Serosurvey of Rickettsia spp. and Ehrlichia canis in Dogs from Shelters in Sicily (Southern Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Serological Tests
2.4. Biomolecular Analysis
2.5. Statistical Analysis
3. Results
3.1. Study Population
3.2. Serological Results
3.2.1. Rickettsia spp.
3.2.2. Ehrlichia canis
3.2.3. Coinfections
3.3. Biomolecular Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Defaye, B.; Moutailler, S.; Pasqualini, V.; Quilichini, Y. Distribution of tick-borne pathogens in domestic animals and their ticks in the countries of the Mediterranean basin between 2000 and 2021: A systematic review. Microorganisms 2022, 10, 1236. [Google Scholar] [CrossRef] [PubMed]
- Parola, P.; Raoult, D. Ticks and tickborne bacterial diseases in humans: An emerging infectious threat. Clin. Infect. Dis. 2001, 32, 897–928. [Google Scholar] [CrossRef] [PubMed]
- Brites-Neto, J.; Duarte, K.M.R.; Martins, T.F. Tick-borne infections in human and animal population worldwide. Vet. World 2015, 8, 301–315. [Google Scholar] [CrossRef] [PubMed]
- Dantas-Torres, F. Biology and ecology of the brown dog tick, Rhipicephalus sanguineus. Parasites Vectors 2010, 3, 26. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; de la Fuente, J. The ecology of ticks and epidemiology of tick-borne viral diseases. Antivir. Res. 2014, 108, 104–128. [Google Scholar] [CrossRef]
- Dantas-Torres, F. The brown dog tick, Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae): From taxonomy to control. Vet. Parasitol. 2008, 152, 173–185. [Google Scholar] [CrossRef]
- André, M.R. Diversity of Anaplasma and Ehrlichia/Neoehrlichia agents in terrestrial wild carnivores worldwide: Implications for human and domestic animal health and wildlife conservation. Front. Vet. Sci. 2018, 5, 293. [Google Scholar] [CrossRef]
- Harrus, S.; Waner, T. Diagnosis of canine monocytotropic ehrlichiosis (Ehrlichia canis): An overview. Vet. J. 2011, 187, 292–296. [Google Scholar] [CrossRef]
- Mylonakis, M.E.; Harrus, S.; Breitschwerdt, E.B. An update on the treatment of canine monocytic ehrlichiosis (Ehrlichia canis). Vet. J. 2019, 246, 45–53. [Google Scholar] [CrossRef]
- Maeda, K.; Markowitz, N.; Hawley, R.C.; Ristic, M.; Cox, D.; McDade, J.E. Human Infection with Ehrlichia canis, a leukocytic Rickettsia. N. Engl. J. Med. 1987, 316, 853–856. [Google Scholar] [CrossRef]
- Ewing, S.A.; Johnson, E.M.; Kocan, K.M. Human infection with Ehrlichia canis. N. Engl. J. Med. 1987, 317, 899–900. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.; Bodor, M.; Zhang, C.; Xiong, Q.; Rikihisa, Y. Human infection with Ehrlichia canis accompanied by clinical signs in Venezuela. Ann. N. Y. Acad. Sci. 2006, 1078, 110–117. [Google Scholar] [CrossRef]
- Bouza-Mora, L.; Dolz, G.; Solórzano-Morales, A.; Romero-Zuñiga, J.J.; Salazar-Sánchez, L.; Labruna, M.B.; Aguiar, D.M. Novel genotype of Ehrlichia canis detected in samples of human blood bank donors in Costa Rica. Ticks Tick-Borne Dis. 2017, 8, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Raoult, D.; Roux, V. Rickettsioses as paradigms of new or emerging infectious diseases. Clin. Microbiol. Rev. 1997, 10, 694–719. [Google Scholar] [CrossRef] [PubMed]
- Gafarova, M.T.; Eremeeva, M.E. History and current status of mediterranean spotted fever (MSF) in the Crimean Peninsula and neighboring regions along the Black Sea coast. Pathogens 2023, 12, 1161. [Google Scholar] [CrossRef]
- Blanton, L.S. The rickettsioses: A practical update. Infect. Dis. Clin. N. Am. 2019, 33, 213–229. [Google Scholar] [CrossRef]
- Guccione, C.; Colomba, C.; Tolomeo, M.; Trizzino, M.; Iaria, C.; Cascio, A. Rickettsiales in Italy. Pathogens 2021, 10, 181. [Google Scholar] [CrossRef]
- Gilbert, L. The impacts of climate change on ticks and tick-borne disease risk. Annu. Rev. Entomol. 2021, 66, 373–388. [Google Scholar] [CrossRef]
- Tsoumani, M.E.; Papailia, S.I.; Papageorgiou, E.G.; Voyiatzaki, C. Climate change impacts on the prevalence of tick-borne diseases in Europe. Environ. Sci. Proc. 2023, 26, 18. [Google Scholar] [CrossRef]
- Clarke-Crespo, E.; Moreno-Arzate, C.N.; López-González, C.A. Ecological niche models of four hard tick genera (Ixodidae) in Mexico. Animals 2020, 10, 649. [Google Scholar] [CrossRef]
- Yan, L.Y.; Peng, T.L.; Goni, M.D. Survey on tick infestation in stray dogs in localities of Malaysia. Vet. Parasitol. Reg. Stud. Rep. 2024, 47, 100952. [Google Scholar] [CrossRef] [PubMed]
- Afonso, P.; Lopes, A.P.; Quintas, H.; Cardoso, L.; Coelho, A.C. Ehrlichia canis and Rickettsia conorii infections in shelter dogs: Seropositivity and implications for public health. Pathogens 2024, 13, 129. [Google Scholar] [CrossRef] [PubMed]
- Migliore, S.; Gargano, V.; De Maria, C.; Gambino, D.; Gentile, A.; Vitale Badaco, V.; Schirò, G.; Mira, F.; Galluzzo, P.; Vicari, D.; et al. A cross sectional study on serological prevalence of Ehrlichia canis and Rickettsia conorii in different canine population of Sicily (South-Italy) during 2017–2019. Animals 2020, 10, 2444. [Google Scholar] [CrossRef] [PubMed]
- Diakou, A.; Di Cesare, A.; Morelli, S.; Colombo, M.; Halos, L.; Simonato, G.; Tamvakis, A.; Beugnet, F.; Paoletti, B.; Traversa, D. Endoparasites and vector-borne pathogens in dogs from Greek Islands: Pathogen distribution and zoonotic implications. PLoS Negl. Trop. Dis. 2019, 13, e0007003. [Google Scholar] [CrossRef]
- Ali, A.; Ullah, S.; Numan, M.; Almutairi, M.M.; Alouffi, A.; Tanaka, T. First report on tick-borne pathogens detected in ticks infesting stray dogs near butcher shops. Front. Vet. Sci. 2023, 10, 1246871. [Google Scholar] [CrossRef]
- Oteo, J.A.; Portillo, A.; Santibáñez, S.; Blanco, J.R.; Pérez-Martínez, L.; Ibarra, V. Cluster of cases of human Rickettsia felis infection from southern Europe (Spain) diagnosed by PCR. J. Clin. Microbiol. 2006, 44, 2669–2671. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Jang, W.-J.; Kim, J.-H.; Ryu, J.-S.; Lee, S.-H.; Park, K.-H.; Paik, H.-S.; Koh, Y.-S.; Choi, M.-S.; Kim, I.-S. Spotted fever group and typhus group rickettsioses in humans, South Korea. Emerg. Infect. Dis. 2005, 11, 237–244. [Google Scholar] [CrossRef]
- Regnery, R.L.; Spruill, C.L.; Plikaytis, B.D. Genotypic identification of Rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. J. Bacteriol. 1991, 173, 1576–1589. [Google Scholar] [CrossRef]
- Harrus, S.; Waner, T.; Aizenberg, I.; Foley, J.E.; Poland, A.M.; Bark, H. Amplification of ehrlichial DNA from dogs 34 months after infection with Ehrlichia canis. J. Clin. Microbiol. 1998, 36, 73–76. [Google Scholar] [CrossRef]
- Siarkou, V.I.; Mylonakis, M.E.; Bourtzi-Hatzopoulou, E.; Koutinas, A.F. Sequence and phylogenetic analysis of the 16s rRNA gene of Ehrlichia canis strains in dogs with clinical monocytic ehrlichiosis. Vet. Microbiol. 2007, 125, 304–312. [Google Scholar] [CrossRef]
- Lorusso, V.; Dantas-Torres, F.; Lia, R.P.; Tarallo, V.D.; Mencke, N.; Capelli, G.; Otranto, D. Seasonal dynamics of the brown dog tick, Rhipicephalus sanguineus, on a confined dog population in Italy. Med. Vet. Entomol. 2010, 24, 309–315. [Google Scholar] [CrossRef]
- Nuttall, P.A. Climate change impacts on ticks and tick-borne infections. Biologia 2022, 77, 1503–1512. [Google Scholar] [CrossRef]
- Blanda, V.; Torina, A.; La Russa, F.; D’Agostino, R.; Randazzo, K.; Scimeca, S.; Giudice, E.; Caracappa, S.; Cascio, A.; De La Fuente, J. A retrospective study of the characterization of Rickettsia species in ticks collected from humans. Ticks Tick-Borne Dis. 2017, 8, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Cascio, A.; Torina, A.; Valenzise, M.; Blanda, V.; Camarda, N.; Bombaci, S.; Iaria, C.; De Luca, F.; Wasniewska, M. Scalp eschar and neck lymphadenopathy caused by Rickettsia massiliae. Emerg. Infect. Dis. 2013, 19, 836–837. [Google Scholar] [CrossRef] [PubMed]
- Torina, A.; Fernández De Mera, I.G.; Alongi, A.; Mangold, A.J.; Blanda, V.; Scarlata, F.; Di Marco, V.; De La Fuente, J. Rickettsia conorii indian tick typhus strain and R. slovaca in humans, Sicily. Emerg. Infect. Dis. 2012, 18, 1008–1010. [Google Scholar] [CrossRef]
- Stewart, A.G.; Stewart, A.G.A. An update on the laboratory diagnosis of Rickettsia spp. infection. Pathogens 2021, 10, 1319. [Google Scholar] [CrossRef]
- Kantsø, B.; Svendsen, C.B.; Jørgensen, C.S.; Krogfelt, K.A. Evaluation of serological tests for the diagnosis of rickettsiosis in Denmark. J. Microbiol. Methods 2009, 76, 285–288. [Google Scholar] [CrossRef]
- Ebani, V.V. Serological survey of Ehrlichia Canis and Anaplasma phagocytophilum in dogs from central Italy: An update (2013–2017). Pathogens 2019, 8, 3. [Google Scholar] [CrossRef]
- Antognoni, M.T.; Veronesi, F.; Morganti, G. Natural infection of Anaplasma platys in dogs from Umbria Region (Central Italy). Vet. Ital. 2014, 50, 49–56. [Google Scholar] [CrossRef]
- Akhtardanesh, B.; Ghanbarpour, R.; Blourizadeh, H. Serological evidence of canine monocytic ehrlichiosis in Iran. Comp. Clin. Pathol. 2010, 19, 469–474. [Google Scholar] [CrossRef]
- Delgado, S.; Cármenes, P. Canine seroprevalence of Rickettsia conorii infection (Mediterranean Spotted Fever) in Castilla y León (Northwest Spain). Eur. J. Epidemiol. 1995, 11, 597–600. [Google Scholar] [CrossRef] [PubMed]
- Selim, A.; Alanazi, A.D.; Sazmand, A.; Otranto, D. Seroprevalence and associated risk factors for vector-borne pathogens in dogs from Egypt. Parasites Vectors 2021, 14, 175. [Google Scholar] [CrossRef] [PubMed]
- Barradas, P.F.; Vilhena, H.; Oliveira, A.C.; Granada, S.; Amorim, I.; Ferreira, P.; Cardoso, L.; Gärtner, F.; De Sousa, R. Serological and molecular detection of Spotted Fever Group Rickettsia in a group of pet dogs from Luanda, Angola. Parasites Vectors 2017, 10, 271. [Google Scholar] [CrossRef]
- Harrus, S.; Kass, P.H.; Klement, E.; Waner, T. Canine monocytic ehrlichiosis: A retrospective study of 100 cases, and an epidemiological investigation of prognostic indicators for the disease. Vet. Rec. 1997, 141, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.M.; Rembeck, K.; Ribeiro, M.F.B.; Beelitz, P.; Pfister, K.; Passos, L.M.F. Sero-prevalence and risk indicators for canine ehrlichiosis in three rural areas of Brazil. Vet. J. 2007, 174, 673–676. [Google Scholar] [CrossRef]
- Rodriguez-Vivas, R.I.; Albornoz, R.E.F.; Bolio, G.M.E. Ehrlichia canis in dogs in Yucatan, Mexico: Seroprevalence, prevalence of infection and associated factors. Vet. Parasitol. 2005, 127, 75–79. [Google Scholar] [CrossRef]
- Mendoza-Roldan, J.A.; Mendoza-Roldan, M.A.; Otranto, D. Reptile vector-borne diseases of zoonotic concern. Int. J. Parasitol. Parasites Wildl. 2021, 15, 132–142. [Google Scholar] [CrossRef]
- Randolph, S.E. Evidence That climate change has caused ‘emergence’ of tick-borne diseases in Europe? Int. J. Med. Microbiol. Suppl. 2004, 293, 5–15. [Google Scholar] [CrossRef]
- Sánchez Pérez, M.; Feria Arroyo, T.P.; Venegas Barrera, C.S.; Sosa-Gutiérrez, C.; Torres, J.; Brown, K.A.; Gordillo Pérez, G. Predicting the impact of climate change on the distribution of Rhipicephalus sanguineus in the Americas. Sustainability 2023, 15, 4557. [Google Scholar] [CrossRef]
- Gray, J.S.; Dautel, H.; Estrada-Peña, A.; Kahl, O.; Lindgren, E. Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip. Perspect. Infect. Dis. 2009, 2009, 593232. [Google Scholar] [CrossRef]
- Ogden, N.H.; Lindsay, L.R. Effects of climate and climate change on vectors and vector-borne diseases: Ticks are different. Trends Parasitol. 2016, 32, 646–656. [Google Scholar] [CrossRef] [PubMed]
- Harlan, H.J.; Foster, W.A. Micrometeorologic factors affecting field host-seeking activity of adult Dermacentor variabilis (acari: Ixodidae). J. Med. Entomol. 1990, 27, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Kiewra, D.; Zaleśny, G. Relationship between Temporal abundance of ticks and incidence of lyme borreliosis in lower Silesia regions of Poland. J. Vector Ecol. 2013, 38, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Groves, M.G.; Dennis, G.L.; Amyx, H.L.; Huxsoll, D.L. Transmission of Ehrlichia canis to dogs by ticks (Rhipicephalus sanguineus). Am. J. Vet. Res. 1975, 36, 937–940. [Google Scholar]
- Parola, P.; Paddock, C.D.; Raoult, D. Tick-borne rickettsioses around the world: Emerging diseases challenging old concepts. Clin. Microbiol. Rev. 2005, 18, 719–756. [Google Scholar] [CrossRef]
- Tanikawa, A.; Labruna, M.B.; Costa, A.; Aguiar, D.M.; Justiniano, S.V.; Mendes, R.S.; Melo, A.L.T.; Alves, C.J.; Azevedo, S.S. Ehrlichia canis in dogs in a semiarid region of northeastern Brazil: Serology, molecular detection and associated factors. Res. Vet. Sci. 2013, 94, 474–477. [Google Scholar] [CrossRef]
- Neer, T.M.; Breitschwerdt, E.B.; Greene, R.T.; Lappin, M.R. Consensus statement on ehrlichial disease of small animals from the infectious disease study group of the acvim. American college of veterinary internal medicine. J. Vet. Intern. Med. 2002, 16, 309–315. [Google Scholar] [CrossRef]
- Self, S.C.W.; Liu, Y.; Nordone, S.K.; Yabsley, M.J.; Walden, H.S.; Lund, R.B.; Bowman, D.D.; Carpenter, C.; McMahan, C.S.; Gettings, J.R. Canine vector-borne disease: Mapping and the accuracy of forecasting using big data from the veterinary community. Anim. Health Res. Rev. 2019, 20, 47–60. [Google Scholar] [CrossRef]
- Destoumieux-Garzón, D.; Mavingui, P.; Boetsch, G.; Boissier, J.; Darriet, F.; Duboz, P.; Fritsch, C.; Giraudoux, P.; Le Roux, F.; Morand, S.; et al. The one health concept: 10 years old and a long road ahead. Front. Vet. Sci. 2018, 5, 14. [Google Scholar] [CrossRef]
Years | Locations | Average Temperature (°C) | Estimated Daily Total Precipitation (mm) | Average Daily Maximum Relative Humidity (%) | Average Daily Wind Speed (m/s) |
---|---|---|---|---|---|
2022 | Palermo | 19.3 | 582.8 | 79.9 | 1.5 |
Mazzara del Vallo | 17.9 | 350.6 | 90.7 | 3 | |
2023 | Palermo | 19.3 | 621.4 | 79.9 | 1.5 |
Mazzara del Vallo | 17.6 | 384.8 | 89.4 | 2.8 |
Pathogen | Primers | Method | Target Gene | Reference |
---|---|---|---|---|
Rickettsia spp. | Rr190.70p 5′-ATGGCGAATATTTCTCCAAAA-3′ Rr190.701n 5′-GTTCCGTTAATGGCAGCATCT-3′ Rr190.602n 5′-AGTGCAGCATTCGCTCCCCCT-3′ | Semi-nested PCR | OmpA | [26] |
Rickettsia spp. | rompB OF 5′-GTAACCGGAAGTAATCGTTTCGTAA-3′ rompB OR 5′-GCTTTATAACCAGCTAAACCACC-3′ rompB SFG IF 5′-GTTTAATACGTGCTGCTAACCAA-3′ rompB SFG IR 5′-GGTTTGGCCCATATACCATAAG-3′ | Nested PCR | OmpB | [27] |
Rickettsia spp. | RpCS.877p 5′-GGGGGCCTGCTCACGGCGG-3′ RpCS.1258n 5′-ATTGCAAAAAGTACAGTGAACA-3′ | PCR | Citrate synthase | [28] |
Ehrlichia canis | ECC 5′-AGAACGAACGCTGGCGGCAAGCC-3′ ECB 5′-CGTATTACCGCGGCTGCTGGCA-3′ CANIS 5′-CAATTATTTATAGCCTCTGGCTATAGGA-3′ HE3 5′-TATAGGTACCGTCATTATCTTCCCTAT-3′ | Nested PCR | 16S-rRNA | [29,30] |
Category | Rickettsia spp. Positive/Total (%) | 95% CI | E. canis Positive/Total (%) | 95% CI | Co-Infection Positive/Total (%) | 95% CI |
---|---|---|---|---|---|---|
Sex | p = 0.772 | p = 0.172 | p = 0.244 | |||
Male | 303/719 (42.1%) | 38.5–45.7% | 187/719 (26%) | 22.8–29.2% | 104/719 (15.5%) | 11.9–17% |
Female | 235/568 (41.3%) | 37.3–45.4% | 129/568 (22.7%) | 19.2–26.1% | 75/568 (13.2%) | 10.4–16% |
Age | p < 0.0001 * | p = 0.137 | p = 0.006 * | |||
<1 year | 127/384 (33.1%) | 28.4–37.8% | 84/384 (21.8%) | 17.7–26% | 38/384 (9.8%) | 6.9–12.8% |
>1 year | 411/903 (45.5%) | 42.2–48.8% | 232/903 (25.7%) | 22.8–28.5% | 141/903 (15.6%) | 13.2–18% |
Shelter of origin | p < 0.0001 * | p = 0.021 * | p = 0.030 * | |||
Palermo | 428/1091 (39.3%) | 36.4–42.2% | 255/1091 (23.4%) | 20.8–58.8% | 142/1091 (13%) | 11–15% |
Mazara del Vallo | 110/196 (56.1%) | 49.2–63% | 61/196 (31.1%) | 24.6–37.6% | 37/196 (18.8%) | 13.5–24.3% |
Breed | p = 0.338 | p = 0.530 | p = 0.457 | |||
Mixed-breed | 549/1113 (49.3%) | 46.4–52.3% | 270/1113 (24.2%) | 21.7–26.8% | 158/1113 (14.2%) | 12.1–16.2% |
Pure-breed | 79/174 (45.4%) | 38–52.8% | 46/174 (26.4%) | 19.8–33% | 21/174 (12.1%) | 7.2–16.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Bella, S.; Gambino, D.; Pepe, D.; Gentile, A.; Blanda, V.; Valenti, A.; Santangelo, F.; Ballatore, A.; Spina, G.; Barbaccia, G.; et al. Serosurvey of Rickettsia spp. and Ehrlichia canis in Dogs from Shelters in Sicily (Southern Italy). Pathogens 2024, 13, 1119. https://doi.org/10.3390/pathogens13121119
Di Bella S, Gambino D, Pepe D, Gentile A, Blanda V, Valenti A, Santangelo F, Ballatore A, Spina G, Barbaccia G, et al. Serosurvey of Rickettsia spp. and Ehrlichia canis in Dogs from Shelters in Sicily (Southern Italy). Pathogens. 2024; 13(12):1119. https://doi.org/10.3390/pathogens13121119
Chicago/Turabian StyleDi Bella, Santina, Delia Gambino, Davide Pepe, Antonino Gentile, Valeria Blanda, Antonio Valenti, Francesco Santangelo, Antonino Ballatore, Giuseppe Spina, Giuseppe Barbaccia, and et al. 2024. "Serosurvey of Rickettsia spp. and Ehrlichia canis in Dogs from Shelters in Sicily (Southern Italy)" Pathogens 13, no. 12: 1119. https://doi.org/10.3390/pathogens13121119
APA StyleDi Bella, S., Gambino, D., Pepe, D., Gentile, A., Blanda, V., Valenti, A., Santangelo, F., Ballatore, A., Spina, G., Barbaccia, G., Cannella, V., Cassata, G., & Guercio, A. (2024). Serosurvey of Rickettsia spp. and Ehrlichia canis in Dogs from Shelters in Sicily (Southern Italy). Pathogens, 13(12), 1119. https://doi.org/10.3390/pathogens13121119