposition. Sci. Rep. 2023, 13, 6864. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Ye, Y.; Chen, X.; Xiong, L.; Xie, W.; Liu, P. Insight into the pathogenic mechanism of Mycoplasma pneumoniae. Curr. Microbiol. 2023, 80, 14. [Google Scholar] [CrossRef] [PubMed]
- de Groot, R.C.; Sauteur, P.M.M.; Unger, W.W.; van Rossum, A.M. Things that could be Mycoplasma pneumoniae. J. Infect. 2017, 74, S95–S100. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Zhang, H.; Zhang, Y.; Zhao, G.; Anwar Khan, F.; Chen, Y.; Hu, C.; Yang, L.; Chen, H.; Guo, A. Secreted mbovp0145 promotes il-8 expression through its interactive β-actin and mapk activation and contributes to neutrophil migration. Pathogens 2021, 10, 1628. [Google Scholar] [CrossRef] [PubMed]
- Lingwood, D.; Simons, K. Lipid rafts as a membrane-organizing principle. Science 2010, 327, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Sapoń, K.; Mańka, R.; Janas, T.; Janas, T. The role of lipid rafts in vesicle formation. J. Cell Sci. 2023, 136, jcs260887. [Google Scholar] [CrossRef]
- Kinoshita, M.; Suzuki, K.G.N.; Murata, M.; Matsumori, N. Evidence of lipid rafts based on the partition and dynamic behavior of sphingomyelins. Chem. Phys. Lipids 2018, 215, 84–95. [Google Scholar] [CrossRef]
- Zhukov, A.; Vereshchagin, M. Polar Glycerolipids and Membrane Lipid Rafts. Int. J. Mol. Sci. 2024, 25, 8325. [Google Scholar] [CrossRef]
- Gee, Y.J.; Sea, Y.L.; Lal, S.K. Viral modulation of lipid rafts and their potential as putative antiviral targets. Rev. Med. Virol. 2023, 33, e2413. [Google Scholar] [CrossRef]
- Nishi, K.; Gondaira, S.; Fujiki, J.; Katagata, M.; Sawada, C.; Eguchi, A.; Iwasaki, T.; Iwano, H.; Higuchi, H. Invasion of Mycoplasma bovis into bovine synovial cells utilizing the clathrin-dependent endocytosis pathway. Vet. Microbiol. 2021, 253, 108956. [Google Scholar] [CrossRef]
- Marques, L.M.; Ueno, P.M.; Buzinhani, M.; Cortez, B.A.; Neto, R.L.; Yamaguti, M.; Oliveira, R.C.; Guimarães, A.M.; Monezi, T.A.; Braga, A.C., Jr.; et al. Invasion of Ureaplasma diversum in Hep-2 cells. BMC Microbiol. 2010, 10, 83. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Hao, H.; Zhao, P.; Thiaucourt, F.; He, Y.; Gao, P.; Guo, H.; Ji, W.; Wang, Z.; Lu, Z.; et al. Genome-Wide Analysis of the First Sequenced Mycoplasma capricolum subsp. capripneumoniae Strain M1601. G3 Genes|Genomes|Genetics 2017, 7, 2899–2906. [Google Scholar] [CrossRef] [PubMed]
- Minion, F.C.; Jarvill-Taylor, K. Membrane-associated hemolysin activities in mycoplasmas. FEMS Microbiol. Lett. 1994, 116, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Gerlic, M.; Horowitz, J.; Horowitz, S. Mycoplasma fermentans inhibits tumor necrosis factor alpha-induced apoptosis in the human myelomonocytic U937 cell line. Cell Death Differ. 2004, 11, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Zou, M.; Fu, Y.; Zhao, Y.; Sun, Y.; Yin, X.; Peng, X. Mycoplasma gallisepticum induced exosomal gga-miR-193a to disturb cell proliferation, apoptosis, and cytokine production by targeting the KRAS/ERK signaling pathway. Int. Immunopharmacol. 2022, 111, 109090. [Google Scholar] [CrossRef]
- Fang, W.; Huang, J.; Wang, J.; Huang, T.; Lin, D.; Yin, J. Blockade of interleukin-6 receptor attenuates apoptosis and modulates the inflammatory response in Mycoplasma pneumoniae infected A549 cells. Am. J. Transl. Res. 2022, 14, 6187–6195. [Google Scholar]
- Niu, L.; Luo, R.; Zou, M.; Sun, Y.; Fu, Y.; Wang, Y.; Peng, X. Puerarin inhibits Mycoplasma gallisepticum (MG-HS)-induced inflammation and apoptosis via suppressing the TLR6/MyD88/NF-κB signal pathway in chicken. Int. Immunopharmacol. 2020, 88, 106993. [Google Scholar] [CrossRef]
- Maina, T.; Prysliak, T.; Perez-Casal, J. Mycoplasma bovis delay in apoptosis of macrophages is accompanied by increased expression of anti-apoptotic genes, reduced cytochrome C translocation and inhibition of DNA fragmentation. Vet. Immunol. Immunopathol. 2019, 208, 16–24. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Lu, Y.; Feng, Y.; Jiao, X.; Zhang, Q.; Zhou, M.; Zhang, Y.; Xu, J.; Chu, Y.; Ran, D. Mycoplasma bovis Invades Non-Phagocytic Cells by Clathrin-Dependent Endocytic Pathways and Escapes from Phagocytic Vesicles. Pathogens 2024, 13, 1003. https://doi.org/10.3390/pathogens13111003
Li B, Lu Y, Feng Y, Jiao X, Zhang Q, Zhou M, Zhang Y, Xu J, Chu Y, Ran D. Mycoplasma bovis Invades Non-Phagocytic Cells by Clathrin-Dependent Endocytic Pathways and Escapes from Phagocytic Vesicles. Pathogens. 2024; 13(11):1003. https://doi.org/10.3390/pathogens13111003
Chicago/Turabian StyleLi, Bin, Yabin Lu, Yaru Feng, Xiaolong Jiao, Qiuyu Zhang, Mengting Zhou, Yuyu Zhang, Jian Xu, Yuefeng Chu, and Duoliang Ran. 2024. "Mycoplasma bovis Invades Non-Phagocytic Cells by Clathrin-Dependent Endocytic Pathways and Escapes from Phagocytic Vesicles" Pathogens 13, no. 11: 1003. https://doi.org/10.3390/pathogens13111003
APA StyleLi, B., Lu, Y., Feng, Y., Jiao, X., Zhang, Q., Zhou, M., Zhang, Y., Xu, J., Chu, Y., & Ran, D. (2024). Mycoplasma bovis Invades Non-Phagocytic Cells by Clathrin-Dependent Endocytic Pathways and Escapes from Phagocytic Vesicles. Pathogens, 13(11), 1003. https://doi.org/10.3390/pathogens13111003