The Mechanisms of Developing Fungicide Resistance in Fusarium graminearum Causing Fusarium Head Blight and Fungicide Resistance Management
Abstract
:1. Introduction
2. FHB Control by Fungicides
3. The Development of Fungicide Resistance in Pathogens
4. Reports of Fungicide Resistance and Common Fungicide Resistance Mechanisms Found in Fusarium graminearum Species Complex
5. Mitigation Strategies for the Development of Fungicide Resistance in the Pathogen Population
6. Conclusions and Future Remarks
Funding
Conflicts of Interest
References
- McMullen, M.; Jones, R.; Gallenberg, D. Scab of Wheat and Barley: A Re-Emerging Disease of Devastating Impact. Plant Dis. 1997, 81, 1340–1348. [Google Scholar] [CrossRef] [PubMed]
- Shaner, G.; Buechley, G. Relation between Head Blight Severity and DON in Natural Epidemics of FHB. In Proceedings of the 2nd International Symposium on Fusarium Head Blight, MI, USA, 13–15 December 2003; Volume 518. [Google Scholar]
- Parry, D.W.; Jenkinson, P.; McLeod, L. Fusarium Ear Blight (Scab) in Small Grain Cereals—A Review. Plant Pathol. 1995, 44, 207–238. [Google Scholar] [CrossRef]
- Gilbert, J.; Tekauz, A. Recent Developments in Research on Fusarium Head Blight of Wheat in Canada. Can. J. Plant Pathol. 2000, 22, 1–8. [Google Scholar] [CrossRef]
- McCormick, S.P.; Stanley, A.M.; Stover, N.A.; Alexander, N.J. Trichothecenes: From Simple to Complex Mycotoxins. Toxins 2011, 3, 802–814. [Google Scholar] [CrossRef]
- Ferrigo, D.; Raiola, A.; Causin, R. Fusarium Toxins in Cereals: Occurrence, Legislation, Factors Promoting the Appearance and Their Management. Molecules 2016, 21, 627. [Google Scholar] [CrossRef]
- Varga, E.; Wiesenberger, G.; Woelflingseder, L.; Twaruschek, K.; Hametner, C.; Vaclaviková, M.; Malachová, A.; Marko, D.; Berthiller, F.; Adam, G. Less-Toxic Rearrangement Products of NX-Toxins Are Formed during Storage and Food Processing. Toxicol. Lett. 2018, 284, 205–212. [Google Scholar] [CrossRef]
- Wu, L.; Qiu, L.; Zhang, H.; Sun, J.; Hu, X.; Wang, B. Optimization for the Production of Deoxynivalenol and Zearalenone by Fusarium graminearum Using Response Surface Methodology. Toxins 2017, 9, 57. [Google Scholar] [CrossRef]
- Tanaka, T.; Hasegawa, A.; Yamamoto, S.; Toyazaki, M.; Matsuda, Y.; Sugiura, Y.; Ueno, Y. Production of Mycotoxins by Fusarium Isolates from Scabby Wheat Harvested in Hokkaido, Japan. JSM Mycotoxins 1987, 1987, 31–33. [Google Scholar] [CrossRef]
- Tian, Y.; Tan, Y.; Yan, Z.; Liao, Y.; Chen, J.; De Boevre, M.; De Saeger, S.; Wu, A. Antagonistic and Detoxification Potentials of Trichoderma Isolates for Control of Zearalenone (ZEN) Producing Fusarium graminearum. Front. Microbiol. 2018, 8, 2710. [Google Scholar] [CrossRef]
- D’mello, J.P.F.; Placinta, C.M.; Macdonald, A.M.C. Fusarium Mycotoxins: A Review of Global Implications for Animal Health, Welfare and Productivity. Anim. Feed. Sci. Technol. 1999, 80, 183–205. [Google Scholar] [CrossRef]
- Desjardins, A.E.; Proctor, R.H.; Bai, G.; McCormick, S.P.; Shaner, G.; Buechley, G.; Hohn, T.M. Reduced Virulence of Trichothecene-Nonproducing Mutants of Gibberella Zeae in Wheat Field Tests. MPMI 1996, 9, 775–781. [Google Scholar] [CrossRef]
- Yazar, S.; Omurtag, G.Z. Fumonisins, Trichothecenes and Zearalenone in Cereals. Int. J. Mol. Sci. 2008, 9, 2062–2090. [Google Scholar] [CrossRef] [PubMed]
- McLean, M. The Phytotoxicity of Fusarium Metabolites: An Update since 1989. Mycopathologia 1996, 133, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Haile, J.K.; N’Diaye, A.; Walkowiak, S.; Nilsen, K.T.; Clarke, J.M.; Kutcher, H.R.; Steiner, B.; Buerstmayr, H.; Pozniak, C.J. Fusarium Head Blight in Durum Wheat: Recent Status, Breeding Directions, and Future Research Prospects. Phytopathology 2019, 109, 1664–1675. [Google Scholar] [CrossRef]
- Buerstmayr, H.; Ban, T.; Anderson, J.A. QTL Mapping and Marker-assisted Selection for Fusarium Head Blight Resistance in Wheat: A Review. Plant Breed. 2009, 128, 1–26. [Google Scholar] [CrossRef]
- Prat, N.; Guilbert, C.; Prah, U.; Wachter, E.; Steiner, B.; Langin, T.; Robert, O.; Buerstmayr, H. QTL Mapping of Fusarium Head Blight Resistance in Three Related Durum Wheat Populations. Theor. Appl. Genet. 2017, 130, 13–27. [Google Scholar] [CrossRef]
- Giancaspro, A.; Giove, S.L.; Zito, D.; Blanco, A.; Gadaleta, A. Mapping QTLs for Fusarium Head Blight Resistance in an Interspecific Wheat Population. Front. Plant Sci. 2016, 7, 1381. [Google Scholar] [CrossRef]
- Buerstmayr, M.; Steiner, B.; Buerstmayr, H. Breeding for Fusarium Head Blight Resistance in Wheat—Progress and Challenges. Plant Breed. 2020, 139, 429–454. [Google Scholar] [CrossRef]
- Steiner, B.; Buerstmayr, M.; Wagner, C.; Danler, A.; Eshonkulov, B.; Ehn, M.; Buerstmayr, H. Fine-Mapping of the Fusarium Head Blight Resistance QTL Qfhs. Ifa-5A Identifies Two Resistance QTL Associated with Anther Extrusion. Theor. Appl. Genet. 2019, 132, 2039–2053. [Google Scholar] [CrossRef]
- Santra, D.K.; Santra, M.; Allan, R.E.; Campbell, K.G.; Kidwell, K.K. Genetic and Molecular Characterization of Vernalization Genes Vrn-A1, Vrn-B1, and Vrn-D1 in Spring Wheat Germplasm from the Pacific Northwest Region of the USA. Plant Breed. 2009, 128, 576–584. [Google Scholar] [CrossRef]
- de Chaves, M.A.; Reginatto, P.; da Costa, B.S.; de Paschoal, R.I.; Teixeira, M.L.; Fuentefria, A.M. Fungicide Resistance in Fusarium graminearum Species Complex. Curr. Microbiol. 2022, 79, 62. [Google Scholar] [CrossRef] [PubMed]
- Moonjely, S.; Ebert, M.; Paton-Glassbrook, D.; Noel, Z.A.; Roze, L.; Shay, R.; Watkins, T.; Trail, F. Update on the State of Research to Manage Fusarium Head Blight. Fungal Genet. Biol. 2023, 169, 103829. [Google Scholar] [CrossRef] [PubMed]
- Haidukowski, M.; Pascale, M.; Perrone, G.; Pancaldi, D.; Campagna, C.; Visconti, A. Effect of Fungicides on the Development of Fusarium Head Blight, Yield and Deoxynivalenol Accumulation in Wheat Inoculated under Field Conditions with Fusarium graminearum and Fusarium Culmorum. J. Sci. Food Agric. 2005, 85, 191–198. [Google Scholar] [CrossRef]
- Hirooka, T.; Ishii, H. Chemical Control of Plant Diseases. J. General. Plant Pathol. 2013, 79, 390–401. [Google Scholar] [CrossRef]
- Frac List 2024 FRAC Code List©* 2024: Fungal Control Agents Sorted by Cross-Resistance Pattern and Mode of Action (Including Coding for FRAC Groups on Product Labels). Available online: https://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2024.pdf (accessed on 10 October 2024).
- Amarasinghe, C.C.; Tamburic-Ilincic, L.; Gilbert, J.; Brûlé-Babel, A.L.; Dilantha Fernando, W.G. Evaluation of Different Fungicides for Control of Fusarium Head Blight in Wheat Inoculated with 3ADON and 15ADON Chemotypes of Fusarium graminearum in Canada. Can. J. Plant Pathol. 2013, 35, 200–208. [Google Scholar] [CrossRef]
- Sun, H.-Y.; Zhu, Y.-F.; Liu, Y.-Y.; Deng, Y.-Y.; Li, W.; Zhang, A.-X.; Chen, H.-G. Evaluation of Tebuconazole for the Management of Fusarium Head Blight in China. Australas. Plant Pathol. 2014, 43, 631–638. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, L.; He, X.; Wang, J. Screening Fungicides for Controlling Fusarium Head Blight of Winter Wheat. Agric. Sci. Technol. 2017, 18, 2495–2502. [Google Scholar]
- Duffeck, M.R.; Bandara, A.Y.; Weerasooriya, D.K.; Collins, A.A.; Jensen, P.J.; Kuldau, G.A.; Del Ponte, E.M.; Esker, P.D. Fusarium Head Blight of Small Grains in Pennsylvania: Unravelling Species Diversity, Toxin Types, Growth, and Triazole Sensitivity. Phytopathology 2022, 112, 794–802. [Google Scholar] [CrossRef]
- Spolti, P.; Del Ponte, E.M.; Dong, Y.; Cummings, J.A.; Bergstrom, G.C. Triazole Sensitivity in a Contemporary Population of Fusarium graminearum from New York Wheat and Competitiveness of a Tebuconazole-Resistant Isolate. Plant Dis. 2014, 98, 607–613. [Google Scholar] [CrossRef]
- Machado, F.J.; Santana, F.M.; Lau, D.; Del Ponte, E.M. Quantitative Review of the Effects of Triazole and Benzimidazole Fungicides on Fusarium Head Blight and Wheat Yield in Brazil. Plant Dis. 2017, 101, 1633–1641. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J.; Luo, Q.; Yuan, S.; Zhou, M. Characterization and Fitness of Carbendazim-resistant Strains of Fusarium graminearum (Wheat Scab). Pest. Manag. Sci. Former. Pestic. Sci. 2007, 63, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhou, M.-G. Characterization of Fusarium graminearum Isolates Resistant to Both Carbendazim and a New Fungicide JS399-19. Phytopathology 2009, 99, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Zhou, M. A Major Gene for Resistance to Carbendazim, in Field Isolates of Gibberella Zeae. Can. J. Plant Pathol. 2005, 27, 58–63. [Google Scholar] [CrossRef]
- Zhang, L.; Jia, X.; Chen, C.; Zhou, M. Characterization of Carbendazim Sensitivity and Trichothecene Chemotypes of Fusarium graminearum in Jiangsu Province of China. Physiol. Mol. Plant Pathol. 2013, 84, 53–60. [Google Scholar] [CrossRef]
- Li, H.; Diao, Y.; Wang, J.; Chen, C.; Ni, J.; Zhou, M. JS399-19, a New Fungicide against Wheat Scab. Crop Prot. 2008, 27, 90–95. [Google Scholar] [CrossRef]
- Sun, H.; Cai, S.; Liu, H.; Li, X.; Deng, Y.; Yang, X.; Cao, S.; Li, W.; Chen, H. FgSdhC Paralog Confers Natural Resistance toward SDHI Fungicides in Fusarium graminearum. J. Agric. Food Chem. 2023, 71, 20643–20653. [Google Scholar] [CrossRef]
- Miao, J.; Li, Y.; Hu, S.; Li, G.; Gao, X.; Dai, T.; Liu, X. Resistance Risk, Resistance Mechanism and the Effect on DON Production of a New SDHI Fungicide Cyclobutrifluram in Fusarium graminearum. Pestic. Biochem. Physiol. 2024, 199, 105795. [Google Scholar] [CrossRef]
- Wen, Z.; Wang, J.; Jiao, C.; Shao, W.; Ma, Z. Biological and Molecular Characterizations of Field Fludioxonil-Resistant Isolates of Fusarium graminearum. Pestic. Biochem. Physiol. 2022, 184, 105101. [Google Scholar] [CrossRef]
- Wen, Z.; Zhang, Y.; Chen, Y.; Zhao, Y.; Shao, W.; Ma, Z. Characterization of the Fludioxonil and Phenamacril Dual Resistant Mutants of Fusarium graminearum. Pestic. Biochem. Physiol. 2024, 200, 105815. [Google Scholar] [CrossRef]
- Shi, D.; Wang, J.; Cao, Y.; Zhang, Z.; Li, X.; Mbadianya, J.I.; Chen, C. Overexpression of FgPtp3 Is Involved in Fludioxonil Resistance in Fusarium graminearum by Inhibiting the Phosphorylation of FgHog1. J. Agric. Food Chem. 2023, 71, 12807–12818. [Google Scholar] [CrossRef]
- Tini, F.; Beccari, G.; Onofri, A.; Ciavatta, E.; Gardiner, D.M.; Covarelli, L. Fungicides May Have Differential Efficacies towards the Main Causal Agents of Fusarium Head Blight of Wheat. Pest. Manag. Sci. 2020, 76, 3738–3748. [Google Scholar] [CrossRef] [PubMed]
- Balducci, E.; Tini, F.; Beccari, G.; Ricci, G.; Ceron-Bustamante, M.; Orfei, M.; Guiducci, M.; Covarelli, L. A Two-Year Field Experiment for the Integrated Management of Bread and Durum Wheat Fungal Diseases and of Deoxynivalenol Accumulation in the Grain in Central Italy. Agronomy 2022, 12, 840. [Google Scholar] [CrossRef]
- Singh, G.; Hnatowich, G.; Peng, G.; Kutcher, H.R. Fungicide Mitigates Fusarium Head Blight in Durum Wheat When Applied as Late as the End of Flowering in Western Canada. Plant Dis. 2021, 105, 3481–3489. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, A.-F.; Gao, T.-C.; Zhang, Y.; Wang, W.-X.; Ding, K.-J.; Chen, L.; Sun, Z.; Fang, X.-Z.; Zhou, M.-G. Integrated Use of Pyraclostrobin and Epoxiconazole for the Control of Fusarium Head Blight of Wheat in Anhui Province of China. Plant Dis. 2012, 96, 1495–1500. [Google Scholar] [CrossRef]
- Friskop, A.; Halvorson, J.; Hansen, B.; Meyer, S.; Jordahl, J.; Gautam, P.; Chapara, V.; Arens, A.; Tjelde, T.; Kalil, A. Effects of Fungicides and Cultivar Resistance on Fusarium Head Blight and Deoxynivalenol in Spring Barley from 2014 to 2019. Plant Health Prog 2023, 24, 16–23. [Google Scholar] [CrossRef]
- Mesterhazy, A.; Bartok, T.; Lamper, C. Influence of Wheat Cultivar, Species of Fusarium, and Isolate Aggressiveness on the Efficacy of Fungicides for Control of Fusarium Head Blight. Plant Dis. 2003, 87, 1107–1115. [Google Scholar] [CrossRef]
- Haidukowski, M.; Visconti, A.; Perrone, G.; Vanadia, S.; Pancaldi, D.; Covarelli, L.; Balestrazzi, R.; Pascale, M. Effect of Prothioconazole-Based Fungicides on Fusarium Head Blight, Grain Yield and Deoxynivalenol Accumulation in Wheat under Field Conditions. Phytopathol. Mediterr. 2012, 51, 236–246. [Google Scholar]
- Müllenborn, C.; Steiner, U.; Ludwig, M.; Oerke, E.-C. Effect of Fungicides on the Complex of Fusarium Species and Saprophytic Fungi Colonizing Wheat Kernels. Eur. J. Plant Pathol. 2008, 120, 157–166. [Google Scholar] [CrossRef]
- Simpson, D.R.; Weston, G.E.; Turner, J.A.; Jennings, P.; Nicholson, P. Differential Control of Head Blight Pathogens of Wheat by Fungicides and Consequences for Mycotoxin Contamination of Grain. Eur. J. Plant Pathol. 2001, 107, 421–431. [Google Scholar] [CrossRef]
- Maria Menniti, A.; Pancaldi, D.; Maccaferri, M.; Casalini, L. Effect of Fungicides on Fusarium Head Blight and Deoxynivalenol Content in Durum Wheat Grain. Eur. J. Plant Pathol. 2003, 109, 109–115. [Google Scholar] [CrossRef]
- Martin, R.A.; Johnston, H.W. Effects and Control of Fusarium Diseases of Cereal Grains in the Atlantic Provinces. Can. J. Plant Pathol. 1982, 4, 210–216. [Google Scholar] [CrossRef]
- Pirgozliev, S.R.; Edwards, S.G.; Hare, M.C.; Jenkinson, P. Effect of Dose Rate of Azoxystrobin and Metconazole on the Development of Fusarium Head Blight and the Accumulation of Deoxynivalenol (DON) in Wheat Grain. Eur. J. Plant Pathol. 2002, 108, 469–478. [Google Scholar] [CrossRef]
- Bolanos-Carriel, C.; Wegulo, S.N.; Baenziger, P.S.; Funnell-Harris, D.; Hallen-Adams, H.E.; Eskridge, K.M. Effects of Fungicide Chemical Class, Fungicide Application Timing, and Environment on Fusarium Head Blight in Winter Wheat. Eur. J. Plant Pathol. 2020, 158, 667–679. [Google Scholar] [CrossRef]
- Freije, A.N.; Wise, K.A. Impact of Fusarium graminearum Inoculum Availability and Fungicide Application Timing on Fusarium Head Blight in Wheat. Crop Prot. 2015, 77, 139–147. [Google Scholar] [CrossRef]
- González-Domínguez, E.; Meriggi, P.; Ruggeri, M.; Rossi, V. Efficacy of Fungicides against Fusarium Head Blight Depends on the Timing Relative to Infection Rather than on Wheat Growth Stage. Agronomy 2021, 11, 1549. [Google Scholar] [CrossRef]
- Ma, Z.; Michailides, T.J. Advances in Understanding Molecular Mechanisms of Fungicide Resistance and Molecular Detection of Resistant Genotypes in Phytopathogenic Fungi. Crop Prot. 2005, 24, 853–863. [Google Scholar] [CrossRef]
- Massi, F.; Torriani, S.F.F.; Borghi, L.; Toffolatti, S.L. Fungicide Resistance Evolution and Detection in Plant Pathogens: Plasmopara Viticola as a Case Study. Microorganisms 2021, 9, 119. [Google Scholar] [CrossRef]
- Parnell, S.; Gilligan, C.A.; Van den Bosch, F. Small-Scale Fungicide Spray Heterogeneity and the Coexistence of Resistant and Sensitive Pathogen Strains. Phytopathology 2005, 95, 632–639. [Google Scholar] [CrossRef]
- Chin, K.M.; Chavaillaz, D.; Kaesbohrer, M.; Staub, T.; Felsenstein, F.G. Characterizing Resistance Risk of Erysiphe Graminis f. Sp. Tritici to Strobilurins. Crop Prot. 2001, 20, 87–96. [Google Scholar] [CrossRef]
- McGrath, M.T. Fungicide Resistance in Cucurbit Powdery Mildew: Experiences and Challenges. Plant Dis. 2001, 85, 236–245. [Google Scholar] [CrossRef]
- Brent, K.J.; Hollomon, D.W. Fungicide Resistance in Crop Pathogens: How Can It Be Managed? The Fungicide Resistance Action Committee: Brussels, Belgium, 2007. [Google Scholar]
- Gullino, M.L.; Leroux, P.; Smith, C.M. Uses and Challenges of Novel Compounds for Plant Disease Control. Crop Prot. 2000, 19, 1–11. [Google Scholar] [CrossRef]
- Gisi, U.; Chin, K.M.; Knapova, G.; Färber, R.K.; Mohr, U.; Parisi, S.; Sierotzki, H.; Steinfeld, U. Recent Developments in Elucidating Modes of Resistance to Phenylamide, DMI and Strobilurin Fungicides. Crop Prot. 2000, 19, 863–872. [Google Scholar] [CrossRef]
- Mair, W.J.; Deng, W.; Mullins, J.G.L.; West, S.; Wang, P.; Besharat, N.; Ellwood, S.R.; Oliver, R.P.; Lopez-Ruiz, F.J. Demethylase Inhibitor Fungicide Resistance in Pyrenophora Teres f. Sp. Teres Associated with Target Site Modification and Inducible Overexpression of Cyp51. Front. Microbiol. 2016, 7, 1279. [Google Scholar] [CrossRef]
- Price, C.L.; Parker, J.E.; Warrilow, A.G.S.; Kelly, D.E.; Kelly, S.L. Azole Fungicides–Understanding Resistance Mechanisms in Agricultural Fungal Pathogens. Pest. Manag. Sci. 2015, 71, 1054–1058. [Google Scholar] [CrossRef] [PubMed]
- Sevastos, A.; Markoglou, A.; Labrou, N.E.; Flouri, F.; Malandrakis, A. Molecular Characterization, Fitness and Mycotoxin Production of Fusarium graminearum Laboratory Strains Resistant to Benzimidazoles. Pestic. Biochem. Physiol. 2016, 128, 1–9. [Google Scholar] [CrossRef]
- Feksa, H.R.; Do Couto, H.T.Z.; Garozi, R.; De Almeida, J.L.; Gardiano, C.G.; Tessmann, D.J. Pre-and Postinfection Application of Strobilurin-Triazole Premixes and Single Fungicides for Control of Fusarium Head Blight and Deoxynivalenol Mycotoxin in Wheat. Crop Prot. 2019, 117, 128–134. [Google Scholar] [CrossRef]
- Liu, S.; Fu, L.; Wang, S.; Chen, J.; Jiang, J.; Che, Z.; Tian, Y.; Chen, G. Carbendazim Resistance of Fusarium graminearum from Henan Wheat. Plant Dis. 2019, 103, 2536–2540. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, X.; Ge, C.; Wang, Y.; Cao, J.; Jia, X.; Wang, J.; Zhou, M. Development and Application of Loop-Mediated Isothermal Amplification for Detection of the F167Y Mutation of Carbendazim-Resistant Isolates in Fusarium graminearum. Sci. Rep. 2014, 4, 7094. [Google Scholar] [CrossRef]
- Chen, C.-J.; Yu, J.-J.; Bi, C.-W.; Zhang, Y.-N.; Xu, J.-Q.; Wang, J.-X.; Zhou, M.-G. Mutations in a β-Tubulin Confer Resistance of Gibberella Zeae to Benzimidazole Fungicides. Phytopathology 2009, 99, 1403–1411. [Google Scholar] [CrossRef]
- Qiu, J.; Xu, J.; Yu, J.; Bi, C.; Chen, C.; Zhou, M. Localisation of the Benzimidazole Fungicide Binding Site of Gibberella Zeae Β2-tubulin Studied by Site-directed Mutagenesis. Pest. Manag. Sci. 2011, 67, 191–198. [Google Scholar] [CrossRef]
- Qiu, J.; Huang, T.; Xu, J.; Bi, C.; Chen, C.; Zhou, M. Β-Tubulins in Gibberella Zeae: Their Characterization and Contribution to Carbendazim Resistance. Pest. Manag. Sci. 2012, 68, 1191–1198. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-Z.; Li, Z.; Man, J.; Xu, D.; Wen, L.; Yang, C.; Xu, Q.; Jiang, Q.-T.; Chen, G.-Y.; Deng, M. Genetic Diversity of Field Fusarium Asiaticum and Fusarium graminearum Isolates Increases the Risk of Fungicide Resistance. Phytopathol. Res. 2023, 5, 51. [Google Scholar] [CrossRef]
- Anderson, N.R.; Freije, A.N.; Bergstrom, G.C.; Bradley, C.A.; Cowger, C.; Faske, T.; Hollier, C.; Kleczewski, N.; Padgett, G.B.; Paul, P. Sensitivity of Fusarium graminearum to Metconazole and Tebuconazole Fungicides before and after Widespread Use in Wheat in the United States. Plant Health Prog. 2020, 21, 85–90. [Google Scholar] [CrossRef]
- Yerkovich, N.; Cantoro, R.; Palazzini, J.M.; Torres, A.; Chulze, S.N. Fusarium Head Blight in Argentina: Pathogen Aggressiveness, Triazole Tolerance and Biocontrol-Cultivar Combined Strategy to Reduce Disease and Deoxynivalenol in Wheat. Crop Prot. 2020, 137, 105300. [Google Scholar] [CrossRef]
- Yin, Y.; Liu, X.; Li, B.; Ma, Z. Characterization of Sterol Demethylation Inhibitor-Resistant Isolates of Fusarium Asiaticum and F. Graminearum Collected from Wheat in China. Phytopathology 2009, 99, 487–497. [Google Scholar] [CrossRef]
- Becher, R.; Hettwer, U.; Karlovsky, P.; Deising, H.B.; Wirsel, S.G.R. Adaptation of Fusarium graminearum to Tebuconazole Yielded Descendants Diverging for Levels of Fitness, Fungicide Resistance, Virulence, and Mycotoxin Production. Phytopathology 2010, 100, 444–453. [Google Scholar] [CrossRef]
- Klix, M.B.; Verreet, J.-A.; Beyer, M. Comparison of the Declining Triazole Sensitivity of Gibberella Zeae and Increased Sensitivity Achieved by Advances in Triazole Fungicide Development. Crop Prot. 2007, 26, 683–690. [Google Scholar] [CrossRef]
- Duan, Y.; Li, M.; Zhao, H.; Lu, F.; Wang, J.; Zhou, M. Molecular and Biological Characteristics of Laboratory Metconazole-Resistant Mutants in Fusarium graminearum. Pestic. Biochem. Physiol. 2018, 152, 55–61. [Google Scholar] [CrossRef]
- Zhou, F.; Zhou, X.; Jiao, Y.; Han, A.-H.; Su, H.; Wang, L.-H.; Zhou, H.; Li, W.; Liu, R.-Q. Potential Mechanisms of Hexaconazole Resistance in Fusarium graminearum. Plant Dis. 2024, 108, 3133–3145. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, J.; Guo, X.; Qian, L.; Xu, J.; Che, Z.; Chen, G.; Liu, S. Sensitivity and Resistance Risk Assessment of Fusarium graminearum from Wheat to Prothioconazole. Plant Dis. 2022, 106, 2097–2104. [Google Scholar] [CrossRef]
- Abou Ammar, G.; Tryono, R.; Döll, K.; Karlovsky, P.; Deising, H.B.; Wirsel, S.G.R. Identification of ABC Transporter Genes of Fusarium graminearum with Roles in Azole Tolerance and/or Virulence. PLoS ONE 2013, 8, e79042. [Google Scholar] [CrossRef] [PubMed]
- Ammar, G.A.; Tryono, R.; Becher, R.; Deising, H.B.; Wirsel, S.G.R. Contribution of ABC Transporters to Azole Resistance and Virulence in Fusarium graminearum; Deutsche Phytomedizinische Gesellschaft: Braunschweig, Germany, 2014. [Google Scholar]
- Ma, T.; Li, Y.; Lou, Y.; Shi, J.; Sun, K.; Ma, Z.; Yan, L.; Yin, Y. The Drug H+ Antiporter FgQdr2 Is Essential for Multiple Drug Resistance, Ion Homeostasis, and Pathogenicity in Fusarium graminearum. J. Fungi 2022, 8, 1009. [Google Scholar] [CrossRef] [PubMed]
- Hellin, P.; King, R.; Urban, M.; Hammond-Kosack, K.E.; Legrève, A. The Adaptation of Fusarium Culmorum to DMI Fungicides Is Mediated by Major Transcriptome Modifications in Response to Azole Fungicide, Including the Overexpression of a PDR Transporter (FcABC1). Front. Microbiol. 2018, 9, 1385. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Gai, Y.; Zhao, Y.; Wang, M.; Ma, Z. The Calcium-Calcineurin and High-Osmolarity Glycerol Pathways Co-Regulate Tebuconazole Sensitivity and Pathogenicity in Fusarium graminearum. Pestic. Biochem. Physiol. 2023, 190, 105311. [Google Scholar] [CrossRef] [PubMed]
- Thurau, T.; Beyer, M.; Blanck, T.; Liu, X. Transcriptional changes of putative Fusarium graminearum transporter sequences in response to trifloxystrobin and deoxynivalenol. J. Plant Pathol. 2013, 95, S1.29–S1.37. [Google Scholar]
- Dubos, T.; Pasquali, M.; Pogoda, F.; Hoffmann, L.; Beyer, M. Evidence for Natural Resistance towards Trifloxystrobin in Fusarium graminearum. Eur. J. Plant Pathol. 2011, 130, 239–248. [Google Scholar] [CrossRef]
- Jun-chao, J.I.A.; Lin, M.A.; Zhi-jin, F.A.N.; Qian, X.I.A.; Xiu-feng, L.I.U. Progress on Study of Resistance Mechanism of Strobilurin Fungicides. Chin. J. Pestic. Sci. 2008, 10, 1–9. [Google Scholar]
- Ivanović, Ž.; Blagojević, J. Distribution of the F129L Mutation Conferring Resistance to Strobilurins in Alternaria Solani Populations in Serbia. Ann. Appl. Biol. 2022, 181, 117–126. [Google Scholar] [CrossRef]
- Andrade, S.M.P.; Augusti, G.R.; Paiva, G.F.; Feksa, H.R.; Tessmann, D.J.; Machado, F.J.; Mizubuti, E.S.G.; Del Ponte, E.M. Phenotypic and Molecular Characterization of the Resistance to Azoxystrobin and Pyraclostrobin in Fusarium graminearum Populations from Brazil. Plant Pathol. 2022, 71, 1152–1163. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Xu, J.; Zou, H.; Guo, Y.; Mao, Y.; Zhang, J.; Cai, Y.; Wang, J.; Zhu, C. The G143S Mutation in Cytochrome b Confers High Resistance to Pyraclostrobin in Fusarium Pseudograminearum. Pest. Manag. Sci. 2024, 80, 4941–4949. [Google Scholar] [CrossRef]
- Zheng, Z.; Gao, T.; Zhang, Y.; Hou, Y.; Wang, J.; Zhou, M. FgFim, a Key Protein Regulating Resistance to the Fungicide JS 399-19, Asexual and Sexual Development, Stress Responses and Virulence in F Usarium Graminearum. Mol. Plant Pathol. 2014, 15, 488–499. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Wu, S.; Dawood, D.H.; Tang, G.; Zhang, C.; Liang, J.; Chen, Y.; Ma, Z. The B-ZIP Transcription Factor FgTfmI Is Required for the Fungicide Phenamacril Tolerance and Pathogenecity in Fusarium graminearum. Pest. Manag. Sci. 2019, 75, 3312–3322. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Jia, F.; Lin, Y.; Song, G.; Li, M.; Xu, R.; Wang, H.; Zhang, F.; Guo, J. Unveiling the Mechanism of Phenamacril Resistance in F. Graminearum: Computational and Experimental Insights into the C423A Mutation in FgMyoI. J. Agric. Food Chem. 2024, 72, 15653–15661. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Shao, W.; Duan, Y.; Zhao, Y.; Liu, Z.; Ma, Z. Biological and Molecular Characterization of Pydiflumetofen and Phenamacril Dual-resistant Fusarium graminearum Strains. Pest. Manag. Sci. 2024, 80, 4959–4966. [Google Scholar] [CrossRef]
- Zheng, Z.; Hou, Y.; Cai, Y.; Zhang, Y.; Li, Y.; Zhou, M. Whole-Genome Sequencing Reveals That Mutations in Myosin-5 Confer Resistance to the Fungicide Phenamacril in Fusarium graminearum. Sci. Rep. 2015, 5, 8248. [Google Scholar] [CrossRef]
- Avenot, H.F.; Michailides, T.J. Progress in Understanding Molecular Mechanisms and Evolution of Resistance to Succinate Dehydrogenase Inhibiting (SDHI) Fungicides in Phytopathogenic Fungi. Crop Prot. 2010, 29, 643–651. [Google Scholar] [CrossRef]
- Shao, W.; Wang, J.; Wang, H.; Wen, Z.; Liu, C.; Zhang, Y.; Zhao, Y.; Ma, Z. Fusarium graminearum FgSdhC1 Point Mutation A78V Confers Resistance to the Succinate Dehydrogenase Inhibitor Pydiflumetofen. Pest. Manag. Sci. 2022, 78, 1780–1788. [Google Scholar] [CrossRef]
- Zhou, F.; Zhou, H.-H.; Han, A.-H.; Guo, K.-Y.; Liu, T.-C.; Wu, Y.-B.; Hu, H.-Y.; Li, C.-W. Mechanism of Pydiflumetofen Resistance in Fusarium graminearum in China. J. Fungi 2022, 9, 62. [Google Scholar] [CrossRef]
- Sun, H.; Cui, J.; Tian, B.; Cao, S.; Zhang, X.; Chen, H. Resistance Risk Assessment for Fusarium graminearum to Pydiflumetofen, a New Succinate Dehydrogenase Inhibitor. Pest. Manag. Sci. 2020, 76, 1549–1559. [Google Scholar] [CrossRef]
- Avozani, A.; Reis, E.M.; Tonin, R.B. In Vitro Sensitivity Reduction of Fusarium graminearum to DMI and QoI Fungicides. Summa Phytopathol. 2014, 40, 358–364. [Google Scholar] [CrossRef]
- Breunig, M.; Chilvers, M.I. Baseline Sensitivity of Fusarium graminearum from Wheat, Corn, Dry Bean and Soybean to Pydiflumetofen in Michigan, USA. Crop Prot. 2021, 140, 105419. [Google Scholar] [CrossRef]
- Wegulo, S.N.; Baenziger, P.S.; Nopsa, J.H.; Bockus, W.W.; Hallen-Adams, H. Management of Fusarium Head Blight of Wheat and Barley. Crop Prot. 2015, 73, 100–107. [Google Scholar] [CrossRef]
- Musa, T.; Hecker, A.; Vogelgsang, S.; Forrer, H.R. Forecasting of Fusarium Head Blight and Deoxynivalenol Content in Winter Wheat with FusaProg. EPPO Bull. 2007, 37, 283–289. [Google Scholar] [CrossRef]
- Matengu, T.T.; Bullock, P.R.; Mkhabela, M.S.; Zvomuya, F.; Henriquez, M.A.; Ojo, E.R.; Fernando, W.G.D. Weather-based Models for Forecasting Fusarium Head Blight Risks in Wheat and Barley: A Review. Plant Pathol. 2024, 73, 492–505. [Google Scholar] [CrossRef]
- Landschoot, S.; Waegeman, W.; Audenaert, K.; Vandepitte, J.; Haesaert, G.; De Baets, B. Toward a Reliable Evaluation of Forecasting Systems for Plant Diseases: A Case Study Using Fusarium Head Blight of Wheat. Plant Dis. 2012, 96, 889–896. [Google Scholar] [CrossRef]
- Xue, A.G.; Chen, Y.; Voldeng, H.D.; Fedak, G.; Savard, M.E.; Längle, T.; Zhang, J.; Harman, G.E. Concentration and Cultivar Effects on Efficacy of CLO-1 Biofungicide in Controlling Fusarium Head Blight of Wheat. Biol. Control 2014, 73, 2–7. [Google Scholar] [CrossRef]
- Wang, L.-Y.; Xie, Y.-S.; Cui, Y.-Y.; Xu, J.; He, W.; Chen, H.-G.; Guo, J.-H. Conjunctively Screening of Biocontrol Agents (BCAs) against Fusarium Root Rot and Fusarium Head Blight Caused by Fusarium graminearum. Microbiol. Res. 2015, 177, 34–42. [Google Scholar] [CrossRef]
- Palazzini, J.M.; Yerkovich, N.; Alberione, E.; Chiotta, M.; Chulze, S.N. Reprint of “an Integrated Dual Strategy to Control Fusarium graminearum Sensu Stricto by the Biocontrol Agent Streptomyces Sp. RC 87B under Field Conditions”. Plant Gene 2017, 11, 2–7. [Google Scholar] [CrossRef]
- Khan, N.I.; Schisler, D.A.; Boehm, M.J.; Slininger, P.J.; Bothast, R.J. Selection and Evaluation of Microorganisms for Biocontrol of Fusarium Head Blight of Wheat Incited by Gibberella Zeae. Plant Dis. 2001, 85, 1253–1258. [Google Scholar] [CrossRef]
- Zhang, S.; Schisler, D.A.; Boehm, M.J.; Slininger, P.J. Utilization of Chemical Inducers of Resistance and Cryptococcus Flavescens OH 182.9 to Reduce Fusarium Head Blight under Greenhouse Conditions. Biol. Control 2007, 42, 308–315. [Google Scholar] [CrossRef]
- Legrand, F.; Picot, A.; Cobo-Díaz, J.F.; Chen, W.; Le Floch, G. Challenges Facing the Biological Control Strategies for the Management of Fusarium Head Blight of Cereals Caused by F. Graminearum. Biol. Control 2017, 113, 26–38. [Google Scholar] [CrossRef]
- Kumar, K.N.; Venkataramana, M.; Allen, J.A.; Chandranayaka, S.; Murali, H.S.; Batra, H.V. Role of Curcuma Longa L. Essential Oil in Controlling the Growth and Zearalenone Production of Fusarium graminearum. LWT-Food Sci. Technol. 2016, 69, 522–528. [Google Scholar] [CrossRef]
- Yaguchi, A.; Yoshinari, T.; Tsuyuki, R.; Takahashi, H.; Nakajima, T.; Sugita-Konishi, Y.; Nagasawa, H.; Sakuda, S. Isolation and Identification of Precocenes and Piperitone from Essential Oils as Specific Inhibitors of Trichothecene Production by Fusarium graminearum. J. Agric. Food Chem. 2009, 57, 846–851. [Google Scholar] [CrossRef] [PubMed]
- Perczak, A.; Gwiazdowska, D.; Marchwińska, K.; Juś, K.; Gwiazdowski, R.; Waśkiewicz, A. Antifungal Activity of Selected Essential Oils against Fusarium Culmorum and F. Graminearum and Their Secondary Metabolites in Wheat Seeds. Arch. Microbiol. 2019, 201, 1085–1097. [Google Scholar] [CrossRef]
- Krzyśko-Łupicka, T.; Walkowiak, W.; Białoń, M. Comparison of the Fungistatic Activity of Selected Essential Oils Relative to Fusarium graminearum Isolates. Molecules 2019, 24, 311. [Google Scholar] [CrossRef]
- Harcarova, M.; Conkova, E.; Proskovcova, M.; Váczi, P.; Marcincakova, D.; Bujnak, L. Comparison of Antifungal Activity of Selected Essential Oils against Fusarium graminearum in Vitro. Ann. Agric. Environ. Med. 2021, 28, 414–418. [Google Scholar] [CrossRef]
- Jian, Y.; Chen, X.; Ahmed, T.; Shang, Q.; Zhang, S.; Ma, Z.; Yin, Y. Toxicity and Action Mechanisms of Silver Nanoparticles against the Mycotoxin-Producing Fungus Fusarium graminearum. J. Adv. Res. 2022, 38, 1–12. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; McLean, J.E.; Britt, D.W.; Anderson, A.J. Antifungal Activity of ZnO Nanoparticles and Their Interactive Effect with a Biocontrol Bacterium on Growth Antagonism of the Plant Pathogen Fusarium graminearum. Biometals 2013, 26, 913–924. [Google Scholar] [CrossRef]
- Ibrahim, E.; Xu, L.; Nasser, R.; Adel, A.-S.M.; Hafeez, R.; Ogunyemi, S.O.; Abdallah, Y.; Zhang, Z.; Shou, L.; Wang, D. Utilizing Zinc Oxide Nanoparticles as an Environmentally Safe Biosystem to Mitigate Mycotoxicity and Suppress Fusarium Graminearium Colonization in Wheat. Sustain. Mater. Technol. 2024, 41, e01028. [Google Scholar] [CrossRef]
- Jalill, R.D.A.; Numan, R.S. Silver Nitrate and Zirconium Oxide Nanoparticles as Management of Wheat Damping-off Caused by Fusarium graminearum. J. Genet. Environ. Resour. Conserv. 2016, 4, 85–93. [Google Scholar]
- Kheiri, A.; Jorf, S.A.M.; Malihipour, A.; Saremi, H.; Nikkhah, M. Application of Chitosan and Chitosan Nanoparticles for the Control of Fusarium Head Blight of Wheat (Fusarium graminearum) in Vitro and Greenhouse. Int. J. Biol. Macromol. 2016, 93, 1261–1272. [Google Scholar] [CrossRef]
- Kousik, C.S.; Ji, P.; Egel, D.S.; Quesada-Ocampo, L.M. Fungicide Rotation Programs for Managing Phytophthora Fruit Rot of Watermelon in Southeastern United States. Plant Health Prog. 2017, 18, 28–34. [Google Scholar] [CrossRef]
Group | Chemical/Biological Name | Mode of Action | Target Site | Frac Code | References |
---|---|---|---|---|---|
DMI (Demethylase inhibitors) | Triazoles, Imidazoles | Sterol biosynthesis in plasma membrane | Cyp51/erg11 C14 demethylase in sterol biosynthesis | 3 | [24,27] |
Qoi fungicides (Quinone outside inhibitors) | Methoxy-acrylates | Respiration | Cytochrome c Respiration | 11 | [24,27,28,29,30,31,32] |
MBC fungicides | Benzimidazoles | Cytoskeleton and motor protein | Tubulin polymerization | 1 | [33,34,35,36] |
Cyanoacryates | aminocyanoacryates | Cytoskeleton and motor protein | Actin/myosin/fimbrin function | 47 | [37] |
SDHI fungicides (Succinate dehydrogenase inhibitors) | N-methoxy-(phenyl-ethyl)-pyrazole-carboxamides | Respiration | Complex II: succinate dehydrogenase | 7 | [38,39] |
PP-fungicides (phenylpyrroles) | phenylpyrroles | Signal transduction | MAP/Histidine-kinase in osmotic signal transduction | 12 | [40,41,42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayawardana, M.A.; Fernando, W.G.D. The Mechanisms of Developing Fungicide Resistance in Fusarium graminearum Causing Fusarium Head Blight and Fungicide Resistance Management. Pathogens 2024, 13, 1012. https://doi.org/10.3390/pathogens13111012
Jayawardana MA, Fernando WGD. The Mechanisms of Developing Fungicide Resistance in Fusarium graminearum Causing Fusarium Head Blight and Fungicide Resistance Management. Pathogens. 2024; 13(11):1012. https://doi.org/10.3390/pathogens13111012
Chicago/Turabian StyleJayawardana, Malini Anudya, and Wannakuwattewaduge Gerard Dilantha Fernando. 2024. "The Mechanisms of Developing Fungicide Resistance in Fusarium graminearum Causing Fusarium Head Blight and Fungicide Resistance Management" Pathogens 13, no. 11: 1012. https://doi.org/10.3390/pathogens13111012
APA StyleJayawardana, M. A., & Fernando, W. G. D. (2024). The Mechanisms of Developing Fungicide Resistance in Fusarium graminearum Causing Fusarium Head Blight and Fungicide Resistance Management. Pathogens, 13(11), 1012. https://doi.org/10.3390/pathogens13111012