Analysis of the Correlation Between Toxoplasma gondii Seropositivity and Alzheimer’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Considerations
2.2. Materials
2.3. Methods
2.4. Statistical Analysis
3. Results
3.1. Demographics
3.2. Expression of Recombinant CST1 and Parallel Experiment with Tachyzoites Lysate Protein
3.3. Reactivity Assay of CST1 and Tachyzoites Lysate Protein with Serum
3.4. Contribution of CST1 Variables to the Multivariate Logistic Regression Model
3.5. Assessment of Interaction Terms for the Final Model Selection
3.6. Predictive Value of the Serum Antibody Level of the CST1 Antigen for the Occurrence of AD
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, S.; Wang, J.; Zhang, Y.; He, J.; Kong, J.; Wang, J.-F.; Li, X.-M. The Role of Neuroinflammation and Amyloid in Cognitive Impairment in an APP/PS1 Transgenic Mouse Model of Alzheimer’s Disease. CNS Neurosci. Ther. 2017, 23, 310–320. [Google Scholar] [CrossRef]
- He, Z.; Zhang, H.; Li, X.; Tu, S.; Wang, Z.; Han, S.; Du, X.; Shen, L.; Li, N.; Liu, Q. The Protective Effects of Esculentoside A through AMPK in the Triple Transgenic Mouse Model of Alzheimer’s Disease. Phytomedicine 2023, 109, 154555. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Shi, T.; Shu, P.; Zhang, Y.; Gu, H. Toxoplasma gondii Infection and Brain Inflammation: A Two-Sample Mendelian Randomization Analysis. Heliyon 2024, 10, e24228. [Google Scholar] [CrossRef]
- Tomasik, J.; Schultz, T.L.; Kluge, W.; Yolken, R.H.; Bahn, S.; Carruthers, V.B. Shared Immune and Repair Markers During Experimental Toxoplasma Chronic Brain Infection and Schizophrenia. Schizophr. Bull. 2016, 42, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Postolache, T.T.; Wadhawan, A.; Rujescu, D.; Hoisington, A.J.; Dagdag, A.; Baca-Garcia, E.; Lowry, C.A.; Okusaga, O.O.; Brenner, L.A. Toxoplasma gondii, Suicidal Behavior, and Intermediate Phenotypes for Suicidal Behavior. Front. Psychiatry 2021, 12, 665682. [Google Scholar] [CrossRef]
- Bayani, M.; Riahi, S.M.; Bazrafshan, N.; Ray Gamble, H.; Rostami, A. Toxoplasma gondii Infection and Risk of Parkinson and Alzheimer Diseases: A Systematic Review and Meta-Analysis on Observational Studies. Acta. Trop. 2019, 196, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Severance, E.G.; Viscidi, R.P.; Yolken, R.H.; Xiao, J. Persistent Toxoplasma Infection of the Brain Induced Neurodegeneration Associated with Activation of Complement and Microglia. Infect. Immun. 2019, 87, 8. [Google Scholar] [CrossRef]
- Mahami Oskouei, M.; Hamidi, F.; Talebi, M.; Farhoudi, M.; Taheraghdam, A.A.; Kazemi, T.; Sadeghi-Bazargani, H.; Fallah, E. The Correlation between Toxoplasma gondii Infection and Parkinson’s Disease: A Case-Control Study. J. Parasit. Dis. 2016, 40, 872–876. [Google Scholar] [CrossRef]
- de Bles, N.J.; van der Does, J.E.H.; Kortbeek, L.M.; Hofhuis, A.; van Grootheest, G.; Vollaard, A.M.; Schoevers, R.A.; van Hemert, A.M.; Penninx, B.W.J.H.; Rius-Ottenheim, N.; et al. Toxoplasma gondii Seropositivity in Patients with Depressive and Anxiety Disorders. Brain Behav. Immun. Health 2021, 11, 100197. [Google Scholar] [CrossRef]
- Flegr, J.; Horáček, J. Negative Effects of Latent Toxoplasmosis on Mental Health. Front. Psychiatry 2019, 10, 1012. [Google Scholar] [CrossRef]
- Flegr, J.; Horáček, J. Toxoplasma-Infected Subjects Report an Obsessive-Compulsive Disorder Diagnosis More Often and Score Higher in Obsessive-Compulsive Inventory. Eur. Psychiatry 2017, 40, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Pappas, G.; Roussos, N.; Falagas, M.E. Toxoplasmosis Snapshots: Global Status of Toxoplasma gondii Seroprevalence and Implications for Pregnancy and Congenital Toxoplasmosis. Int. J. Parasitol. 2009, 39, 1385–1394. [Google Scholar] [CrossRef] [PubMed]
- Robert-Gangneux, F.; Dardé, M.-L. Epidemiology of and Diagnostic Strategies for Toxoplasmosis. Clin. Microbiol. Rev. 2012, 25, 264–296. [Google Scholar] [CrossRef]
- Pan, M.; Lyu, C.; Zhao, J.; Shen, B. Sixty Years (1957–2017) of Research on Toxoplasmosis in China-An Overview. Front. Microbiol. 2017, 8, 1825. [Google Scholar] [CrossRef]
- Su, Y.-J.; Ma, Z.-D.; Qiao, X.; Wang, P.-T.; Kang, Y.-T.; Yang, N.-A.; Jia, W.; Zhao, Z.-J. Geospatial Epidemiology of Toxoplasma gondii Infection in Livestock, Pets, and Humans in China, 1984–2020. Parasitol. Res. 2022, 121, 743–750. [Google Scholar] [CrossRef]
- Kumar, P.; Tomita, T.; Gerken, T.A.; Ballard, C.J.; Lee, Y.S.; Weiss, L.M.; Samara, N.L. A Toxoplasma gondii O-Glycosyltransferase That Modulates Bradyzoite Cyst Wall Rigidity Is Distinct from Host Homologues. Nat. Commun. 2024, 15, 3792. [Google Scholar] [CrossRef] [PubMed]
- Radke, J.B.; Worth, D.; Hong, D.; Huang, S.; Sullivan, W.J.; Wilson, E.H.; White, M.W. Transcriptional Repression by ApiAP2 Factors Is Central to Chronic Toxoplasmosis. PLoS. Pathog. 2018, 14, e1007035. [Google Scholar] [CrossRef]
- Tu, V.; Mayoral, J.; Sugi, T.; Tomita, T.; Han, B.; Ma, Y.F.; Weiss, L.M. Enrichment and Proteomic Characterization of the Cyst Wall from In Vitro Toxoplasma gondii Cysts. mBio 2019, 10, e00469-19. [Google Scholar] [CrossRef] [PubMed]
- Eom, G.-D.; Chu, K.-B.; Kang, H.-J.; Kim, M.-J.; Yoon, K.-W.; Mao, J.; Lee, S.-H.; Ahmed, M.A.; Moon, E.-K.; Quan, F.-S. Protective Mucosal and Systemic Immunity Induced by Virus-like Particles Expressing Toxoplasma gondii Cyst Wall Protein. PLoS ONE 2023, 18, e0283928. [Google Scholar] [CrossRef]
- Tomita, T.; Ma, Y.; Weiss, L. Characterization of a SRS13: A New Cyst Wall Mucin-like Domain Containing Protein. Parasitol. Res. 2018, 117, 2457–2466. [Google Scholar] [CrossRef]
- Deshmukh, A.S.; Gurupwar, R.; Mitra, P.; Aswale, K.; Shinde, S.; Chaudhari, S. Toxoplasma gondii Induces Robust Humoral Immune Response against Cyst Wall Antigens in Chronically Infected Animals and Humans. Microb. Pathog. 2021, 152, 104643. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Du, Y.; Chu, L.; Zhang, Z.; Li, F.; Lyu, D.; Li, Y.; Li, Y.; Zhu, M.; Jiao, H.; et al. Prevalence, Risk Factors, and Management of Dementia and Mild Cognitive Impairment in Adults Aged 60 Years or Older in China: A Cross-Sectional Study. Lancet. Public Health 2020, 5, e661–e671. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-Q.; Wang, C.-F.; Xu, G.; Zhao, Q.-H.; Xie, X.-Y.; Cui, H.-L.; Wang, Y.; Ren, R.-J.; Guo, Q.-H.; Wang, G. Mortality of Alzheimer’s Disease Patients: A 10-Year Follow-up Pilot Study in Shanghai. Can. J. Neurol. Sci. 2020, 47, 226–230. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, H.; Zeng, X.; Yin, P.; Zhu, J.; Chen, W.; Li, X.; Wang, L.; Wang, L.; Liu, Y.; et al. Mortality, Morbidity, and Risk Factors in China and Its Provinces, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2019, 394, 1145–1158. [Google Scholar] [CrossRef] [PubMed]
- DeTure, M.A.; Dickson, D.W. The Neuropathological Diagnosis of Alzheimer’s Disease. Mol. Neurodegener 2019, 14, 32. [Google Scholar] [CrossRef]
- Guerreiro, R.; Bras, J. The Age Factor in Alzheimer’s Disease. Genome. Med. 2015, 7, 106. [Google Scholar] [CrossRef]
- Tilley, L.; Morgan, K.; Kalsheker, N. Genetic Risk Factors in Alzheimer’s Disease. Mol. Pathol. 1998, 51, 293–304. [Google Scholar] [CrossRef]
- Luchsinger, J.A.; Mayeux, R. Cardiovascular Risk Factors and Alzheimer’s Disease. Curr. Atheroscler. Rep. 2004, 6, 261–266. [Google Scholar] [CrossRef]
- Julien, J.; Joubert, S.; Ferland, M.-C.; Frenette, L.C.; Boudreau-Duhaime, M.M.; Malo-Véronneau, L.; de Guise, E. Association of Traumatic Brain Injury and Alzheimer Disease Onset: A Systematic Review. Ann. Phys. Rehabil. Med. 2017, 60, 347–356. [Google Scholar] [CrossRef]
- Killin, L.O.J.; Starr, J.M.; Shiue, I.J.; Russ, T.C. Environmental Risk Factors for Dementia: A Systematic Review. BMC Geriatr. 2016, 16, 175. [Google Scholar] [CrossRef]
- Yip, A.G.; Green, R.C.; Huyck, M.; Cupples, L.A.; Farrer, L.A.; MIRAGE Study Group. Nonsteroidal Anti-Inflammatory Drug Use and Alzheimer’s Disease Risk: The MIRAGE Study. BMC Geriatr. 2005, 5, 2. [Google Scholar] [CrossRef] [PubMed]
- Yoshiyama, Y.; Kojima, A.; Ishikawa, C.; Arai, K. Anti-Inflammatory Action of Donepezil Ameliorates Tau Pathology, Synaptic Loss, and Neurodegeneration in a Tauopathy Mouse Model. J. Alzheimer’s Dis. 2010, 22, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Khanaliha, K.; Motazedian, M.H.; Kazemi, B.; Shahriari, B.; Bandehpour, M.; Sharifniya, Z. Evaluation of Recombinant SAG1, SAG2, and SAG3 Antigens for Serodiagnosis of Toxoplasmosis. Korean J. Parasitol. 2014, 52, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Flegr, J.; Havlícek, J.; Kodym, P.; Malý, M.; Smahel, Z. Increased Risk of Traffic Accidents in Subjects with Latent Toxoplasmosis: A Retrospective Case-Control Study. BMC Infect. Dis. 2002, 2, 11. [Google Scholar] [CrossRef]
- Frenkel, J.K. Pathophysiology of Toxoplasmosis. Parasitol. Today 1988, 4, 273–278. [Google Scholar] [CrossRef]
- Halonen, S.K.; Weiss, L.M. Toxoplasmosis. Handb. Clin. Neurol. 2013, 114, 125–145. [Google Scholar] [CrossRef]
- Tomita, T.; Bzik, D.J.; Ma, Y.F.; Fox, B.A.; Markillie, L.M.; Taylor, R.C.; Kim, K.; Weiss, L.M. The Toxoplasma gondii Cyst Wall Protein CST1 Is Critical for Cyst Wall Integrity and Promotes Bradyzoite Persistence. PLoS Pathog. 2013, 9, e1003823. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Halonen, S.K.; Ma, Y.F.; Wittner, M.; Weiss, L.M. Initial Characterization of CST1, a Toxoplasma gondii Cyst Wall Glycoprotein. Infect. Immun. 2001, 69, 501–507. [Google Scholar] [CrossRef]
- Ren, R.; Yin, P.; Wang, Z.; Qi, J.; Tang, R.; Wang , J.; Huang, Q.; Li, J.; Xie, X.; Hu, Y.; et al. A Report on Alzheimer’s Disease in China 2021. J. Diagn. Concepts Pract. 2021, 20, 317–337. (In Chinese) [Google Scholar] [CrossRef]
- Ashraf, G.M.; Tarasov, V.V.; Makhmutova, A.; Chubarev, V.N.; Avila-Rodriguez, M.; Bachurin, S.O.; Aliev, G. The Possibility of an Infectious Etiology of Alzheimer Disease. Mol. Neurobiol. 2019, 56, 4479–4491. [Google Scholar] [CrossRef]
- Mahmoudvand, H.; Sheibani, V.; Shojaee, S.; Mirbadie, S.R.; Keshavarz, H.; Esmaeelpour, K.; Keyhani, A.R.; Ziaali, N. Toxoplasma gondii Infection Potentiates Cognitive Impairments of Alzheimer’s Disease in the BALB/c Mice. J. Parasitol. 2016, 102, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Nayeri, T.; Sarvi, S.; Sharif, M.; Daryani, A. Toxoplasma gondii: A Possible Etiologic Agent for Alzheimer’s Disease. Heliyon 2021, 7, e07151. [Google Scholar] [CrossRef] [PubMed]
Total Subjects (n = 223) | Test Statistic Value | p Value | ||
---|---|---|---|---|
Alzheimer (n = 109) | Healthy (n = 114) | |||
Age, years | 76.9 ± 7.3 | 70.7 ± 7.2 | W = 3454 | <0.001 |
Female sex | 68 (62.4) | 54 (47.4) | X-squared = 4.483 | 0.034 |
Evaluation Metric | Model with CST1 | Model Without CST1 |
---|---|---|
Sensitivity | 0.9032 | 0.7097 |
Specificity | 0.8286 | 0.6571 |
False Positive Rate | 0.1714 | 0.3429 |
False Negative Rate | 0.0968 | 0.2903 |
Accuracy | 0.8636 | 0.6818 |
Balanced Accuracy | 0.8659 | 0.6834 |
Kappa | 0.7278 | 0.3648 |
Positive Predictive Value (PPV) | 0.8235 | 0.6471 |
Negative Predictive Value (NPV) | 0.9062 | 0.7188 |
Model | Variable | OR | p-Value |
---|---|---|---|
Model1 | intercept | 0.00000408 | <0.001 |
age | 1.12 | <0.001 | |
sex (female) | 1.15 | 0.738 | |
CST1 | 4.75 | <0.001 | |
Model2 | intercept | 0.00000376 | <0.001 |
age | 1.12 | <0.001 | |
sex (female) | 1.36 | 0.785 | |
CST1 | 4.98 | <0.001 | |
sex*CST1 | 0.926 | 0.874 | |
Model3 | intercept | 0.0555 | 0.637 |
age | 0.987 | 0.877 | |
sex (female) | 0.717 | 0.778 | |
CST1 | 0.0567 | 0.301 | |
sex*CST1 | 1.28 | 0.642 | |
age*CST1 | 1.06 | 0.110 | |
Model4 | intercept | 0.00508 | 0.501 |
age | 1.02 | 0.847 | |
sex (female) | 6.74 | 0.880 | |
CST1 | 1.35 | 0.932 | |
sex*CST1 | 0.00566 | 0.346 | |
age*CST1 | 1.02 | 0.723 | |
age*sex | 0.961 | 0.822 | |
age*sex*CST1 | 1.08 | 0.314 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Lin, P.; Li, D.; Yang, B.; Wang, J.; Feng, M.; Cheng, X. Analysis of the Correlation Between Toxoplasma gondii Seropositivity and Alzheimer’s Disease. Pathogens 2024, 13, 1021. https://doi.org/10.3390/pathogens13111021
Wang J, Lin P, Li D, Yang B, Wang J, Feng M, Cheng X. Analysis of the Correlation Between Toxoplasma gondii Seropositivity and Alzheimer’s Disease. Pathogens. 2024; 13(11):1021. https://doi.org/10.3390/pathogens13111021
Chicago/Turabian StyleWang, Jianjun, Ping Lin, Dan Li, Biyu Yang, Jiaqi Wang, Meng Feng, and Xunjia Cheng. 2024. "Analysis of the Correlation Between Toxoplasma gondii Seropositivity and Alzheimer’s Disease" Pathogens 13, no. 11: 1021. https://doi.org/10.3390/pathogens13111021
APA StyleWang, J., Lin, P., Li, D., Yang, B., Wang, J., Feng, M., & Cheng, X. (2024). Analysis of the Correlation Between Toxoplasma gondii Seropositivity and Alzheimer’s Disease. Pathogens, 13(11), 1021. https://doi.org/10.3390/pathogens13111021