Quantifying the Molecular Properties of the Elk Chronic Wasting Disease Agent with Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Samples and Sample Preparation
2.3. Reduction and Alkylation of rPrP and Inactivated CWD Prions
2.4. Preparation of Recombinant PrP
2.5. Enzymatic Digestion
2.6. Peptide Optimization
2.7. Mass Spectrometry
2.8. Preparing 15N-Labeled Internal Standards
2.9. Preparation of Calibration Curves for Quantitation of PrPSc
2.10. Determining the Proportion of 132M and 132L Polymorphisms in a Sample
2.11. Determining the Amount of Oxidation in a Peptide
2.12. Analysis of Sample Data
3. Results
3.1. Optimizing Chymotryptic Digestion
3.2. Selecting Conditions to Minimize Matrix Effects
3.3. Determining the Percentage of M132 and L132 in a Sample
3.4. A Calibration Curve to Quantitate the Amount of PrPSc in a Sample
3.5. Oxidation Studies
3.6. Quantitation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, E.S.; Young, S. Chronic wasting disease of captive mule deer: A spongiform encephalopathy. J. Wildl. Dis. 1980, 16, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.W.; Williams, E.S.; Hobbs, N.T.; Wolfe, L.L. Environmental sources of prion transmission in mule deer. Emerg. Infect. Dis. 2004, 10, 1003–1006. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.W.; Williams, E.S. Prion disease: Horizontal prion transmission in mule deer. Nature 2003, 425, 35–36. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.S.; Young, S. Spongiform encephalopathy of Rocky Mountain elk. J. Wildl. Dis. 1982, 18, 465–471. [Google Scholar] [CrossRef]
- Sohn, H.J.; Kim, J.H.; Choi, K.S.; Nah, J.J.; Joo, Y.S.; Jean, Y.H.; Ahn, S.W.; Kim, O.K.; Kim, D.Y.; Balachandran, A. A case of chronic wasting disease in an elk imported to Korea from Canada. J. Vet. Med. Sci. 2002, 64, 855–858. [Google Scholar] [CrossRef]
- Sohn, H.J.; Roh, I.S.; Kim, H.J.; Suh, T.-Y.; Park, K.J.; Park, H.C.; Kim, B. Prion 2016 Animal Prion Disease Workshop Abstracts. Prion 2016, 10, S15–S21. [Google Scholar]
- Kim, T.Y.; Shon, H.J.; Joo, Y.S.; Mun, U.K.; Kang, K.S.; Lee, Y.S. Additional cases of Chronic Wasting Disease in imported deer in Korea. J. Vet. Med. Sci. 2005, 67, 753–759. [Google Scholar] [CrossRef]
- Benestad, S.L.; Mitchell, G.; Simmons, M.; Ytrehus, B.; Vikoren, T. First case of chronic wasting disease in Europe in a Norwegian free-ranging reindeer. Vet. Res. 2016, 47, 88. [Google Scholar] [CrossRef]
- Nonno, R.; Di Bari, M.A.; Pirisinu, L.; D’Agostino, C.; Vanni, I.; Chiappini, B.; Marcon, S.; Riccardi, G.; Tran, L.; Vikoren, T.; et al. Studies in bank voles reveal strain differences between chronic wasting disease prions from Norway and North America. Proc. Natl. Acad. Sci. USA 2020, 117, 31417–31426. [Google Scholar] [CrossRef]
- Agren, E.O.; Soren, K.; Gavier-Widen, D.; Benestad, S.L.; Tran, L.; Wall, K.; Averhed, G.; Doose, N.; Vage, J.; Noremark, M. First Detection of Chronic Wasting Disease in Moose (Alces alces) in Sweden. J. Wildl. Dis. 2021, 57, 461–463. [Google Scholar] [CrossRef]
- Pirisinu, L.; Tran, L.; Chiappini, B.; Vanni, I.; Di Bari, M.A.; Vaccari, G.; Vikoren, T.; Madslien, K.I.; Vage, J.; Spraker, T.; et al. Novel Type of Chronic Wasting Disease Detected in Moose (Alces alces), Norway. Emerg. Infect. Dis. 2018, 24, 2210–2218. [Google Scholar] [CrossRef] [PubMed]
- Vikoren, T.; Vage, J.; Madslien, K.I.; Roed, K.H.; Rolandsen, C.M.; Tran, L.; Hopp, P.; Veiberg, V.; Heum, M.; Moldal, T.; et al. First Detection of Chronic Wasting Disease in a Wild Red Deer (Cervus elaphus) in Europe. J. Wildl. Dis. 2019, 55, 970–972. [Google Scholar] [CrossRef]
- Sun, J.L.; Kim, S.; Crowell, J.; Webster, B.K.; Raisley, E.K.; Lowe, D.C.; Bian, J.; Korpenfelt, S.L.; Benestad, S.L.; Telling, G.C. Novel Prion Strain as Cause of Chronic Wasting Disease in a Moose, Finland. Emerg. Infect. Dis. 2023, 29, 323–332. [Google Scholar] [CrossRef]
- Marin-Moreno, A.; Benestad, S.L.; Barrio, T.; Pirisinu, L.; Espinosa, J.C.; Tran, L.; Huor, A.; Di Bari, M.A.; Erana, H.; Maddison, B.C.; et al. Classical BSE dismissed as the cause of CWD in Norwegian red deer despite strain similarities between both prion agents. Vet. Res. 2024, 55, 62. [Google Scholar] [CrossRef] [PubMed]
- Hopp, P.; Rolandsen, C.M.; Korpenfelt, S.L.; Vage, J.; Soren, K.; Solberg, E.J.; Averhed, G.; Pusenius, J.; Rosendal, T.; Ericsson, G.; et al. Sporadic cases of chronic wasting disease in old moose—An epidemiological study. J. Gen. Virol. 2024, 105. [Google Scholar] [CrossRef]
- Arifin, M.I.; Hannaoui, S.; Ng, R.A.; Zeng, D.; Zemlyankina, I.; Ahmed-Hassan, H.; Schatzl, H.M.; Kaczmarczyk, L.; Jackson, W.S.; Benestad, S.L.; et al. Norwegian moose CWD induces clinical disease and neuroinvasion in gene-targeted mice expressing cervid S138N prion protein. PLoS Pathog. 2024, 20, e1012350. [Google Scholar] [CrossRef] [PubMed]
- Prusiner, S.B. Novel proteinaceous infectious particles cause scrapie. Science 1982, 216, 136–144. [Google Scholar] [CrossRef]
- Prusiner, S.B. Prions. Proc. Natl. Acad. Sci. USA 1998, 95, 13363–13383. [Google Scholar] [CrossRef]
- Pattison, I.H. Experiments with Scrapie with Special Reference to the Nature of the Agent and the Pathology of the Disease. In Slow, Latent and Temperate Virus Infections (NINDB Monograph 2); Gajdusek, C.J., Gibbs, C.J., Alpers, M.P., Eds.; U.S. Government Printing Office: Washington, DC, USA, 1965; pp. 249–257. [Google Scholar]
- Hunter, N.; Hope, J.; McConnell, I.; Dickinson, A.G. Linkage of the scrapie-associated fibril protein (PrP) gene and Sinc using congenic mice and restriction fragment length polymorphism analysis. J. Gen. Virol. 1987, 68, 2711–2716. [Google Scholar] [CrossRef]
- Arifin, M.I.; Hannaoui, S.; Chang, S.C.; Thapa, S.; Schatzl, H.M.; Gilch, S. Cervid Prion Protein Polymorphisms: Role in Chronic Wasting Disease Pathogenesis. Int. J. Mol. Sci. 2021, 22, 2271. [Google Scholar] [CrossRef]
- O’Rourke, K.I.; Besser, T.E.; Miller, M.W.; Cline, T.F.; Spraker, T.R.; Jenny, A.L.; Wild, M.A.; Zebarth, G.L.; Williams, E.S. PrP genotypes of captive and free-ranging Rocky Mountain elk (Cervus elaphus nelsoni) with chronic wasting disease. J. Gen. Virol. 1999, 80, 2765–2769. [Google Scholar] [CrossRef] [PubMed]
- Hamir, A.N.; Gidlewski, T.; Spraker, T.R.; Miller, J.M.; Creekmore, L.; Crocheck, M.; Cline, T.; O’Rourke, K.I. Preliminary observations of genetic susceptibility of elk (Cervus elaphus nelsoni) to chronic wasting disease by experimental oral inoculation. J. Vet. Diagn. Invest. 2006, 18, 110–114. [Google Scholar] [CrossRef]
- O’Rourke, K.I.; Spraker, T.R.; Zhuang, D.; Greenlee, J.J.; Gidlewski, T.E.; Hamir, A.N. Elk with a long incubation prion disease phenotype have a unique PrPd profile. Neuroreport 2007, 18, 1935–1938. [Google Scholar] [CrossRef]
- Moore, S.J.; Vrentas, C.E.; Hwang, S.; West Greenlee, M.H.; Nicholson, E.M.; Greenlee, J.J. Pathologic and biochemical characterization of PrP(Sc) from elk with PRNP polymorphisms at codon 132 after experimental infection with the chronic wasting disease agent. BMC Vet. Res. 2018, 14, 80. [Google Scholar] [CrossRef]
- Moore, J.; Tatum, T.; Hwang, S.; Vrentas, C.; West Greenlee, M.H.; Kong, Q.; Nicholson, E.; Greenlee, J. Novel Strain of the Chronic Wasting Disease Agent Isolated from Experimentally Inoculated Elk with LL132 Prion Protein. Sci. Rep. 2020, 10, 3148. [Google Scholar] [CrossRef]
- Onisko, B.; Dynin, I.; Requena, J.R.; Silva, C.J.; Erickson, M.; Carter, J.M. Mass spectrometric detection of attomole amounts of the prion protein by nanoLC/MS/MS. J. Am. Soc. Mass Spectrom. 2007, 18, 1070–1079. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.J.; Erickson-Beltran, M.L.; Hui, C.; Badiola, J.J.; Nicholson, E.M.; Requena, J.R.; Bolea, R. Quantitating PrP Polymorphisms Present in Prions from Heterozygous Scrapie-Infected Sheep. Anal. Chem. 2017, 89, 854–861. [Google Scholar] [CrossRef]
- Silva, C.J.; Erickson-Beltran, M.L.; Martin-Burriel, I.; Badiola, J.J.; Requena, J.R.; Bolea, R. Determining the Relative Susceptibility of Four Prion Protein Genotypes to Atypical Scrapie. Anal. Chem. 2018, 90, 1255–1262. [Google Scholar] [CrossRef]
- Silva, C.J.; Erickson-Beltran, M.L.; Duque Velasquez, C.; Aiken, J.M.; McKenzie, D. A General Mass Spectrometry-Based Method of Quantitating Prion Polymorphisms from Heterozygous Chronic Wasting Disease-Infected Cervids. Anal. Chem. 2020, 92, 1276–1284. [Google Scholar] [CrossRef]
- Silva, C.J.; Erickson-Beltran, M.L. General Method of Quantifying the Extent of Methionine Oxidation in the Prion Protein. J. Am. Soc. Mass Spectrom. 2023, 34, 255–263. [Google Scholar] [CrossRef]
- Bolton, D.C.; Rudelli, R.D.; Currie, J.R.; Bendheim, P.E. Copurification of Sp33–37 and scrapie agent from hamster brain prior to detectable histopathology and clinical disease. J. Gen. Virol. 1991, 72, 2905–2913. [Google Scholar] [CrossRef]
- Silva, C.J.; Onisko, B.C.; Dynin, I.; Erickson, M.L.; Requena, J.R.; Carter, J.M. Utility of mass spectrometry in the diagnosis of prion diseases. Anal. Chem. 2011, 83, 1609–1615. [Google Scholar] [CrossRef] [PubMed]
- Prusiner, S.B.; Groth, D.; Serban, A.; Stahl, N.; Gabizon, R. Attempts to restore scrapie prion infectivity after exposure to protein denaturants. Proc. Natl. Acad. Sci. USA 1993, 90, 2793–2797. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.J.; Dynin, I.; Erickson, M.L.; Requena, J.R.; Balachandran, A.; Hui, C.; Onisko, B.C.; Carter, J.M. Oxidation of methionine 216 in sheep and elk prion protein is highly dependent upon the amino acid at position 218 but is not important for prion propagation. Biochemistry 2013, 52, 2139–2147. [Google Scholar] [CrossRef]
- Lourenço Dos Santos, S.; Petropoulos, I.; Friguet, B. The Oxidized Protein Repair Enzymes Methionine Sulfoxide Reductases and Their Roles in Protecting against Oxidative Stress, in Ageing and in Regulating Protein Function. Antioxidants 2018, 7, 191. [Google Scholar] [CrossRef]
- Lim, J.M.; Kim, G.; Levine, R.L. Methionine in Proteins: It’s Not Just for Protein Initiation Anymore. Neurochem. Res. 2019, 44, 247–257. [Google Scholar] [CrossRef]
- Silva, C.J.; Onisko, B.C.; Dynin, I.; Erickson, M.L.; Vensel, W.H.; Requena, J.R.; Antaki, E.M.; Carter, J.M. Assessing the role of oxidized methionine at position 213 in the formation of prions in hamsters. Biochemistry 2010, 49, 1854–1861. [Google Scholar] [CrossRef]
- Silva, C.J.; Onisko, B.C.; Dynin, I.C.; Erickson-Beltran, M.; Requena, J.R. Time of Detection of Prions in the Brain by Nanoscale Liquid Chromatography Coupled to Tandem Mass Spectrometry Is Comparable to Animal Bioassay. J. Agric. Food Chem. 2021, 69, 2279–2286. [Google Scholar] [CrossRef]
- Gossert, A.D.; Bonjour, S.; Lysek, D.A.; Fiorito, F.; Wuthrich, K. Prion protein NMR structures of elk and of mouse/elk hybrids. Proc. Natl. Acad. Sci. USA 2005, 102, 646–650. [Google Scholar] [CrossRef]
Elk # | Elk ID | Genotype | Amount (g) |
---|---|---|---|
1 | Park 10 | M/M | 1 |
2 | --- | --- | ---* |
3 | Park 11 | L/M | 1 |
4 | Park 7 | L/M | 1 |
5 | Valley 4 | L/L | 1 |
6 | Valley 3 | L/L | 1 |
7 | --- | --- | ---* |
8 | Valley 1 | L/L | 1.3 |
Animal | Genotype | % M132 | % L132 |
---|---|---|---|
Park 10 | M/M | 100 | 0 |
Park 11 | M/L | 57 ± 2 | 43 ± 2 |
Park 7 | M/L | 64 ± 3 | 36 ± 3 |
Valley 1 | L/L | 0 | 100 |
Valley 3 | L/L | 0 | 100 |
Valley 4 | L/L | 0 | 100 |
Animal | Genotype | Signal Intensity | % Met112 | % MetSO112 | ||
Park 10 | M/M | 7.7 × 105 ± 7 × 104 | 98.8 ± 0.3 | 1.2 ± 0.3 | ||
Park 11 | M/L | 8.0 × 105 ± 4 × 104 | 97 ± 2 | 3 ± 2 | ||
Park 7 | M/L | 9.8 × 105 ± 7 × 104 | 98.3 ± 0.9 | 1.7 ± 0.9 | ||
Valley 1 | L/L | 2.4 × 105 ± 1 × 104 | 94.2 ± 0.8 | 5.8 ± 0.8 | ||
Valley 3 | L/L | 0.9 × 105 ± 1 × 104 | 90 ± 2 | 10 ± 2 | ||
Valley 4 | L/L | 2.4 × 105 ± 3 × 104 | 91 ± 2 | 9 ± 2 | ||
Animal | Genotype | Signal Intensity | % Met132 + Met137 | % MetSO132 + Met137 | % Met132 + MetSO137 | % MetSO132 + MetSO137 |
Park 10 | M/M | 2.3 × 106 ± 4 × 104 | 86.4 ± 0.8 | 5.0 ± 0.2 | 7.2 ± 0.3 | 1.5 ± 0.7 |
Park 11 | M/L | 3.1 × 105 ± 1 × 104 | 84.7 ± 0.6 | 5.0 ± 0.5 | 7.0 ± 0.6 | 3.3 ± 0.5 |
Park 7 | M/L | 1.4 × 106 ± 2 × 105 | 87 ± 1 | 5 ± 1 | 5.8 ± 0.5 | 2 ± 1 |
Valley 1 | L/L | ---* | ---* | ---* | ---* | ---* |
Valley 3 | L/L | ---* | ---* | ---* | ---* | ---* |
Valley 4 | L/L | ---* | ---* | ---* | ---* | ---* |
Animal | Genotype | Signal Intensity | % Met137 | % MetSO137 | ||
Park 10 | M/M | ---† | ---† | ---† | ||
Park 11 | M/L | 1.0 × 105 ± 2 × 103 | 83 ± 1 | 17 ± 1 | ||
Park 7 | M/L | 3.3 × 105 ± 3 × 104 | 87.2 ± 0.8 | 12.8 ± 0.8 | ||
Valley 1 | L/L | 1.0 × 105 ± 1 × 104 | 84 ± 2 | 16 ± 2 | ||
Valley 3 | L/L | 1.0 × 105 ± 1 × 104 | 71 ± 3 | 29 ± 3 | ||
Valley 4 | L/L | 0.7 × 105 ± 1 × 104 | 60 ± 4 | 40 ± 4 | ||
Animal | Genotype | Signal Intensity | % Met157 | % MetSO157 | ||
Park 10 | M/M | 6.1 × 106 ± 1 × 105 | 87.9 ± 0.8 | 12.1 ± 0.8 | ||
Park 11 | M/L | 4.4 × 106 ± 2 × 105 | 82.2 ± 0.5 | 17.8 ± 0.5 | ||
Park 7 | M/L | 6.1 × 106 ± 1 × 105 | 92.6 ± 0.3 | 7.4 ± 0.3 | ||
Valley 1 | L/L | 4.6 × 105 ± 5 × 104 | 82 ± 2 | 18 ± 2 | ||
Valley 3 | L/L | 3.1 × 105 ± 1 × 104 | 72 ± 4 | 28 ± 4 | ||
Valley 4 | L/L | 3.8 × 105 ± 3 × 104 | 69 ± 1 | 31 ± 1 | ||
Animal | Genotype | Signal Intensity | % Met208 + Met209 | % MetSO208 + Met209 | % Met208 + MetSO209 | % MetSO208 + MetSO209 |
Park 10 | M/M | 8.5 × 106 ± 7 × 104 | 98.8 ± 0.3 | 0.1 ± 0.2 | 1.1 ± 0.2 | ND |
Park 11 | M/L | 6.6 × 106 ± 2 × 105 | 99 ± 0.2 | ND | 1 ± 0.2 | ND |
Park 7 | M/L | 7.7 × 106 ± 8 × 104 | 99 ± 0.3 | 0.5 ± 0.2 | 0.5 ± 0.1 | ND |
Valley 1 | L/L | 6.7 × 105 ± 6 × 104 | 92.7 ± 0.9 | 3.7 ± 0.8 | 3.5 ± 0.3 | ND |
Valley 3 | L/L | 8.9 × 105 ± 5 × 104 | 96.9 ± 2.1 | 1.9 ± 2.2 | 1.2 ± 0.2 | ND |
Valley 4 | L/L | 8.5 × 105 ± 3 × 104 | 98.8 ± 0.1 | ND | 1.2 ± 0.1 | ND |
Animal | Genotype | Signal Intensity | % Met216 | % MetSO216 | ||
Park 10 | M/M | 2.1 × 105 ± 2 × 104 | 95 ± 1 | 5 ± 1 | ||
Park 11 | M/L | 2.1 × 105 ± 3 × 104 | 95 ± 1 | 5 ± 1 | ||
Park 7 | M/L | 1.7 × 105 ± 2 × 104 | 94 ± 1 | 6 ± 1 | ||
Valley 1 | L/L | 1.2 × 105 ± 9 × 103 | 94 ± 2 | 6 ± 2 | ||
Valley 3 | L/L | 2.5 × 104 ± 3 × 103 | 86 ± 4 | 14 ± 4 | ||
Valley 4 | L/L | 2.5 × 104 ± 4 × 103 | 79 ± 3 | 21 ± 3 |
Animal | Genotype | Amount of PrPSc |
---|---|---|
Park 10 | M/M | 5.4 × 102 ± 7 × 101 |
Park 11 | M/L | 3.3 × 102 ± 6 × 101 |
Park 7 | M/L | 3.6 × 102 ± 3 × 101 |
Valley 1 | L/L | 0.7 × 102 ± 1 × 101 |
Valley 3 | L/L | 0.2 × 102 ± 0.2 × 101 |
Valley 4 | L/L | 0.2 × 102 ± 0.5 × 101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, C.J.; Erickson-Beltran, M.L.; Cassmann, E.D.; Greenlee, J.J. Quantifying the Molecular Properties of the Elk Chronic Wasting Disease Agent with Mass Spectrometry. Pathogens 2024, 13, 1008. https://doi.org/10.3390/pathogens13111008
Silva CJ, Erickson-Beltran ML, Cassmann ED, Greenlee JJ. Quantifying the Molecular Properties of the Elk Chronic Wasting Disease Agent with Mass Spectrometry. Pathogens. 2024; 13(11):1008. https://doi.org/10.3390/pathogens13111008
Chicago/Turabian StyleSilva, Christopher J., Melissa L. Erickson-Beltran, Eric D. Cassmann, and Justin J. Greenlee. 2024. "Quantifying the Molecular Properties of the Elk Chronic Wasting Disease Agent with Mass Spectrometry" Pathogens 13, no. 11: 1008. https://doi.org/10.3390/pathogens13111008
APA StyleSilva, C. J., Erickson-Beltran, M. L., Cassmann, E. D., & Greenlee, J. J. (2024). Quantifying the Molecular Properties of the Elk Chronic Wasting Disease Agent with Mass Spectrometry. Pathogens, 13(11), 1008. https://doi.org/10.3390/pathogens13111008