Infant Non-Secretor Histoblood Group Antigen Phenotype Reduces Susceptibility to Both Symptomatic and Asymptomatic Rotavirus Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Detection of Asymptomatic Rotavirus Infections and P-Type Confirmation
2.3. Secretor Status Phenotyping
2.4. Statistical Analysis
3. Results
3.1. Effect of Secretor Phenotype on Incidence of Asymptomatic Rotavirus Infection
3.2. P-Type Distribution among Asymptomatic Infections
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, B. Update on rotavirus vaccine underperformance in low- to middle-income countries and next-generation vaccines. Hum. Vaccines Immunother. 2020, 17, 1787–1802. [Google Scholar] [CrossRef] [PubMed]
- Troeger, C.; Khalil, I.A.; Rao, P.C.; Cao, S.; Blacker, B.F.; Ahmed, T.; Armah, G.; Bines, J.E.; Brewer, T.G.; Colombara, D.V.; et al. Rotavirus Vaccination and the Global Burden of Rotavirus Diarrhea Among Children Younger Than 5 Years. JAMA Pediatr. 2018, 172, 958–965. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.L.; A Platts-Mills, J.; Nakamura, T.; Operario, D.J.; Antoni, S.; Mwenda, J.M.; Weldegebriel, G.; Rey-Benito, G.; de Oliveira, L.H.; Ortiz, C.; et al. Aetiology and incidence of diarrhoea requiring hospitalisation in children under 5 years of age in 28 low-income and middle-income countries: Findings from the Global Pediatric Diarrhea Surveillance network. BMJ Glob. Health 2022, 7, e009548. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, A.; Khan, J. Rotavirus in developing countries: Molecular diversity, epidemiological insights, and strategies for effective vaccination. Front. Microbiol. 2023, 14, 1297269. [Google Scholar] [CrossRef] [PubMed]
- Burnett, E.; Parashar, U.D.; Tate, J.E. Real-world effectiveness of rotavirus vaccines, 2006–2019: A literature review and meta-analysis. Lancet Glob. Health 2020, 8, e1195–e1202. [Google Scholar] [CrossRef] [PubMed]
- Glass, R.I.; Parashar, U.; Patel, M.; Gentsch, J.; Jiang, B. Rotavirus vaccines: Successes and challenges. J. Infect. 2014, 68 (Suppl. 1), S9–S18. [Google Scholar] [CrossRef] [PubMed]
- Parker, E.P.; Ramani, S.; A Lopman, B.; A Church, J.; Iturriza-Gómara, M.; Prendergast, A.J.; Grassly, N.C.; Colvin, E.; Kosek, M.N.; Kang, G.; et al. Causes of impaired oral vaccine efficacy in developing countries. Future Microbiol. 2018, 13, 97–118. [Google Scholar] [CrossRef]
- Saha, D.; Ota, M.O.; Pereira, P.; Buchy, P.; Badur, S. Rotavirus vaccines performance: Dynamic interdependence of host, pathogen and environment. Expert Rev. Vaccines 2021, 20, 945–957. [Google Scholar] [CrossRef]
- Greenberg, H.B.; Estes, M.K. Rotaviruses: From pathogenesis to vaccination. Gastroenterology 2009, 136, 1939–1951. [Google Scholar] [CrossRef]
- View-Hub. Rotavirus Vaccine Introduction & Use. Available online: https://view-hub.org/vaccine/rota?set=vaccine-product-current-planned&group=vaccine-introduction&category=rv (accessed on 30 December 2023).
- Sharma, S.; Hagbom, M.; Svensson, L.; Nordgren, J. The Impact of Human Genetic Polymorphisms on Rotavirus Susceptibility, Epidemiology, and Vaccine Take. Viruses 2020, 12, 324. [Google Scholar] [CrossRef]
- Cooling, L. Blood Groups in Infection and Host Susceptibility. Clin. Microbiol. Rev. 2015, 28, 801–870. [Google Scholar] [CrossRef]
- Le Pendu, J.; Ruvoën-Clouet, N. Fondness for sugars of enteric viruses confronts them with human glycans genetic diversity. Hum. Genet 2020, 139, 903–910. [Google Scholar] [CrossRef]
- Ramani, S.; Hu, L.; Prasad, B.V.; Estes, M.K. Diversity in Rotavirus-Host Glycan Interactions: A “Sweet” Spectrum. Cell Mol. Gastroenterol. Hepatol. 2016, 2, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Nordgren, J. Effect of Infant and Maternal Secretor Status on Rotavirus Vaccine Take-An Overview. Viruses 2021, 13, 1144. [Google Scholar] [CrossRef]
- Kirkpatrick, B.D.; Carmolli, M.P.; Taniuchi, M.; Haque, R.; Mychaleckyj, J.C.; Petri, W.A.; Walsh, M.C.; Ma, J.Z.; Diehl, S.A.; Alam, M.; et al. The “Performance of Rotavirus and Oral Polio Vaccines in Developing Countries” (PROVIDE) study: Description of methods of an interventional study designed to explore complex biologic problems. Am. J. Trop. Med. Hyg. 2015, 92, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Colgate, E.R.; Haque, R.; Dickson, D.M.; Carmolli, M.P.; Mychaleckyj, J.C.; Nayak, U.; Qadri, F.; Alam, M.; Walsh, M.C.; Diehl, S.A.; et al. Delayed Dosing of Oral Rotavirus Vaccine Demonstrates Decreased Risk of Rotavirus Gastroenteritis Associated With Serum Zinc: A Randomized Controlled Trial. Clin. Infect. Dis. 2016, 63, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Naylor, C.; Lu, M.; Haque, R.; Mondal, D.; Buonomo, E.; Nayak, U.; Mychaleckyj, J.C.; Kirkpatrick, B.; Colgate, R.; Carmolli, M.; et al. Environmental Enteropathy, Oral Vaccine Failure and Growth Faltering in Infants in Bangladesh. EBioMedicine 2015, 2, 1759–1766. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Gratz, J.; Amour, C.; Nshama, R.; Walongo, T.; Maro, A.; Mduma, E.; Platts-Mills, J.; Boisen, N.; Nataro, J.; et al. Optimization of Quantitative PCR Methods for Enteropathogen Detection. PLoS ONE 2016, 11, e0158199. [Google Scholar] [CrossRef]
- Lee, B.; Dickson, D.M.; Alam, M.; Afreen, S.; Kader, A.; Afrin, F.; Ferdousi, T.; Damon, C.F.; Gullickson, S.K.; McNeal, M.M.; et al. The effect of increased inoculum on oral rotavirus vaccine take among infants in Dhaka, Bangladesh: A double-blind, parallel group, randomized, controlled trial. Vaccine 2020, 38, 90–99. [Google Scholar] [CrossRef]
- Lee, B.; Dickson, D.M.; Decamp, A.C.; Colgate, E.R.; A Diehl, S.; Uddin, M.I.; Sharmin, S.; Islam, S.; Bhuiyan, T.R.; Alam, M.; et al. Histo-Blood Group Antigen Phenotype Determines Susceptibility to Genotype-Specific Rotavirus Infections and Impacts Measures of Rotavirus Vaccine Efficacy. J. Infect. Dis. 2018, 217, 1399–1407. [Google Scholar] [CrossRef]
- Kambhampati, A.; Payne, D.C.; Costantini, V.; Lopman, B.A. Host Genetic Susceptibility to Enteric Viruses: A Systematic Review and Metaanalysis. Clin. Infect. Dis. 2016, 62, 11–18. [Google Scholar] [CrossRef]
- Sharif, N.; Sharif, N.; Khan, A.; Azpíroz, I.D.; Diaz, R.M.; De la Torre Díez, I.; Parvez, A.K.; Dey, S.K. Prevalence and genetic diversity of rotavirus in Bangladesh during pre-vaccination period. Front. Immunol. 2023, 12, 1973–2023. [Google Scholar] [CrossRef]
- Ciszewski, J.; Taniuchi, M.; Lee, B.; Colgate, E.R.; A Platts-Mills, J.; Haque, R.; Zaman, K.; Lopman, B.; A Petri, W.; Kirkpatrick, B.D.; et al. Differences in Rotavirus Shedding and Duration by Infant Oral Rotavirus Vaccination Status in Dhaka, Bangladesh 2011–2014. J. Infect. Dis. 2023, jiad502. [Google Scholar] [CrossRef]
- Colston, J.M.; Francois, R.; Pisanic, N.; Yori, P.P.; McCormick, B.J.J.; Olortegui, M.P.; Gazi, A.; Svensen, E.; Ahmed, M.M.M.; Mduma, E.; et al. Effects of Child and Maternal Histo-Blood Group Antigen Status on Symptomatic and Asymptomatic Enteric Infections in Early Childhood. J. Infect. Dis. 2019, 220, 151–162. [Google Scholar] [CrossRef]
- Bucardo, F.; Reyes, Y.; Rönnelid, Y.; González, F.; Sharma, S.; Svensson, L.; Nordgren, J. Histo-blood group antigens and rotavirus vaccine shedding in Nicaraguan infants. Sci. Rep. 2019, 9, 10764. [Google Scholar] [CrossRef] [PubMed]
- Magwira, C.A.; Kgosana, L.P.; Esona, M.D.; Seheri, M.L. Low fecal rotavirus vaccine virus shedding is significantly associated with non-secretor histo-blood group antigen phenotype among infants in northern Pretoria, South Africa. Vaccine 2020, 38, 8260–8263. [Google Scholar] [CrossRef]
- Cantelli, C.P.; Velloso, A.J.; de Assis, R.M.S.; Barros, J.J.; Mello, F.C.D.A.; da Cunha, D.C.; Brasil, P.; Nordgren, J.; Svensson, L.; Miagostovich, M.P.; et al. Rotavirus A shedding and HBGA host genetic susceptibility in a birth community-cohort, Rio de Janeiro, Brazil, 2014–2018. Sci. Rep. 2020, 10, 6965. [Google Scholar] [CrossRef] [PubMed]
- Pollock, L.; Bennett, A.; Jere, K.C.; Dube, Q.; Mandolo, J.; Bar-Zeev, N.; Heyderman, R.S.; A Cunliffe, N.; Iturriza-Gomara, M. Nonsecretor Histo-blood Group Antigen Phenotype Is Associated With Reduced Risk of Clinical Rotavirus Vaccine Failure in Malawian Infants. Clin. Infect. Dis. 2019, 69, 1313–1319. [Google Scholar] [CrossRef] [PubMed]
- Ettayebi, K.; Crawford, S.E.; Murakami, K.; Broughman, J.R.; Karandikar, U.; Tenge, V.R.; Neill, F.H.; Blutt, S.E.; Zeng, X.-L.; Qu, L.; et al. Replication of human noroviruses in stem cell-derived human enteroids. Science 2016, 353, 1387–1393. [Google Scholar] [CrossRef] [PubMed]
- Saxena, K.; Blutt, S.E.; Ettayebi, K.; Zeng, X.-L.; Broughman, J.R.; Crawford, S.E.; Karandikar, U.C.; Sastri, N.P.; Conner, M.E.; Opekun, A.R.; et al. Human Intestinal Enteroids: A New Model To Study Human Rotavirus Infection, Host Restriction, and Pathophysiology. J. Virol. 2016, 90, 43–56. [Google Scholar] [CrossRef]
- Barbé, L.; Le Moullac-Vaidye, B.; Echasserieau, K.; Bernardeau, K.; Carton, T.; Bovin, N.; Nordgren, J.; Svensson, L.; Ruvoën-Clouet, N.; Le Pendu, J. Histo-blood group antigen-binding specificities of human rotaviruses are associated with gastroenteritis but not with in vitro infection. Sci. Rep. 2018, 8, 12961. [Google Scholar] [CrossRef]
- Ciszewski, J.; Taniuchi, M.; Lee, B.; Colgate, E.R.; Platts-Mills, J.A.; Haque, R.; Rogawski McQuade, E.T. Human Intestinal Enteroids: New Models to Study Gastrointestinal Virus Infections. Methods Mol. Biol. 2019, 1576, 229–247. [Google Scholar] [CrossRef]
- Settembre, E.C.; Chen, J.Z.; Dormitzer, P.R.; Grigorieff, N.; Harrison, S.C. Atomic model of an infectious rotavirus particle. Embo J. 2011, 30, 408–416. [Google Scholar] [CrossRef]
- Gozalbo-Rovira, R.; Ciges-Tomas, J.R.; Vila-Vicent, S.; Buesa, J.; Santiso-Bellón, C.; Monedero, V.; Yebra, M.J.; Marina, A.; Rodríguez-Díaz, J. Unraveling the role of the secretor antigen in human rotavirus attachment to histo-blood group antigens. PLoS Pathog. 2019, 15, e1007865. [Google Scholar] [CrossRef]
- Jenni, S.; Li, Z.; Wang, Y.; Bessey, T.; Salgado, E.N.; Schmidt, A.G.; Greenberg, H.B.; Jiang, B.; Harrison, S.C. Rotavirus VP4 Epitope of a Broadly Neutralizing Human Antibody Defined by Its Structure Bound with an Attenuated-Strain Virion. J. Virol. 2022, 96, e0062722. [Google Scholar] [CrossRef]
- Feng, N.; Hu, L.; Ding, S.; Sanyal, M.; Zhao, B.; Sankaran, B.; Ramani, S.; McNeal, M.; Yasukawa, L.L.; Song, Y.; et al. Human VP8* mAbs neutralize rotavirus selectively in human intestinal epithelial cells. J. Clin. Investig. 2019, 129, 3839–3851. [Google Scholar] [CrossRef]
- Gladstone, B.P.; Ramani, S.; Mukhopadhya, I.; Muliyil, J.; Sarkar, R.; Rehman, A.M.; Jaffar, S.; Gomara, M.I.; Gray, J.J.; Brown, D.W.G.; et al. Protective effect of natural rotavirus infection in an Indian birth cohort. N. Engl. J. Med. 2011, 365, 337–346. [Google Scholar] [CrossRef]
- Velázquez, F.R.; Matson, D.O.; Calva, J.J.; Guerrero, M.L.; Morrow, A.L.; Carter-Campbell, S.; Glass, R.I.; Estes, M.K.; Pickering, L.K.; Ruiz-Palacios, G.M. Rotavirus infection in infants as protection against subsequent infections. N. Engl. J. Med. 1996, 335, 1022–1028. [Google Scholar] [CrossRef]
- Williams, F.B.; Kader, A.; Colgate, E.R.; Dickson, D.M.; Carmolli, M.; Uddin, M.I.; Sharmin, S.; Islam, S.; Bhuiyan, T.R.; Alam, M.; et al. Maternal Secretor Status Affects Oral Rotavirus Vaccine Response in Breastfed Infants in Bangladesh. J. Infect. Dis. 2021, 224, 1147–1151. [Google Scholar] [CrossRef]
- Williams, F.B.; Kader, A.; Dickson, D.M.; Colgate, E.R.; Alam, M.; Haque, R.; A Petri, W.; Kirkpatrick, B.D.; Lee, B. Maternal Breast Milk Secretor Phenotype Does Not Affect Infant Susceptibility to Rotavirus Diarrhea. Open Forum Infect. Dis. 2023, 10, ofad299. [Google Scholar] [CrossRef]
RV Diarrhea in Year 1 | ||||
---|---|---|---|---|
Variable | Total N (%) | Yes N (%) | No N (%) | p-Value |
Sex at birth | ||||
Female | 76 (45%) | 38 (50%) | 38 (50%) | 0.83 |
Male | 93 (55%) | 48 (52%) | 45 (48%) | |
Any household water treatment | ||||
Yes | 65 (38%) | 38 (59%) | 27 (49%) | 0.12 |
No | 104 (62%) | 48 (46%) | 56 (54%) | |
Exclusively breastfed at 18 weeks | ||||
Yes | 77 (46%) | 36 (47%) | 41 (53%) | 0.34 |
No | 92 (54%) | 50 (54%) | 42 (46%) | |
Stunted at 10 weeks 1 | ||||
Yes | 21 (13%) | 10 (48%) | 11 (52%) | 0.73 |
No | 147 (87%) | 76 (52%) | 71 (48%) | |
Lewis status | ||||
Positive for Lewis a or b | 153 (90%) | 77 (50%) | 76 (50%) | 0.65 |
Negative for Lewis a and b | 16 (10%) | 9 (56%) | 7 (44%) | |
Secretor status | ||||
Secretor | 114 (67%) | 68 (60%) | 46 (40%) | 0.0001 |
Non-secretor | 55 (33%) | 18 (33%) | 37 (67%) |
Asymptomatic RV Infection | Any RV Infection | ||||||||
---|---|---|---|---|---|---|---|---|---|
Ct Cut-Off | Phenotype | Yes N (%) | No N (%) | OR 1 (95% CI) | p-Value | Yes N (%) | No N (%) | OR 1 (95% CI) | p-Value |
<34 | Secretor | 24 (52%) | 22 (48%) | 92 (81%) | 22 (19%) | ||||
Non-secretor | 4 (11%) | 33 (89%) | 0.111 (0.034–0.365) | 7.4 × 10−5 | 22 (40%) | 33 (60%) | 0.159 (0.078–0.325) | 1.2 × 10−7 | |
<40 | Secretor | 37 (80%) | 9 (20%) | 105 (92%) | 9 (8%) | ||||
Non-secretor | 21 (57%) | 16 (43%) | 0.319 (0.120–0.848) | 0.019 | 39 (71%) | 16 (29%) | 0.209 (0.085–0.512) | 0.00028 |
Asymptomatic RV Infection | Any RV Infection | |||||
---|---|---|---|---|---|---|
P-Type | Secretor N (%) | Non-Secretor N (%) | p-Value | Secretor N (%) | Non-Secretor N (%) | p-Value |
P[4] | 15 (32%) | 0 (0%) | 0.050 | 32 (31%) | 0 (0%) | 9.26 × 10−5 |
P[6] | 8 (17%) | 1 (9%) | 1.00 | 11 (11%) | 3 (8%) | 0.76 |
P[8] | 28 (60%) | 10 (91%) | 0.077 | 62 (59%) | 20 (49%) | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, B.; Kader, M.A.; Alam, M.; Dickson, D.M.; Harvey, P.; Colgate, E.R.; Taniuchi, M.; Petri, W.A., Jr.; Haque, R.; Kirkpatrick, B.D. Infant Non-Secretor Histoblood Group Antigen Phenotype Reduces Susceptibility to Both Symptomatic and Asymptomatic Rotavirus Infection. Pathogens 2024, 13, 223. https://doi.org/10.3390/pathogens13030223
Lee B, Kader MA, Alam M, Dickson DM, Harvey P, Colgate ER, Taniuchi M, Petri WA Jr., Haque R, Kirkpatrick BD. Infant Non-Secretor Histoblood Group Antigen Phenotype Reduces Susceptibility to Both Symptomatic and Asymptomatic Rotavirus Infection. Pathogens. 2024; 13(3):223. https://doi.org/10.3390/pathogens13030223
Chicago/Turabian StyleLee, Benjamin, Md Abdul Kader, Masud Alam, Dorothy M. Dickson, Patrick Harvey, E. Ross Colgate, Mami Taniuchi, William A. Petri, Jr., Rashidul Haque, and Beth D. Kirkpatrick. 2024. "Infant Non-Secretor Histoblood Group Antigen Phenotype Reduces Susceptibility to Both Symptomatic and Asymptomatic Rotavirus Infection" Pathogens 13, no. 3: 223. https://doi.org/10.3390/pathogens13030223
APA StyleLee, B., Kader, M. A., Alam, M., Dickson, D. M., Harvey, P., Colgate, E. R., Taniuchi, M., Petri, W. A., Jr., Haque, R., & Kirkpatrick, B. D. (2024). Infant Non-Secretor Histoblood Group Antigen Phenotype Reduces Susceptibility to Both Symptomatic and Asymptomatic Rotavirus Infection. Pathogens, 13(3), 223. https://doi.org/10.3390/pathogens13030223