Salmonella Infantis Adhesion to Various Surfaces and In Vitro Antimicrobial Efficacy of Commercial Disinfectants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adhesion of S. Infantis to Different Surfaces
2.2. Disinfectant Susceptibility Testing
2.3. Antiadhesion Properties of Disinfectants
2.4. S. Infantis Biofilm Treatment with Disinfectants
2.5. Statistical Analysis
3. Results
3.1. Survival of S. Infantis on Different Surfaces
3.2. Antimicrobial Effect of Disinfectants
3.3. Antiadhesion Effect of Disinfectants on Polystyrene
3.4. Biofilm Treatment with Disinfectants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Musa, L.; Toppi, V.; Stefanetti, V.; Spata, N.; Rapi, M.C.; Grilli, G.; Addis, M.F.; Di Giacinto, G.; Franciosini, M.P.; Casagrande Proietti, P. High Biofilm-Forming Multidrug-Resistant Salmonella Infantis Strains from the Poultry Production Chain. Antibiotics 2024, 13, 595. [Google Scholar] [CrossRef] [PubMed]
- Mattock, J.; Chattaway, M.A.; Hartman, H.; Dallman, T.J.; Smith, A.M.; Keddy, K.; Petrovska, L.; Manners, E.J.; Duze, S.T.; Smouse, S.; et al. A One Health Perspective on Salmonella enterica Serovar Infantis, an Emerging Human Multidrug-Resistant Pathogen. Emerg. Infect. Dis. 2024, 30, 701–710. [Google Scholar] [CrossRef]
- Alba, P.; Leekitcharoenphon, P.; Carfora, V.; Amoruso, R.; Cordaro, G.; Di Matteo, P.; Ianzano, A.; Iurescia, M.; Diaconu, E.L.; Engage-Eurl-Ar Network Study Group; et al. Molecular Epidemiology of Salmonella Infantis in Europe: Insights into the Success of the Bacterial Host and Its Parasitic pESI-like Megaplasmid. Microb. Genom. 2020, 6, e000365. [Google Scholar] [CrossRef] [PubMed]
- Aviv, G.; Tsyba, K.; Steck, N.; Salmon-Divon, M.; Cornelius, A.; Rahav, G.; Grassl, G.A.; Gal-Mor, O. A Unique Megaplasmid Contributes to Stress Tolerance and Pathogenicity of an Emergent Salmonella enterica Serovar Infantis Strain. Environ. Microbiol. 2014, 16, 977–994. [Google Scholar] [CrossRef]
- Pang, X.; Hu, X.; Du, X.; Lv, C.; Yuk, H.-G. Biofilm Formation in Food Processing Plants and Novel Control Strategies to Combat Resistant Biofilms: The Case of Salmonella spp. Food Sci. Biotechnol. 2023, 32, 1703–1718. [Google Scholar] [CrossRef]
- Pate, M.; Mičunovič, J.; Golob, M.; Vestby, L.K.; Ocepek, M. Salmonella Infantis in Broiler Flocks in Slovenia: The Prevalence of Multidrug Resistant Strains with High Genetic Homogeneity and Low Biofilm-Forming Ability. Biomed Res. Int. 2019, 2019, 4981463. [Google Scholar] [CrossRef] [PubMed]
- Maes, S.; Vackier, T.; Nguyen Huu, S.; Heyndrickx, M.; Steenackers, H.; Sampers, I.; Raes, K.; Verplaetse, A.; De Reu, K. Occurrence and Characterisation of Biofilms in Drinking Water Systems of Broiler Houses. BMC Microbiol. 2019, 19, 77. [Google Scholar] [CrossRef]
- Lee, K.-H.; Lee, J.-Y.; Roy, P.K.; Mizan, M.F.R.; Hossain, M.I.; Park, S.H.; Ha, S.-D. Viability of Salmonella Typhimurium Biofilms on Major Food-Contact Surfaces and Eggshell Treated during 35 Days with and without Water Storage at Room Temperature. Poult. Sci. 2020, 99, 4558–4565. [Google Scholar] [CrossRef]
- Paz-Méndez, A.M.; Lamas, A.; Vázquez, B.; Miranda, J.M.; Cepeda, A.; Franco, C.M. Effect of Food Residues in Biofilm Formation on Stainless Steel and Polystyrene Surfaces by Salmonella enterica Strains Isolated from Poultry Houses. Foods 2017, 6, 106. [Google Scholar] [CrossRef]
- Chia, T.W.R.; Goulter, R.M.; McMeekin, T.; Dykes, G.A.; Fegan, N. Attachment of Different Salmonella Serovars to Materials Commonly Used in a Poultry Processing Plant. Food Microbiol. 2009, 26, 853–859. [Google Scholar] [CrossRef]
- Bezek, K.; Avberšek, J.; Zorman Rojs, O.; Barlič-Maganja, D. Antimicrobial and Antibiofilm Effect of Commonly Used Disinfectants on Salmonella Infantis Isolates. Microorganisms 2023, 11, 301. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.D.N.; Yang, Y.S.; Yuk, H.G. Biofilm Formation of Salmonella Typhimurium on Stainless Steel and Acrylic Surfaces as Affected by Temperature and pH Level. LWT 2014, 55, 383–388. [Google Scholar] [CrossRef]
- Tezel, B.U.; Akçelik, N.; Yüksel, F.N.; Karatuğ, N.T.; Akçelik, M. Effects of Sub-MIC Antibiotic Concentrations on Biofilm Production of Salmonella Infantis. Biotechnol. Biotechnol. Equip. 2016, 30, 1184–1191. [Google Scholar] [CrossRef]
- Chylkova, T.; Cadena, M.; Ferreiro, A.; Pitesky, M. Susceptibility of Salmonella Biofilm and Planktonic Bacteria to Common Disinfectant Agents Used in Poultry Processing. J. Food Prot. 2017, 80, 1072–1079. [Google Scholar] [CrossRef]
- Davies, R.; Wales, A. Antimicrobial Resistance on Farms: A Review Including Biosecurity and the Potential Role of Disinfectants in Resistance Selection. Compr. Rev. Food Sci. Food Saf. 2019, 18, 753–774. [Google Scholar] [CrossRef]
- Kürekci, C.; Sahin, S.; Iwan, E.; Kwit, R.; Bomba, A.; Wasyl, D. Whole-Genome Sequence Analysis of Salmonella Infantis Isolated from Raw Chicken Meat Samples and Insights into pESI-like Megaplasmid. Int. J. Food Microbiol. 2021, 337, 108956. [Google Scholar] [CrossRef]
- Jang, Y.; Lee, K.; Yun, S.; Lee, M.; Song, J.; Chang, B.; Choe, N. Efficacy Evaluation of Commercial Disinfectants by Using Salmonella enterica Serovar Typhimurium as a Test Organism. J. Vet. Sci. 2017, 18, 209–216. [Google Scholar] [CrossRef]
- Cadena, M.; Kelman, T.; Marco, M.L.; Pitesky, M. Understanding Antimicrobial Resistance (AMR) Profiles of Salmonella Biofilm and Planktonic Bacteria Challenged with Disinfectants Commonly Used During Poultry Processing. Foods 2019, 8, 275. [Google Scholar] [CrossRef]
- Chidambaranathan, A.S.; Balasubramanium, M. Comprehensive Review and Comparison of the Disinfection Techniques Currently Available in the Literature. J. Prosthodont. 2019, 28, e849–e856. [Google Scholar] [CrossRef]
- Gerba, C.P. Quaternary Ammonium Biocides: Efficacy in Application. Appl. Environ. Microbiol. 2015, 81, 464–469. [Google Scholar] [CrossRef]
- Rutala, W.A.; Weber, D.J. Disinfection, Sterilization, and Control of Hospital Waste. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2015; pp. 3294–3309.e4. [Google Scholar] [CrossRef]
- Şahiner, A.; Halat, E.; Algin Yapar, E.; Kara, B.A. Evaluation of Organic Load-Related Efficacy Changes in Antiseptic Solutions Used in Hospitals. Turk. J. Med. Sci. 2022, 52, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Aremu, I.; Badru, O.; Oyemade, O. Comparative Effectiveness of Certain Antimicrobial Agents in Semi Solid Preparations. Afr. Res. Rev. 2009, 3, 241–251. [Google Scholar] [CrossRef]
- Rhee, C.H.; Lee, H.; Yun, H.; Lee, G.-H.; Kim, S.-J.; Song, S.; Lee, M.-H.; Her, M.; Jeong, W. Chemical Stability of Active Ingredients in Diluted Veterinary Disinfectant Solutions under Simulated Storage Conditions. Front. Chem. 2023, 11, 1204477. [Google Scholar] [CrossRef]
- Wu, T.; Phacharapan, S.; Inoue, N.; Sakamoto, M.; Kamitani, Y. Antibacterial and Cleaning Efficacy of Alkaline Electrolytic Silver Ionized Water on E. coli Planktonic Cells, Biofilms and Sweet Potato Stains on Food Contact Surfaces. Food Control 2023, 149, 109717. [Google Scholar] [CrossRef]
- Chen, B.-K.; Wang, C.-K. Electrolyzed Water and Its Pharmacological Activities: A Mini-Review. Molecules 2022, 27, 1222. [Google Scholar] [CrossRef]
- Rahman, S.M.E.; Ding, T.; Oh, D.-H. Effectiveness of Low Concentration Electrolyzed Water to Inactivate Foodborne Pathogens under Different Environmental Conditions. Int. J. Food Microbiol. 2010, 139, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Papić, B.; Kušar, D.; Mićunović, J.; Pirš, M.; Ocepek, M.; Avberšek, J. Clonal Spread of pESI-Positive Multidrug-Resistant ST32 Salmonella enterica Serovar Infantis Isolates among Broilers and Humans in Slovenia. Microbiol. Spectr. 2022, 10, e02481-22. [Google Scholar] [CrossRef]
- Azelmad, K.; Hamadi, F.; Mimouni, R.; Amzil, K.; Latrache, H.; Mabrouki, M.; El Boulani, A. Adhesion of Staphylococcus aureus and Staphylococcus xylosus to Materials Commonly Found in Catering and Domestic Kitchens. Food Control 2017, 73, 156–163. [Google Scholar] [CrossRef]
- Webber, B.; Canova, R.; Esper, L.M.; Perdoncini, G.; Pilotto, F. The Use of Vortex and Ultrasound Techniques for the in vitro Removal of Salmonella spp. Biofilms. Acta Sci. Vet. 2015, 5, 1332. [Google Scholar]
- Wang, J.; Vaddu, S.; Bhumanapalli, S.; Mishra, A.; Applegate, T.; Singh, M.; Thippareddi, H. A Systematic Review and Meta-Analysis of the Sources of Salmonella in Poultry Production (Pre-Harvest) and Their Relative Contributions to the Microbial Risk of Poultry Meat. Poult. Sci. 2023, 102, 102566. [Google Scholar] [CrossRef]
- Heyndrickx, M.; Vandekerchove, D.; Herman, L.; Rollier, I.; Grijspeerdt, K.; Zutter, L.D. Routes for Salmonella Contamination of Poultry Meat: Epidemiological Study from Hatchery to Slaughterhouse. Epidemiol. Infect. 2002, 129, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Yu, C.; Zhong, S.; Chen, G.; Liu, L. Roughness-Controlled Cell-Surface Interactions Mediate Early Biofilm Development in Drinking Water Systems. J. Environ. Chem. Eng. 2023, 11, 110101. [Google Scholar] [CrossRef]
- Veluz, G.A.; Pitchiah, S.; Alvarado, C.Z. Attachment of Salmonella Serovars and Listeria monocytogenes to Stainless Steel and Plastic Conveyor Belts. Poult. Sci. 2012, 91, 2004–2010. [Google Scholar] [CrossRef] [PubMed]
- Bayoumi, M.A.; Kamal, R.M.; Abd El Aal, S.F.; Awad, E.I. Assessment of a Regulatory Sanitization Process in Egyptian Dairy Plants in Regard to the Adherence of Some Food-Borne Pathogens and Their Biofilms. Int. J. Food Microbiol. 2012, 158, 225–231. [Google Scholar] [CrossRef]
- Thirumalai Kumaran, S.; Baranidharan, K.; Uthayakumar, M.; Parameswaran, P. Corrosion Studies on Stainless Steel 316 and Their Prevention—A Review. INCAS Bull. 2021, 13, 245–251. [Google Scholar] [CrossRef]
- Mueller-Doblies, D.; Carrique-Mas, J.J.; Sayers, A.R.; Davies, R.H. A Comparison of the Efficacy of Different Disinfection Methods in Eliminating Salmonella Contamination from Turkey Houses. J. Appl. Microbiol. 2010, 109, 471–479. [Google Scholar] [CrossRef]
- Montagnin, C.; Cawthraw, S.; Ring, I.; Ostanello, F.; Smith, R.P.; Davies, R.; Martelli, F. Efficacy of Five Disinfectant Products Commonly Used in Pig Herds against a Panel of Bacteria Sensitive and Resistant to Selected Antimicrobials. Animals 2022, 12, 2780. [Google Scholar] [CrossRef]
- McLaren, I.; Wales, A.; Breslin, M.; Davies, R. Evaluation of Commonly-Used Farm Disinfectants in Wet and Dry Models of Salmonella Farm Contamination. Avian Pathol. 2011, 40, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Salisbury, A.-M.; Percival, S.L. The Efficacy of an Electrolysed Water Formulation on Biofilms. Adv. Exp. Med. Biol. 2019, 1214, 1–8. [Google Scholar] [CrossRef]
- Park, H.; Hung, Y.-C.; Brackett, R.E. Antimicrobial Effect of Electrolyzed Water for Inactivating Campylobacter jejuni during Poultry Washing. Int. J. Food Microbiol. 2002, 72, 77–83. [Google Scholar] [CrossRef]
- Tanaka, Y.; Saihara, Y.; Izumotani, K.; Nakamura, H. Daily Ingestion of Alkaline Electrolyzed Water Containing Hydrogen Influences Human Health, Including Gastrointestinal Symptoms. Med. Gas Res. 2018, 8, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Jones, I.A.; Joshi, L.T. Biocide Use in the Antimicrobial Era: A Review. Molecules 2021, 26, 2276. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Quan, Y.; Yang, S.; Guo, L.; Zhang, X.; Liu, S.; Chen, S.; Zhou, K.; He, L.; Li, B.; et al. Antibiotic Resistance in Salmonella from Retail Foods of Animal Origin and Its Association with Disinfectant and Heavy Metal Resistance. Microb. Drug Resist. 2018, 24, 782–791. [Google Scholar] [CrossRef]
- Silva, Y.J.; Costa, L.; Pereira, C.; Cunha, Â.; Calado, R.; Gomes, N.C.M.; Almeida, A. Influence of Environmental Variables in the Efficiency of Phage Therapy in Aquaculture. Microb. Biotechnol. 2014, 7, 401–413. [Google Scholar] [CrossRef]
- Bombelli, A.; Araya-Cloutier, C.; Abee, T.; den Besten, H.M.W. Disinfectant Efficacy of Glabridin against Dried and Biofilm Cells of Listeria monocytogenes and the Impact of Residual Organic Matter. Food Res. Int. 2024, 191, 114613. [Google Scholar] [CrossRef]
- Sevilla-Navarro, S.; Torres-Boncompte, J.; Garcia-Llorens, J.; Bernabéu-Gimeno, M.; Domingo-Calap, P.; Catalá-Gregori, P. Fighting Salmonella Infantis: Bacteriophage-Driven Cleaning and Disinfection Strategies for Broiler Farms. Front. Microbiol. 2024, 15, 1401479. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Fu, J.; Zhao, K.; Yang, S.; Li, C.; Penttinen, P.; Ao, X.; Liu, A.; Hu, K.; Li, J.; et al. Class 1 Integron Carrying qacEΔ1 Gene Confers Resistance to Disinfectant and Antibiotics in Salmonella. Int. J. Food Microbiol. 2023, 404, 110319. [Google Scholar] [CrossRef]
- Chaves, R.D.; Kumazawa, S.H.; Khaneghah, A.M.; Alvarenga, V.O.; Hungaro, H.M.; Sant’Ana, A.S. Comparing the Susceptibility to Sanitizers, Biofilm-Forming Ability, and Biofilm Resistance to Quaternary Ammonium and Chlorine Dioxide of 43 Salmonella enterica and Listeria monocytogenes Strains. Food Microbiol. 2024, 117, 104380. [Google Scholar] [CrossRef]
- Maillard, J.-Y.; Centeleghe, I. How Biofilm Changes Our Understanding of Cleaning and Disinfection. Antimicrob. Resist. Infect. Control 2023, 12, 95. [Google Scholar] [CrossRef]
- Kim, S.-H.; Jyung, S.; Kang, D.-H. Comparative Study of Salmonella Typhimurium Biofilms and Their Resistance Depending on Cellulose Secretion and Maturation Temperatures. LWT 2022, 154, 112700. [Google Scholar] [CrossRef]
Disinfectant | Active Ingredients | MIC | Recommended Dose 1 | |
---|---|---|---|---|
Fresh solution | Old solution | |||
Calgonit sterizid P12 DES | glutaraldehyde and QACs | 0.00156% (v/v) | 0.03125% (v/v) | 0.5% (v/v) |
DioksiLEK® | chlorine dioxide solution | 3.5% (v/v) | 14% (v/v) | 0.2–1% (v/v) |
Interkokask® | chlorocresol | 0.0625% (v/v) | 0.0625% (v/v) | 2% (v/v) |
Electrolyzed water | free chlorine | 750 ppm | >2000 ppm | 4000 ppm |
Virocid® | quaternary ammonium, glutaraldehyde and isopropanol | 0.000195% (v/v) | 0.0078% (v/v) | 0.25–0.5% (v/v) |
Disinfectant | Treatment with MICs | Treatment with Improperly Stored Solutions | |
---|---|---|---|
15 min | 30 min | ||
Calgonit sterizid P12 DES | 0.63 ± 1.01 | (-) | (-) |
DioksiLEK® | −2.35 ± 2.38 | (-) | (-) |
Interkokask® | 11.99 ± 1.17 | 100 | 100 |
Electrolyzed water | 2.45 ± 3.93 | 0.05 ± 2.43 | 0.67 ± 1.17 |
Virocid® | −1.36 ± 2.77 | (-) | (-) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kranjc, K.; Avberšek, J.; Šemrov, N.; Zorman-Rojs, O.; Barlič-Maganja, D. Salmonella Infantis Adhesion to Various Surfaces and In Vitro Antimicrobial Efficacy of Commercial Disinfectants. Pathogens 2024, 13, 999. https://doi.org/10.3390/pathogens13110999
Kranjc K, Avberšek J, Šemrov N, Zorman-Rojs O, Barlič-Maganja D. Salmonella Infantis Adhesion to Various Surfaces and In Vitro Antimicrobial Efficacy of Commercial Disinfectants. Pathogens. 2024; 13(11):999. https://doi.org/10.3390/pathogens13110999
Chicago/Turabian StyleKranjc, Katja, Jana Avberšek, Neva Šemrov, Olga Zorman-Rojs, and Darja Barlič-Maganja. 2024. "Salmonella Infantis Adhesion to Various Surfaces and In Vitro Antimicrobial Efficacy of Commercial Disinfectants" Pathogens 13, no. 11: 999. https://doi.org/10.3390/pathogens13110999
APA StyleKranjc, K., Avberšek, J., Šemrov, N., Zorman-Rojs, O., & Barlič-Maganja, D. (2024). Salmonella Infantis Adhesion to Various Surfaces and In Vitro Antimicrobial Efficacy of Commercial Disinfectants. Pathogens, 13(11), 999. https://doi.org/10.3390/pathogens13110999