The exoS, exoT, exoU and exoY Virulotypes of the Type 3 Secretion System in Multidrug Resistant Pseudomonas aeruginosa as a Death Risk Factor in Pediatric Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Biological Samples
2.2. Molecular Detection of Exo Virulotypes Through mPCR
2.3. Determination of the Susceptibility Profile
2.4. T3SS Virulotypes and Clinical Variables
2.5. Statiscal Analysis
3. Results
3.1. Identification of T3SS Virulotypes
3.2. Associations Between Multidrug Resistance and Virulotypes
3.3. T3SS Virulotype as a Risk Factor for Death
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Behzadi, P.; Baráth, Z.; Gajdács, M. It’s Not Easy Being Green: A Narrative Review on the Microbiology, Virulence and Therapeutic Prospects of Multidrug-Resistant Pseudomonas aeruginosa. Antibiotics 2021, 10, 42. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Depluverez, S.; Devos, S.; Devreese, B. The Role of Bacterial Secretion Systems in the Virulence of Gram-Negative Airway Pathogens Associated with Cystic Fibrosis. Front. Microbiol. 2016, 7, 1336. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Juan, C.; Peña, C.; Oliver, A. Host and Pathogen Biomarkers for Severe Pseudomonas aeruginosa Infections. J. Infect. Dis. 2017, 215 (Suppl. S1), S44–S51. [Google Scholar] [CrossRef] [PubMed]
- Jouault, A.; Saliba, A.M.; Touqui, L. Modulation of the immune response by the Pseudomonas aeruginosa type-III secretion system. Front. Cell Infect. Microbiol. 2022, 12, 1064010. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Horna, G.; Ruiz, J. Type 3 secretion system of Pseudomonas aeruginosa. Microbiol. Res. 2021, 246, 126719. [Google Scholar] [CrossRef] [PubMed]
- Hardy, K.S.; Tessmer, M.H.; Frank, D.W.; Audia, J.P. Perspectives on the Pseudomonas aeruginosa Type III Secretion System Effector ExoU and Its Subversion of the Host Innate Immune Response to Infection. Toxins 2021, 13, 880. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oliver, A.; Mulet, X.; López-Causapé, C.; Juan, C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist. Updat. 2015, 21–22, 41–59. [Google Scholar] [CrossRef] [PubMed]
- Sawa, T.; Momiyama, K.; Mihara, T.; Kainuma, A.; Kinoshita, M.; Moriyama, K. Molecular epidemiology of clinically high-risk Pseudomonas aeruginosa strains: Practical overview. Microbiol. Immunol. 2020, 64, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Peña, C.; Cabot, G.; Gómez-Zorrilla, S.; Zamorano, L.; Ocampo-Sosa, A.; Murillas, J.; Almirante, B.; Pomar, V.; Aguilar, M.; Granados, A.; et al. Influence of virulence genotype and resistance profile in the mortality of Pseudomonas aeruginosa bloodstream infections. Clin. Infect. Dis. 2015, 60, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Kothari, A.; Kherdekar, R.; Mago, V.; Uniyal, M.; Mamgain, G.; Kalia, R.B.; Kumar, S.; Jain, N.; Pandey, A.; Omar, B.J. Age of Antibiotic Resistance in MDR/XDR Clinical Pathogen of Pseudomonas aeruginosa. Pharmaceuticals 2023, 16, 1230. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barbieri, J.T.; Sun, J. Pseudomonas aeruginosa ExoS and ExoT. Rev. Physiol. Biochem. Pharmacol. 2004, 152, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.J.; Tsuei, K.C.; Shen, E.P. The role of Type III secretion system in the pathogenesis of Pseudomonas aeruginosa microbial keratitis. Tzu Chi Med. J. 2021, 34, 8–14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rodrigues, Y.C.; Furlaneto, I.P.; Maciel, A.H.P.; Quaresma, A.J.P.G.; de Matos, E.C.O.; Conceição, M.L.; Vieira, M.C.D.S.; Brabo, G.L.D.C.; Sarges, E.D.S.N.F.; Lima, L.N.G.C.; et al. High prevalence of atypical virulotype and genetically diverse background among Pseudomonas aeruginosa isolates from a referral hospital in the Brazilian Amazon. PLoS ONE 2020, 15, e0238741. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hayashi, W.; Izumi, K.; Yoshida, S.; Takizawa, S.; Sakaguchi, K.; Iyori, K.; Minoshima, K.I.; Takano, S.; Kitagawa, M.; Nagano, Y.; et al. Antimicrobial Resistance and Type III Secretion System Virulotypes of Pseudomonas aeruginosa Isolates from Dogs and Cats in Primary Veterinary Hospitals in Japan: Identification of the International High-Risk Clone Sequence Type 235. Microbiol. Spectr. 2021, 9, e0040821. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Foulkes, D.M.; McLean, K.; Haneef, A.S.; Fernig, D.G.; Winstanley, C.; Berry, N.; Kaye, S.B. Pseudomonas aeruginosa Toxin ExoU as a Therapeutic Target in the Treatment of Bacterial Infections. Microorganisms 2019, 7, 707. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qin, S.; Xiao, W.; Zhou, C.; Pu, Q.; Deng, X.; Lan, L.; Liang, H.; Song, X.; Wu, M. Pseudomonas aeruginosa: Pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct. Target. Ther. 2022, 7, 199. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Silistre, H.; Raoux-Barbot, D.; Mancinelli, F.; Sangouard, F.; Dupin, A.; Belyy, A.; Deruelle, V.; Renault, L.; Ladant, D.; Touqui, L.; et al. Prevalence of ExoY Activity in Pseudomonas aeruginosa Reference Panel Strains and Impact on Cytotoxicity in Epithelial Cells. Front. Microbiol. 2021, 12, 666097. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jain, M.; Bar-Meir, M.; McColley, S.; Cullina, J.; Potter, E.; Powers, C.; Prickett, M.; Seshadri, R.; Jovanovic, B.; Petrocheilou, A.; et al. Evolution of Pseudomonas aeruginosa type III secretion in cystic fibrosis: A paradigm of chronic infection. Transl. Res. 2008, 152, 257–264. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ajayi, T.; Allmond, L.R.; Sawa, T.; Wiener-Kronish, J.P. Single-nucleotide-polymorphism mapping of the Pseudomonas aeruginosa type III secretion toxins for development of a diagnostic multiplex PCR system. J. Clin. Microbiol. 2003, 41, 3526–3531. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Anuj, S.N.; Whiley, D.M.; Kidd, T.J.; Bell, S.C.; Wainwright, C.E.; Nissen, M.D.; Sloots, T.P. Identification of Pseudomonas aeruginosa by a duplex real-time polymerase chain reaction assay targeting the ecfX and the gyrB genes. Diagn. Microbiol. Infect. Dis. 2009, 63, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Markoulatos, P.; Siafakas, N.; Moncany, M. Multiplex polymerase chain reaction: A practical approach. J. Clin. Lab. Anal. 2002, 16, 47–51. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hendolin, P.H.; Markkanen, A.; Ylikoski, J.; Wahlfors, J.J. Use of multiplex PCR for simultaneous detection of four bacterial species in middle ear effusions. J. Clin. Microbiol. 1997, 35, 2854–2858. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aguilar-Rodea, P.; Zúñiga, G.; Rodríguez-Espino, B.A.; Olivares Cervantes, A.L.; Gamiño Arroyo, A.E.; Moreno-Espinosa, S.; de la Rosa Zamboni, D.; López Martínez, B.; Castellanos-Cruz, M.D.; Parra-Ortega, I.; et al. Identification of extensive drug resistant Pseudomonas aeruginosa strains: New clone ST1725 and high-risk clone ST233. PLoS ONE 2017, 12, e0172882. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aguilar-Rodea, P.; Zúñiga, G.; Cerritos, R.; Rodríguez-Espino, B.A.; Gomez-Ramirez, U.; Nolasco-Romero, C.G.; López-Marceliano, B.; Rodea, G.E.; Mendoza-Elizalde, S.; Reyes-López, A.; et al. Nucleotide substitutions in the mexR, nalC and nalD regulator genes of the MexAB-OprM efflux pump are maintained in Pseudomonas aeruginosa genetic lineages. PLoS ONE 2022, 17, e0266742. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 34th ed.; Wayne, P.A., Ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2024. [Google Scholar]
- Smith, E.C.; Brigman, H.V.; Anderson, J.C.; Emery, C.L.; Bias, T.E.; Bergen, P.J.; Landersdorfer, C.B.; Hirsch, E.B. Performance of Four Fosfomycin Susceptibility Testing Methods against an International Collection of Clinical Pseudomonas aeruginosa Isolates. J. Clin. Microbiol. 2020, 58, e01121-20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.; Wayne, P.A., Ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2023. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- StataCorp. STATA/MP 14.1. Stata Statistical Software: Release 13; StataCorp, L.P.: College Station, TX, USA, 2013. [Google Scholar]
- RStudio Team. RStudio: Integrated Development for R.; RStudio, Inc.: Boston, MA, USA, 2015. [Google Scholar]
- Sarges, E.D.S.N.F.; Rodrigues, Y.C.; Furlaneto, I.P.; de Melo, M.V.H.; Brabo, G.L.D.C.; Lopes, K.C.M.; Quaresma, A.J.P.G.; Lima, L.N.G.C.; Lima, K.V.B. Pseudomonas aeruginosa Type III Secretion System Virulotypes and Their Association with Clinical Features of Cystic Fibrosis Patients. Infect. Drug Resist. 2020, 13, 3771–3781. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pournajaf, A.; Razavi, S.; Irajian, G.; Ardebili, A.; Erfani, Y.; Solgi, S.; Yaghoubi, S.; Rasaeian, A.; Yahyapour, Y.; Kafshgari, R.; et al. Integron types, antimicrobial resistance genes, virulence gene profile, alginate production and biofilm formation in Iranian cystic fibrosis Pseudomonas aeruginosa isolates. Infez. Med. 2018, 26, 226–236. [Google Scholar] [PubMed]
- Wu, T.; Zhang, Z.; Li, T.; Dong, X.; Wu, D.; Zhu, L.; Xu, K.; Zhang, Y. The type III secretion system facilitates systemic infections of Pseudomonas aeruginosa in the clinic. Microbiol. Spectr. 2024, 12, e0222423. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Feltman, H.; Schulert, G.; Khan, S.; Jain, M.; Peterson, L.; Hauser, A.R. Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. Microbiology 2001, 147 Pt 10, 2659–2669. [Google Scholar] [CrossRef] [PubMed]
- Del Barrio-Tofiño, E.; López-Causapé, C.; Oliver, A. Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. Int. J. Antimicrob. Agents 2020, 56, 106196. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.; Dethlefsen, S.; Klockgether, J.; Tümmler, B. Phenotypic and Genomic Comparison of the Two Most Common ExoU-Positive Pseudomonas aeruginosa Clones, PA14 and ST235. mSystems 2020, 5, e01007-20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- El-Solh, A.A.; Hattemer, A.; Hauser, A.R.; Alhajhusain, A.; Vora, H. Clinical outcomes of type III Pseudomonas aeruginosa bacteremia. Crit. Care Med. 2012, 40, 1157–1163. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yuan, Q.; Guo, L.; Li, B.; Zhang, S.; Feng, H.; Zhang, Y.; Yu, M.; Hu, H.; Chen, H.; Yang, Q.; et al. Risk factors and outcomes of inpatients with carbapenem-resistant Pseudomonas aeruginosa bloodstream infections in China: A 9-year trend and multicenter cohort study. Front. Microbiol. 2023, 14, 1137811. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wagener, B.M.; Anjum, N.; Christiaans, S.C.; Banks, M.E.; Parker, J.C.; Threet, A.T.; Walker, R.R.; Isbell, K.D.; Moser, S.A.; Stevens, T.; et al. Exoenzyme Y Contributes to End-Organ Dysfunction Caused by Pseudomonas aeruginosa Pneumonia in Critically Ill Patients: An Exploratory Study. Toxins 2020, 12, 369. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morales-Espinosa, R.; Delgado, G.; Espinosa, L.F.; Isselo, D.; Méndez, J.L.; Rodriguez, C.; Miranda, G.; Cravioto, A. Fingerprint Analysis and Identification of Strains ST309 as a Potential High Risk Clone in a Pseudomonas aeruginosa Population Isolated from Children with Bacteremia in Mexico City. Front. Microbiol. 2017, 8, 313. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- WHO. Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Hu, H.; Harmer, C.; Anuj, S.; Wainwright, C.E.; Manos, J.; Cheney, J.; Harbour, C.; Zablotska, I.; Turnbull, L.; Whitchurch, C.B.; et al. Type 3 secretion system effector genotype and secretion phenotype of longitudinally collected Pseudomonas aeruginosa isolates from young children diagnosed with cystic fibrosis following newborn screening. Clin. Microbiol. Infect. 2013, 19, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Horna, G.; Amaro, C.; Palacios, A.; Guerra, H.; Ruiz, J. High frequency of the exoU+/exoS+ genotype associated with multidrug-resistant “high-risk clones” of Pseudomonas aeruginosa clinical isolates from Peruvian hospitals. Sci. Rep. 2019, 9, 10874. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pilmis, B.; Alby-Laurent, F.; Fasola, M.L.; Seegers, V.; Guery, R.; Guet-Revillet, H.; Postaire, M.; Toubiana, J.; Bille, E.; Lortholary, O.; et al. Pseudomonas aeruginosa bloodstream infections in children: A 9-year retrospective study. Eur. J. Pediatr. 2020, 179, 1247–1254. [Google Scholar] [CrossRef] [PubMed]
- Finch, S.; McDonnell, M.J.; Abo-Leyah, H.; Aliberti, S.; Chalmers, J.D. A Comprehensive Analysis of the Impact of Pseudomonas aeruginosa Colonization on Prognosis in Adult Bronchiectasis. Ann. Am. Thorac. Soc. 2015, 12, 1602–1611. [Google Scholar] [CrossRef] [PubMed]
- Rosales-Reyes, R.; Rodríguez-Alvarado, M.; Lezana-Fernández, J.L.; Sánchez-Lozano, J.Y.; Gayosso-Vázquez, C.; Jarillo-Quijada, M.D.; Toledano-Tableros, J.E.; Arredondo-Mercado, M.J.; Alcántar-Curiel, M.D.; Lincopan, N.; et al. Pseudomonas aeruginosa Isolates From a Cohort of Mexican Children With Cystic Fibrosis Show Adaptation to a Chronic Phenotype. Pediatr. Infect. Dis. J. 2020, 39, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Tumbarello, M.; Bertagnolio, S.; Citton, R.; Spanu, T.; Fadda, G.; Cauda, R. Multidrug-resistant Pseudomonas aeruginosa bloodstream infections: Analysis of trends in prevalence and epidemiology. Emerg. Infect. Dis. 2002, 8, 220–221. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Target Genes | Sequences (5′ to 3′) | Product Size (bp) |
---|---|---|
exoU | F: GAC AGA TCG CTA CGC ATC CA R: AGA TGT TCA CCG ACT CGC TC | 688 |
exoS | F: CGT CGT GTT CAA GCA GAT GG R: GAA TGC CGG TGT AGA GAC CA | 533 |
exoT | F: TGC GGT AAT GGA CAA GGT CG R: AAC AGG GTG GTT ATC GTG CC | 459 |
exoY | F: GTC TCT ACA GGA TCA GCC GC R: CGT CGC TGT GGT GAA ACA TC | 330 |
gyrB | F: TGG GAA CAG GTC TAC CAC CA R: CAG ACC GCC TTC GTA CTT GA | 243 |
Virulotype | T3SS Virulotypes | Frequency (n = 336/100%) |
---|---|---|
V1 | exoU+/exoS−/exoT+/exoY+ | 39 (11.60%) |
V2 | exoU+/exoS−/exoT+/exoY− | 39 (11.60%) |
V3 | exoU−/exoS+/exoT+/exoY+ | 215 (63.9%) |
V4 | exoU−/exoS−/exoT+/exoY− | 3 (0.89%) |
V5 | exoU−/exoS−/exoT+/exoY+ | 8 (2.38%) |
V6 | exoU−/exoS−/exoT−/exoY− | 9 (2.67%) |
V7 | exoU−/exoS+/exoT+/exoY− | 14 (4.16%) |
V8 | exoU−/exoS−/exoT−/exoY+ | 3 (0.89%) |
V9 | exoU+/exoS+/exoT+/exoY+ | 4 (1.19%) |
V10 | exoU−/exoS+/exoT−/exoY+ | 1 (0.29%) |
V11 | exoU+/exoS+/exoT+/exoY− | 1 (0.29%) |
Virulotypes | ||||||||
---|---|---|---|---|---|---|---|---|
Variable | OV | V1 | V2 | V3 | V7 | Total | p-Value | |
Death | No | 10 (90.91%) | 10 (62.5%) | 27 (81.82%) | 63 (85.14%) | 3 (100%) | 113 (82.48%) | 0.274 |
Yes | 1 (9.09%) | 6 (37.5%) | 6 (18.18%) | 11 (14.86%) | 0 (0%) | 24 (17.52%) | ||
Clinical origin | BSI | 11 (100%) | 14 (87.5%) | 33 (100%) | 55 (74.32%) | 2 (66.67%) | 115 (83.94%) | 0.001 |
CF | 0 (0%) | 2 (12.5%) | 0 (0%) | 19 (25.68%) | 1 (33.33%) | 22 (16.06%) | ||
Susceptibility profile | MDR | 1 (9.09%) | 3 (18.75%) | 4 (12.12%) | 30 (40.54%) | 1 (33.33%) | 39 (28.47%) | <0.001 |
PDR | 2 (18.18%) | 3 (18.75%) | 18 (54.55%) | 5 (6.76%) | 0 (0%) | 28 (20.44%) | ||
S | 0 (0%) | 1 (6.25%) | 0 (0%) | 4 (5.41%) | 1 (33.33%) | 6 (4.38%) | ||
XDR | 8 (72.73%) | 9 (56.25%) | 11 (33.33%) | 35 (47.3%) | 1 (33.33%) | 64 (46.72%) |
OV vs. V3 | V1 vs. V3 | V2 vs. V3 | V7 vs. V3 | |
---|---|---|---|---|
Death, yes vs. no: gOR | 0.963 | 5.12 | 4.756 | 0 |
95% CI | 0.092–10.007 | 1.264–20.733 | 1.113–20.328 | 0 |
p-value | 0.975 | 0.022 * | 0.035 * | 0.99 |
Clinical origin, CF vs. BSI: gOR | 0 | 0.16 | 0 | 5.048 |
95% CI | 0 | 0.025–0.999 | 0 | 0.185–137.166 |
p-value | 0.995 | 0.049 * | 0.99 | 0.337 |
Susceptibility profile, PDR vs. MDR: gOR | 14.89 | 7 | 38.79 | 0 |
95% CI | 1.079–205.387 | 1.040–47.099 | 8.319–180.895 | 0 |
p-value | 0.044 * | 0.045 * | <0.001 * | 0.997 |
Susceptibility profile, XDR vs. MDR: gOR | 10.506 | 2.893 | 2.979 | 0.473 |
95% CI | 1.212–91.053 | 0.674–12.418 | 0.800–11.097 | 0.017–12.862 |
p-value | 0.033 * | 0.153 | 0.104 | 0.658 |
Susceptibility profile, S vs. MDR: gOR | 0 | 1.885 | 0 | 13.423 |
95% CI | 0 | 0.134–26.434 | 0 | 0.579–310.913 |
p-value | 1 | 0.638 | 1 | 0.105 |
Variable | Discharged Patients n = 85 (85%) | Death Patients n = 15 (15%) | Total n = 100 Patients | p Value | |
---|---|---|---|---|---|
T3SS virulotype | V1 | 9 (10.59%) | 6 (40%) | 15 (15%) | 0.003 * |
V2 | 20 (23.53%) | 5 (33.33%) | 25 (25%) | 0.419 | |
V3 | 51 (60%) | 6 (40%) | 57 (57%) | 0.149 | |
V7 | 2 (2.35%) | 0 (0%) | 2 (2%) | 0.548 | |
OV | 8 (9.41%) | 1 (6.67%) | 9 (9%) | 0.732 | |
Susceptibility profile | PDR | 19 (22.35%) | 3 (20%) | 22 (22%) | 0.839 |
XDR | 39 (45.88%) | 11 (73.33%) | 50 (50%) | 0.049 * | |
MDR | 27 (31.76%) | 4 (26.67%) | 31 (31%) | 0.694 | |
S | 4 (4.71%) | 2 (13.33%) | 6 (6%) | 0.195 | |
Clinical origin | CF | 12 (14.12%) | 4 (26.67%) | 16 (16%) | 0.222 |
BSI | 73 (85.88%) | 11 (73.33%) | 84 (84%) | 0.400 |
Death Clinical Outcome per Variable | RR | 95% CI | p Value |
---|---|---|---|
Clinical origin (Ref. BSI) | |||
CF | 3.643 | 1.181–11.23 | 0.024 * |
Susceptibility profile (Ref. MDR) | |||
PDR | 0.531 | 0.144–1.955 | 0.341 |
S | 2.459 | 0.772–7.836 | 0.128 |
XDR | 1.499 | 0.533–4.216 | 0.443 |
Virulotype (Ref. V3) | |||
OV | 1.185 | 0.110–12.77 | 0.889 |
V1 | 3.690 | 1.259–10.82 | 0.0174 * |
V2 | 2.907 | 0.852–9.917 | 0.0882 |
V7 | 0.00000001 | 0–0.0000001 | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nolasco-Romero, C.G.; Prado-Galbarro, F.-J.; Jimenez-Juarez, R.N.; Gomez-Ramirez, U.; Cancino-Díaz, J.C.; López-Marceliano, B.; Apodaca, M.R.; Aguayo-Romero, M.A.; Rodea, G.E.; Pichardo-Villalon, L.; et al. The exoS, exoT, exoU and exoY Virulotypes of the Type 3 Secretion System in Multidrug Resistant Pseudomonas aeruginosa as a Death Risk Factor in Pediatric Patients. Pathogens 2024, 13, 1030. https://doi.org/10.3390/pathogens13121030
Nolasco-Romero CG, Prado-Galbarro F-J, Jimenez-Juarez RN, Gomez-Ramirez U, Cancino-Díaz JC, López-Marceliano B, Apodaca MR, Aguayo-Romero MA, Rodea GE, Pichardo-Villalon L, et al. The exoS, exoT, exoU and exoY Virulotypes of the Type 3 Secretion System in Multidrug Resistant Pseudomonas aeruginosa as a Death Risk Factor in Pediatric Patients. Pathogens. 2024; 13(12):1030. https://doi.org/10.3390/pathogens13121030
Chicago/Turabian StyleNolasco-Romero, Carolina G., Francisco-Javier Prado-Galbarro, Rodolfo Norberto Jimenez-Juarez, Uriel Gomez-Ramirez, Juan Carlos Cancino-Díaz, Beatriz López-Marceliano, Magali Reyes Apodaca, Mónica Anahí Aguayo-Romero, Gerardo E. Rodea, Lilia Pichardo-Villalon, and et al. 2024. "The exoS, exoT, exoU and exoY Virulotypes of the Type 3 Secretion System in Multidrug Resistant Pseudomonas aeruginosa as a Death Risk Factor in Pediatric Patients" Pathogens 13, no. 12: 1030. https://doi.org/10.3390/pathogens13121030
APA StyleNolasco-Romero, C. G., Prado-Galbarro, F. -J., Jimenez-Juarez, R. N., Gomez-Ramirez, U., Cancino-Díaz, J. C., López-Marceliano, B., Apodaca, M. R., Aguayo-Romero, M. A., Rodea, G. E., Pichardo-Villalon, L., Parra-Ortega, I., Santos, F. S., Moreno-Galván, M., & Velázquez-Guadarrama, N. (2024). The exoS, exoT, exoU and exoY Virulotypes of the Type 3 Secretion System in Multidrug Resistant Pseudomonas aeruginosa as a Death Risk Factor in Pediatric Patients. Pathogens, 13(12), 1030. https://doi.org/10.3390/pathogens13121030