Analysis of Mycotoxins and Cytotoxicity of Airborne Molds Isolated from the Zoological Garden—Screening Research
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Method
2.2. Morphological and Molecular Identification of Molds
2.3. MTT Test for Assessing Fungal Cytotoxicity
2.4. High-Performance Liquid Chromatography (HPLC)
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marcelloni, A.M.; Pigini, D.; Chiominto, A.; Gioffrè, A.; Paba, E. Exposure to airborne mycotoxins: The riskiest working environments and tasks. Ann. Work. Expo. Health 2023, 68, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.D.A.; Wang, Y.; Shen, Z.; Li, X.; Saleemi, M.K.; He, C. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microb. Pathog. 2020, 142, 104095. [Google Scholar] [CrossRef] [PubMed]
- Awuchi, C.G.; Ondari, E.N.; Nwozo, S.; Odongo, G.A.; Eseoghene, I.J.; Twinomuhwezi, H.; Ogbonna, C.U.; Upadhyay, A.K.; Adeleye, A.O.; Okpala, C.O.R. Mycotoxins’ Toxicological Mechanisms Involving Humans, Livestock and Their Associated Health Concerns: A Review. Toxins 2020, 14, 167. [Google Scholar] [CrossRef] [PubMed]
- Chinaza, G.A.; Clifford, I.O.; Chika, C.O.; Victory, S.I. Evaluation of Patulin Levels and impacts on the Physical Characteristics of Grains. Int. J. Adv. Acad. Res. 2019, 5, 10–25. [Google Scholar]
- Samson, R.A.; Visagie, C.M.; Houbraken, J.; Hong, S.B.; Hubka, V.; Klaassen, C.H.; Perrone, G.; Seifert, K.A.; Susca, A.; Tanney, J.B.; et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud. Mycol. 2014, 78, 141–173. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, N.; Visagie, C.M.; Houbraken, J.; Frisvad, J.C.; Samson, R.A. Polyphasic taxonomy of the genus Talaromyces. Stud. Mycol. 2014, 78, 175–341. [Google Scholar] [CrossRef] [PubMed]
- Visagie, C.M.; Houbraken, J.; Frisvad, J.C.; Hong, S.B.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Identification and nomenclature of the genus Penicillium. Stud. Mycol. 2014, 78, 343–371. [Google Scholar] [CrossRef]
- Samson, R.A.; Houbraken, J.; Thrane, U.; Frisvad, J.C.; Andersen, B. Food and Indoor Fungi. Westerdijk Laboratory Manual Series: 2, 2nd ed.; Westerdijk Fungal Biodiversity Institute: Utrecht, The Netherlands, 2019. [Google Scholar]
- Twarużek, M.; Zastempowska, E.; Soszczyńska, E.; Ałtyn, I. The use of in vitro assays for the assessment of cytotoxicity on the example of MTT test. Acta Univ. Lodz. Folia Biol. Oecol 2018, 14, 23–32. [Google Scholar] [CrossRef]
- Heussner, A.H.; Dietrich, D.R. Primary porcine proximal tubular cells as an alternative to human primary renal cells in vitro: An initial characterization. BMC Cell Biol. 2013, 14, 55. [Google Scholar] [CrossRef]
- Hanelt, M.; Gareis, M.; Kollarczik, B. Cytotoxicity of mycotoxins evaluated by the MTT cell culture assay. Mycopathologia 1994, 128, 164–174. [Google Scholar] [CrossRef]
- Pietrzak, K.; Twarużek, M.; Czyżowska, A.; Kosicki, R.; Gutarowska, B. Influence of silver nanoparticles on metabolism and toxicity of moulds. Acta Biochim. Pol. 2015, 62, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Pusz, W.; Plaskowska, E.; Weber, W.; Kita, W. Assessing the Abundance of Airborne Fungi in a Dairy Cattle Barn. Pol. J. Environ. Stud. 2015, 24, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Matković, K.; Vučemilo, M.; Vinković, B. Airborne fungi in dwellings for dairy dows and laying hens. Arch. Ind. Hyg. Toxicol. 2009, 60, 395–399. [Google Scholar]
- Almatawah, Q.A.; Al-Khalaifah, H.S.; Aldameer, A.S.; Ali, A.K.; Benhaji, A.H.; Varghese, J.S. Microbiological Indoor and Outdoor Air Quality in Chicken Fattening Houses. J. Environ. Public. Health 2023, 29, 3512328. [Google Scholar] [CrossRef] [PubMed]
- Grzyb, J.; Lenart-Boroń, A. Size distribution and concentration of fungal aerosol in animal premises of a zoological garden. Aerobiologia 2020, 36, 233–248. [Google Scholar] [CrossRef]
- Matković, K.; Vučemilo, M.; Vinković, B.; Šeol, B.; Pavičić, Ž.; Matković, S. Qualitative structure of airborne bacteria and fungi in dairy barn and nearby environment. Czech J. Anim. Sci. 2007, 52, 249–253. [Google Scholar] [CrossRef]
- Radon, K.; Danser, B.; Iversen, M.; Monso, E.; Weber, C.; Hartung, J.; Donham, K.; Palmgren, U.; Nowak, D. Air contaminants in different European farming environments. Ann. Agric. Environ. Med. 2002, 9, 41–48. [Google Scholar] [PubMed]
- Skóra, J.; Sulyok, M.; Nowak, A.; Otlewska, A.; Gutarowska, B. Toxinogenicity and cytotoxicity of Alternaria, Aspergillus and Penicillium moulds isolated from working environments. Int. J. Environ. Sci. Technol. 2017, 14, 595–608. [Google Scholar] [CrossRef]
- Jakšić, D.; Kocsubé, S.; Bencsik, O.; Kecskeméti, A.; Szekeres, A.; Jelić, D.; Kopjar, N.; Vágvölgyi, C.; Varga, J.; Šegvić Klarić, M. Fumonisin production and toxic capacity in airborne black Aspergilli. Toxicol. Vitr. 2018, 53, 160–171. [Google Scholar] [CrossRef]
- Salambanga, F.R.D.; Wingert, L.; Valois, I.; Lacombe, N.; Gouin, F.; Trépanier, J.; Debia, M.; Soszczyńska, E.; Twarużek, M.; Kosicki, R.; et al. Microbial contamination and metabolite exposure assessment during waste and recyclable material collection. Environ. Res. 2022, 212, 113597. [Google Scholar] [CrossRef]
- Gniadek, A.; Krzyściak, P.; Twarużek, M.; Macura, A.B. Occurrence of fungi and cytotoxicity of the species: Aspergillus ochraceus, Aspergillus niger and Aspergillus flavus isolated from the air of hospital wards. Int. J. Occup. Med. Environ. Health 2020, 30, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Ngolong Ngea, G.L.; Yang, Q.; Castoria, R.; Zhang, X.; Routledge, M.N.; Zhang, H. Recent trends in detecting, controlling, and detoxifying of patulin mycotoxin using biotechnology methods. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2447–2472. [Google Scholar] [CrossRef] [PubMed]
- Bokhari, F.; Gherbawy, Y.; Najjar, A. Detection of the patulin-producing potential of some Paecilomyces variotii strains isolated from the air samples of Jeddah City, Saudi Arabia, using the RAPD-PCR technique. Aerobiologia 2009, 25, 49–54. [Google Scholar] [CrossRef]
- Bacha, S.A.S.; Li, Y.; Nie, J.; Xu, G.; Han, L.; Farooq, S. Comprehensive review on patulin and Alternaria toxins in fruit and derived products. Front. Plant Sci. 2023, 14, 1139757. [Google Scholar] [CrossRef] [PubMed]
- García-Estrada, C.; Martín, J.F. Biosynthetic gene clusters for relevant secondary metabolites produced by Penicillium roqueforti in blue cheeses. Appl. Microbiol. Biotechnol. 2016, 100, 8303–8313. [Google Scholar] [CrossRef] [PubMed]
- Altomare, C.; Logrieco, A.F.; Gallo, A. Mycotoxins and Mycotoxigenic Fungi: Risk and Management. A Challenge for Future Global Food Safety and Security. In Encyclopedia of Mycology; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Bryła, M.; Pierzgalski, A.; Zapaśnik, A.; Uwineza, P.A.; Ksieniewicz-Woźniak, E.; Modrzewska, M.; Waśkiewicz, A. Recent Research on Fusarium Mycotoxins in Maize-A Review. Foods 2020, 11, 3465. [Google Scholar] [CrossRef] [PubMed]
- Hallas-Møller, M.; Nielsen, K.N.; Frisvad, J.C.H. Production of the Fusarium Mycotoxin Moniliformin by Penicillium melanoconidium. J. Agric. Food Chem. 2016, 64, 4505–4510. [Google Scholar] [CrossRef] [PubMed]
- Paguigan, N.D.; Al-Huniti, M.H.; Raja, H.A.; Czarnecki, A.; Burdette, J.E.; González-Medina, M.; Medina-Franco, J.L.; Polyak, S.J.; Pearce, C.J.; Croatt, M.P.; et al. Chemoselective fluorination and chemoinformatic analysis of griseofulvin: Natural vs fluorinated fungal metabolites. Bioorganic Med. Chem. 2017, 25, 5238–5246. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudian, F.; Sharifirad, A.; Yakhchali, B.; Ansari, S.; Fatemi, S.S. Production of Mycophenolic Acid by a Newly Isolated Indigenous Penicillium glabrum. Curr. Microbiol. 2021, 78, 2420–2428. [Google Scholar] [CrossRef]
- Muhammad, M.; Ahmad, J.; Basit, A.; Mohamed, H.I.; Khan, A.; Kamel, E.A.R. Antimicrobial activity of Penicillium species metabolites. In Fungal Secondary Metabolites Synthesis and Applications in Agroecosystem, 1st ed.; Abd-Elsalam, K.A., Mohamed, H.I., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 369–383. [Google Scholar]
- Guadalupe Frías-De-León, M.; García-Salazar, E.; Acosta-Altamirano, G. Virulence Attributes in Aspergillus fumigatus; IntechOpen: London, UK, 2023. [Google Scholar]
- Kubosaki, A.; Kobayashi, N.; Watanabe, M.; Yoshinari, T.; Takatori, K.; Kikuchi, Y.; Hara-Kudo, Y.; Terajima, J.; Sugita-Konishi, Y. A new protocol for the detection of sterigmatocystin-producing Aspergillus section Versicolores using a high discrimination polymerase. Biocontrol Sci. 2020, 25, 113–118. [Google Scholar] [CrossRef]
- Zingales, V.; Fernández-Franzón, M.; Ruiz, M.J. Sterigmatocystin: Occurrence, toxicity and molecular mechanisms of action—A review. Food Chem. Toxicol. 2020, 146, 111802. [Google Scholar] [CrossRef] [PubMed]
- Malir, F.; Ostry, V.; Pfohl-Leszkowicz, A.; Malir, J.; Toman, J. Ochratoxin A: 50 Years of Research. Toxins 2016, 8, 191. [Google Scholar] [CrossRef]
- Zentai, A.; Szeitzné-Szabó, M.; Mihucz, G.; Szeli, N.; Szabó, A.; Kovács, M. Occurrence and Risk Assessment of Fumonisin B1 and B2 Mycotoxins in Maize-Based Food Products in Hungary. Toxins 2019, 5, 709. [Google Scholar] [CrossRef] [PubMed]
- Onami, J.I.; Watanabe, M.; Yoshinari, T.; Hashimoto, R.; Kitayama, M.; Kobayashi, N.; Sugita-Konishi, Y.; Kamata, Y.; Takahashi, H.; Kawakami, H.; et al. Fumonisin-production by Aspergillus section Nigri isolates from Japanese Foods and Environments. Food Saf. 2018, 29, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Lanier, C.; Richard, E.; Heutte, N.; Picquet, R.; Bouchart, V.; Garon, D. Airborne molds and mycotoxins associated with handling of corn silage and oilseed cakes in agricultural environment. Atmos. Environ. 2010, 44, 1980–1986. [Google Scholar] [CrossRef]
- Skóra, J.; Matusiak, K.; Wojewódzki, P.; Nowak, A.; Sulyok, M.; Ligocka, A.; Okrasa, M.; Hermann, J.; Gutarowska, B. Evaluation of microbiological and chemical contaminants in poultry farms. Int. J. Environ. Res. Public Health 2016, 13, 192. [Google Scholar] [CrossRef] [PubMed]
- Franco, L.T.; Oliveira, C.A.F. Assessment of occupational and dietary exposures of feed handling workers to mycotoxins in rural areas from São Paulo, Brazil. Sci. Total Environ. 2022, 837, 155763. [Google Scholar] [CrossRef] [PubMed]
- Ndaw, S.; Remy, A.; Jargot, D.; Antoine, G.; Denis, F.; Robert, A. Mycotoxins exposure of french grain elevator workers: Biomonitoring and airborne measurements. Toxins 2021, 13, 382. [Google Scholar] [CrossRef] [PubMed]
- Schlosser, O.; Robert, S.; Noyon, N. Airborne mycotoxins in waste recycling and recovery facilities: Occupational exposure and health risk assessment. Waste Manag. 2020, 105, 395–404. [Google Scholar] [CrossRef]
- Szulc, J.; Okrasa, M.; Majchrzycka, K.; Sulyok, M.; Nowak, A.; Ruman, T.; Nizioł, J.; Szponar, B.; Gutarowska, B. Microbiological and toxicological hazards in sewage treatment plant bioaerosol and dust. Toxins 2021, 13, 691. [Google Scholar] [CrossRef] [PubMed]
- Szulc, J.; Okrasa, M.; Majchrzycka, K.; Sulyok, M.; Nowak, A.; Szponar, B.; Górczyńska, A.; Ryngajłło, M.; Gutarowska, B. Microbiological and toxicological hazard assessment in a waste sorting plant and proper respiratory protection. J. Environ. Manag. 2021, 303, 114257. [Google Scholar] [CrossRef] [PubMed]
- Viegas, S.; Veiga, L.; Malta-Vacas, J.; Sabino, R.; Figueredo, P.; Almeida, A.; Viegas, C.; Carolino, E. Occupational exposure to aflatoxin (AFB1) in poultry production. J. Toxicol. Environ. Health 2012, 75, 1330–1340. [Google Scholar] [CrossRef] [PubMed]
- Viegas, S.; Veiga, L.; Figueredo, P.; Almeida, A.; Carolino, E.; Sabino, R.; Veríssimo, C.; Viegas, C. Occupational exposure to aflatoxin B1: The case of poultry and swine production. World Mycotoxin J. 2013, 6, 309–315. [Google Scholar] [CrossRef]
- Skrzydlewski, P.; Twarużek, M.; Grajewski, J. Cytotoxicity of Mycotoxins and Their Combinations on Different Cell Lines: A Review. Toxins 2022, 14, 244. [Google Scholar] [CrossRef] [PubMed]
- Wösten, H.A.B. Filamentous fungi for the production of enzymes, chemicals and materials. Curr. Opin. Biotechnol. 2019, 59, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.; Connolly, L.; Frizzell, C.; Elliott, C.H.T. Cytotoxic assessment of the regulated, co-existing mycotoxins aflatoxin B1, fumonisin B1 and ochratoxin, in single, binary and tertiary mixtures. Toxicon 2014, 90, 70–81. [Google Scholar] [CrossRef]
- Gao, Y.N.; Wang, J.Q.; Li, S.L.; Zhang, Y.D.; Zheng, N. Aflatoxin M1 cytotoxicity against human intestinal Caco-2 cells is enhanced in the presence of other mycotoxins. Food Chem. Toxicol. 2016, 96, 79–89. [Google Scholar] [CrossRef]
Precursor Ion [m/z] | Product Ions [m/z] a | Declustering Potential [V] | Collision Energy [V] | Cell exit Potential [V] | ||
---|---|---|---|---|---|---|
15-Acetyldeoxynivalenol | [M+H]+ | 339.1 | 321.2/137.2 | 91 | 13/17 | 18/8 |
3-Acetyldeoxynivalenol | [M+Ac]− | 397.3 | 59.2/307.1 | −70 | −38/−20 | −8/−7 |
Aflatoxin B1 | [M+H]+ | 313.1 | 285.2/128.1 | 106 | 33/91 | 16/10 |
Aflatoxin B2 | [M+H]+ | 315.1 | 287.2/259.2 | 96 | 37/43 | 18/18 |
Aflatoxin G1 | [M+H]+ | 329.1 | 243.1/200.0 | 86 | 39/59 | 14/12 |
Aflatoxin G2 | [M+H]+ | 331.1 | 313.2/245.2 | 111 | 35/43 | 18/14 |
Aflatoxin M1 | [M+H]+ | 329.1 | 273.2/229.1 | 91 | 35/59 | 16/12 |
a-Zearalanol | [M-H]− | 321.2 | 277.2/303.2 | −115 | −32/−30 | −13/−15 |
a-Zearalenol | [M-H]− | 319.2 | 160.1/130.1 | −115 | −44/−50 | −13/−20 |
b-Zearalanol | [M-H]− | 321.2 | 277.2/303.2 | −115 | −32/−30 | −13/−15 |
b-Zearalenol | [M-H]− | 319.2 | 160.0/130.0 | −115 | −44/−50 | −13/−20 |
Deepoxydeoxynivalenol | [M+Ac]− | 339.1 | 59.1/249.0 | −70 | −20/−18 | −9/−17 |
Deoxynivalenol | [M+Ac]− | 355.1 | 265.2/59.2 | −70 | −22/−40 | −13/−8 |
Diacetoxyscirpenol | [M+NH4]+ | 384.2 | 307.2/105.1 | 81 | 17/61 | 9/7 |
Deoxynivalenol 3-Glucoside | [M+Ac]− | 517.3 | 427.1/59.1 | −80 | −30/−85 | −11/−7 |
Fumonisin B1 | [M+H]+ | 722.5 | 334.4/352.3 | 121 | 57/55 | 4/12 |
Fumonisin B2 | [M+H]+ | 706.5 | 336.4/318.4 | 126 | 59/51 | 8/2 |
Fumonisin B3 | [M+H]+ | 706.5 | 336.3/318.5 | 126 | 59/51 | 8/2 |
Fusarenon X | [M+Ac]− | 413.2 | 59.1/263.0 | −70 | −44/−22 | −9/−16 |
Gliotoxin | [M+H]+ | 327.1 | 263.2/245.3 | 61 | 15/25 | 16/20 |
Griseofulvin | [M+H]+ | 353.2 | 165.2/215.2 | 81 | 27/27 | 10/12 |
HT-2 Toxin | [M+NH4]+ | 442.2 | 263.1/345.1 | 76 | 21/27 | 19/20 |
Mevinolin | [M+H]+ | 405.3 | 199.2/173.3 | 76 | 17/29 | 14/10 |
Moniliformin | [M-H]− | 96.9 | 41,2 | −100 | −24 | −5 |
Monoacetoxyscirpenol | [M+NH4]+ | 342.2 | 265.1/307.2 | 71 | 13/13 | 26/8 |
Mycophenolic acid | [M+NH4]+ | 338.1 | 207.2/303.2 | 61 | 33/19 | 16/18 |
Neosolaniol | [M+NH4]+ | 400.2 | 215.0/185.0 | 76 | 25/29 | 12/14 |
Nivalenol | [M+Ac]− | 371.1 | 281.1/59.1 | −75 | −22/−45 | −15/−7 |
Ochratoxin A | [M+H]+ | 404.0 | 239.0/102.0 | 91 | 37/105 | 16/14 |
Ochratoxin B | [M+H]+ | 370.1 | 205.0/103.1 | 86 | 33/77 | 12/16 |
Patulin | [M-H]− | 153.0 | 109.0/81.0 | −50 | −12/−18 | −9/−11 |
Roquefortine C | [M+H]+ | 390.2 | 193.2/322.2 | 91 | 39/29 | 10/18 |
Sterigmatocystin | [M+H]+ | 325.1 | 310.2/281.1 | 96 | 35/51 | 18/16 |
T-2 Tetraol | [M+NH4]+ | 316.2 | 215.2/281.2 | 61 | 13/13 | 16/8 |
T-2 Toxin | [M+NH4]+ | 484.3 | 215.2/185.1 | 56 | 29/31 | 18/11 |
T-2 Triol | [M+NH4]+ | 400.2 | 281.3/215.2 | 71 | 13/17 | 16/12 |
Zearalenone | [M-H]− | 319.2 | 205.2/107.0 | −125 | −34/−40 | −13/−5 |
Zearalenone | [M-H]− | 317.1 | 131.1/175.0 | −110 | −42/−34 | −8/−13 |
Limit of Detection LOD (ng/g) | Limit of Quantification (LOQ) (ng/g) | |
---|---|---|
15-acetyldeoxynivalenol | 3.6 | 12.0 |
3-acetyldeoxynivalenol | 4.2 | 14.0 |
aflatoxin B1 | 0.9 | 3.0 |
aflatoxin B2 | 1.5 | 5.0 |
aflatoxin G1 | 1.2 | 4.0 |
aflatoxin G2 | 1.2 | 4.0 |
aflatoxin M1 | 1.5 | 5.0 |
deepoxydeoxynivalenol | 4.2 | 14.0 |
deoxynivalenol | 7.8 | 26.0 |
deoxynivalenol 3-glucoside | 7.5 | 25.0 |
diacetoxyscirpenol | 1.2 | 4.0 |
fumonisin B1 | 3.6 | 12.0 |
fumonisin B2 | 3.0 | 10.0 |
fumonisin B3 | 3.6 | 12.0 |
fusarenon X | 6.0 | 20.0 |
gliotoxin | 2.1 | 7.0 |
griseofulvin | 1.2 | 4.0 |
HT-2 toxin | 1.8 | 6.0 |
mevinolin | 2.4 | 8.0 |
moniliformin | 15.0 | 50.0 |
monoacetoxyscirpenol | 1.8 | 6.0 |
mycophenolic acid | 3.6 | 12.0 |
neosolaniol | 1.5 | 5.0 |
nivalenol | 9.0 | 30.0 |
ochratoxin A | 1.5 | 5.0 |
ochratoxin B | 1.8 | 6.0 |
patulin | 6.0 | 20.0 |
roquefortine C | 1.8 | 6.0 |
sterigmatocystin | 1.5 | 5.0 |
T-2 toxin | 0.9 | 3.0 |
T-2 tetraol | 13.5 | 45.0 |
T-2 triol | 2.4 | 8.0 |
zearalanone | 3.3 | 11.0 |
zearalenone | 1.5 | 5.0 |
α-zearalanol | 2.1 | 7.0 |
α-zearalenol | 2.4 | 8.0 |
β-zearalanol | 3.0 | 10.0 |
β-zearalenol | 2.1 | 7.0 |
Species | Level of Cytotoxicity | IC50 | Dilution | |||
---|---|---|---|---|---|---|
cm2/mL | Steps * | |||||
P. commune 5aw | ++ | 3.906 | 4 | |||
P. commune 14bz | + | 7.813 | 3 | |||
P. commune 22az | + | 7.813 | 3 | |||
P. commune 17fz | + | 31.25 | 1 | |||
P. commune 14aj | + | 7.813 | 3 | |||
P. solitum 15aj | + | 31.25 | 1 | |||
P. raistrickii 9bw | ++ | 0.977 | 6 | |||
P. glandicola 8bw | ++ | 0.977 | 6 | |||
P. glandicola 7aw | ++ | 0.977 | 6 | |||
P. glandicola 7bw | ++ | 0.488 | 7 | |||
P. glandicola 6aw | ++ | 1.953 | 5 | |||
P. griseofulvum 17az | +++ | 0.061 | 10 | |||
P. griseofulvum 18cz | +++ | 0.061 | 10 | |||
P. griseofulvum 19dz | +++ | 0.061 | 10 | |||
P. chrysogenum 18bj | ++ | 3.906 | 4 | |||
P. chrysogenum 22aj | + | 31.25 | 1 | |||
P. chrysogenum 20aez | + | 15.625 | 2 | |||
P. chrysogenum 15aw | +++ | 0.244 | 8 | |||
P. glabrum 1bw | ++ | 0.488 | 7 | |||
P. glabrum 4cw | + | 7.813 | 3 | |||
P. glabrum 9aw | ++ | 1.953 | 5 | |||
P. citreosulfuratum 1az | + | 31.25 | 1 | |||
P. lanosocoeruleum 24aj | ++ | 1.953 | 5 | |||
P. lanosocoeruleum 17aj | + | 7.813 | 3 | |||
P. allii 19ez | + | 15.625 | 2 | |||
P. citrinum 15az | + | 7.813 | 3 | |||
P. citrinum 19bz | + | 7.813 | 3 | |||
P. citrinum 15bl | + | 15.625 | 2 | |||
P. citrinum 15dl | +++ | 0.244 | 8 | |||
P. steckii 18cw | +++ | 0.244 | 8 | |||
P. steckii 20cz | + | 31.25 | 1 | |||
P. steckii 21bj | ++ | 3.906 | 4 | |||
P. steckii 22ej | + | 15.625 | 2 | |||
P. steckii 18bz | none | - | - | |||
P. steckii 25cj | ++ | 3.906 | 4 | |||
P. sumatraense 15bz | +++ | 0.122 | 9 | |||
P. sumatraense 8dl | ++ | 0.977 | 6 | |||
P. sumatraense 16dw | ++ | 0.488 | 7 | |||
P. copticola 17bz | ++ | 7.813 | 3 | |||
P. brevicompactum 30ej | ++ | 1.953 | 5 | |||
P. brevicompactum 28 d | ++ | 1.953 | 5 | |||
P. brevicompactum 2b | + | 7.813 | 3 | |||
P. bialowieziense 29a | ++ | 1.953 | 5 | |||
P. bialowieziense 9bj | + | 31.25 | 1 | |||
P. olsonii 25bj | ++ | 3.906 | 4 | |||
P. olsonii 13bz | + | 15.625 | 2 | |||
Penicillium sp. 1cz | + | 31.25 | 1 | |||
Penicillium sp. 11dl | ++ | 1.953 | 5 | |||
Penicillium sp. 12al | ++ | 1.953 | 5 | |||
Penicillium sp. 19bj | + | 31.25 | 1 | |||
Penicillium sp. 19cj | + | 31.25 | 1 | |||
Penicillium sp. 27bj | ++ | 3.906 | 4 |
Species | Level of Cytotoxicity | IC50 | Dilution | |||
---|---|---|---|---|---|---|
cm2/mL | Steps * | |||||
A. ochraceus 4bw | ++ | 1.953 | 5 | |||
A. ochraceus 17ez | ++ | 0.488 | 7 | |||
A. ochraceus 2bz | + | 31.25 | 1 | |||
A. ochraceus 1bl | ++ | 0.488 | 7 | |||
A. westerdijikiae 11al | +++ | 0.244 | 8 | |||
A. westerdijikiae 1dz | +++ | 0.122 | 9 | |||
A. ostianus 17cj | ++ | 3.906 | 4 | |||
A. ostainus 17cz A.elegans 14al | + | +++ | 15.625 | 2 | ||
A. elegans 14cl | ++ | 3.906 | 4 | |||
A. elegans 24bz | ++ | 1.953 | 5 | |||
A. elegans 22cz | ++ | 3.906 | 4 | |||
A. flavus 2gw | ++ | 0.977 | 2 | |||
A. flavus 18aw | ++ | 3.906 | 4 | |||
A. giganteus 19cz | +++ | 0.061 | 10 | |||
A. sydowii 5bl | + | 15.625 | 2 | |||
A. puulaeansis 4bl | + | 7.813 | 3 | |||
A. niger 7fj | ++ | 3.906 | 4 | |||
A. niger 15cj | none | - | - | |||
A. niger 25aj | ++ | 3.906 | 4 | |||
A. niger 2al | ++ | 3.906 | 4 | |||
A. niger 21az | + | 31.25 | 1 | |||
A. niger 25cz | + | 31.25 | 1 | |||
A. fumigatus 5bw | +++ | 0.061 | 10 | |||
A. fumigatus 4gw | +++ | 0.122 | 9 | |||
A. fumigatus 3fw | +++ | 0.061 | 10 | |||
A. fumigatus 9bl | ++ | 0.977 | 6 | |||
A. fumigatus 10al | + | 7.813 | 3 | |||
A. fumigatus 6cw | + | 31.25 | 1 | |||
A. fumigatus 9dl | +++ | 0.0038 | 14 | |||
A. fumigatus 10bl | +++ | 0,0038 | 14 | |||
A. fumigatus 6dl | ++ | 3.906 | 4 |
Metabolites | Concentration (ng g−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
P. chrysogenum 18bj | P. chrysogenum 22aj | P. chrysogenum 9aw | P. lanosocoeruleum 24aj | P. lanosocoeruleum 17aj | P.allii 19ez | Penicillium sp. 11dl | Penicllium sp.12al | Penicillium sp. 19bj | Penicillium sp. 19cj | Penicillium sp. 27 bj | |
15-acetyldeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
3-acetyldeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin B1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin B2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin G1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin G2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin M1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
deepoxydeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
deoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
deoxynivalenol 3-glucoside | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
diacetoxyscirpenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fumonisin B1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fumonisin B2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fumonisin B3 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fusarenon X | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
gliotoxin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
griseofulvin | <LOD | <LOQ | <LOD | <LOD | 52240 | <LOD | 550000 | 430500 | <LOQ | <LOQ | <LOD |
HT-2 toxin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
mevinolin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
moniliformin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
monoacetoxyscirpenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
mycophenolic acid | <LOQ | <LOQ | 24.2 | <LOQ | 41.1 | <LOD | <LOD | <LOD | <LOQ | <LOQ | 209200 |
neosolaniol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
nivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
ochratoxin A | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
ochratoxin B | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
patulin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
roquefortine C | 2941 | 2347 | <LOD | 3.47 | 53.4 | 1090 | 12.5 | <LOD | 2051 | 3210 | <LOD |
sterigmatocystin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
T-2 toxin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
T-2 tetraol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
T-2 triol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
zearalanone | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
zearalenone | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
α-zearalanol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
α-zearalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
β-zearalanol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
β-zearalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Metabolites | Concentration (ng g−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
P. commune 14bz | P. commune 17fz | P. commune 14aj | P. solitum 15aj | P. raistrickii 9bw | P. glandicola 7aw | P. griseofulvum 17az | P. griseofulvum 18cz | P. griseofulvum 19dz | |
15-acetyldeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
3-acetyldeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin B1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin B2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin G1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin G2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin M1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
deepoxydeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
deoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
deoxynivalenol 3-glucoside | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
diacetoxyscirpenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fumonisin B1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fumonisin B2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fumonisin B3 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fusarenon X | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
gliotoxin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
griseofulvin | <LOD | <LOD | <LOD | <LOD | 1210 | <LOD | 8220 | 10900 | 13600 |
HT-2 toxin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
mevinolin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
moniliformin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 8500 | <LOD |
monoacetoxyscirpenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
mycophenolic acid | <LOD | <LOD | 108.9 | 237.5 | <LOD | 1470 | <LOD | <LOD | <LOD |
neosolaniol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
nivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
ochratoxin A | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
ochratoxin B | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
patulin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 366000 | 380000 | 30300 |
roquefortine C | 1580 | 2350 | 19.4 | 29690 | <LOD | <LOD | <LOD | <LOD | <LOD |
sterigmatocystin | <LOD | <LOD | 6.658 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
T-2 toxin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
T-2 tetraol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
T-2 triol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
zearalanone | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
zearalenone | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
α-zearalanol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
α-zearalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
β-zearalanol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
β-zearalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Metabolites | Concentration (ng −1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A.giganteus 19cz | A.sydowii 5bl | A. puulaeansis 4bl | A. niger 7f | A.niger 15c | A. niger 25a | A. niger 25cz | A. westerdijikiae 11al | A. westerdijikiae 1dz | A. ostianus 17cj | A. ostianus 17cz | |
15-acetyldeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
3-acetyldeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin B1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin B2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin G1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin G2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin M1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
deepoxydeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
deoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
deoxynivalenol 3-glucoside | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
diacetoxyscirpenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fumonisin B1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fumonisin B2 | <LOD | <LOD | <LOD | 127.9 | 195.3 | 30.9 | <LOD | <LOD | <LOD | <LOD | <LOD |
fumonisin B3 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fusarenon X | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
gliotoxin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
griseofulvin | <LOD | <LOD | <LOD | <LOD | <LOQ | <LOD | <LOD | <LOD | <LOD | 6.93 | 10300 |
HT-2 toxin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
mevinolin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
moniliformin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 52900 |
monoacetoxyscirpenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
mycophenolic acid | <LOD | <LOD | <LOD | 158.4 | 40.9 | <LOD | <LOD | <LOD | <LOD | 21.8 | <LOD |
neosolaniol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
nivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
ochratoxin A | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 23.6 | <LOD | <LOD | <LOD | <LOD |
ochratoxin B | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 20.3 | <LOD | <LOD | <LOD | <LOD |
patulin | 84600 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 59.0 | <LOD | 491000 |
roquefortine C | <LOD | 9.6 | <LOQ | 21.9 | 38.4 | <LOQ | <LOD | 383000 | <LOD | <LOQ | <LOD |
sterigmatocystin | <LOD | 24850 | 29050 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
T-2 toxin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
T-2 tetraol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
T-2 triol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
zearalanone | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
zearalenone | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
α-zearalanol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
α-zearalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
β-zearalanol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
β-zearalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Metabolites | Concentration (ng g−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A. elegans 14al | A. elegans 14cl | A. elegans 24bz | A. fumigatus 5bw | A. fumigatus 4gw | A. fumigatus 3fw | A. fumigatus 9bl | A. fumigatus 10al | A. fumigatus 6cw | A. fumigatus 9dl | A. fumigatus 10bl | A. fumigatus 6dl | |
15-acetyldeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
3-acetyldeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin B1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin B2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin G1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin G2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin M1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
deepoxydeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
deoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
deoxynivalenol 3-glucoside | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
diacetoxyscirpenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fumonisin B1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fumonisin B2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fumonisin B3 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fusarenon X | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
gliotoxin | <LOD | <LOD | <LOD | 3490 | 2820 | 4190 | 2155 | 391.5 | <LOD | 34300 | 2555 | 173.5 |
griseofulvin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
HT-2 toxin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
mevinolin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
moniliformin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
monoacetoxyscirpenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
mycophenolic acid | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
neosolaniol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
nivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
ochratoxin A | <LOD | 530 | 203 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
ochratoxin B | <LOD | 247.5 | 79.3 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
patulin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
roquefortine C | 65000 | 25.0 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOQ | 348000 | <LOD | 18.6 | <LOD |
sterigmatocystin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
T-2 toxin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
T-2 tetraol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
T-2 triol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
zearalanone | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
zearalenone | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
α-zearalanol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
α-zearalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
β-zearalanol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
β-zearalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plewa-Tutaj, K.; Twarużek, M.; Kosicki, R.; Soszczyńska, E. Analysis of Mycotoxins and Cytotoxicity of Airborne Molds Isolated from the Zoological Garden—Screening Research. Pathogens 2024, 13, 294. https://doi.org/10.3390/pathogens13040294
Plewa-Tutaj K, Twarużek M, Kosicki R, Soszczyńska E. Analysis of Mycotoxins and Cytotoxicity of Airborne Molds Isolated from the Zoological Garden—Screening Research. Pathogens. 2024; 13(4):294. https://doi.org/10.3390/pathogens13040294
Chicago/Turabian StylePlewa-Tutaj, Kinga, Magdalena Twarużek, Robert Kosicki, and Ewelina Soszczyńska. 2024. "Analysis of Mycotoxins and Cytotoxicity of Airborne Molds Isolated from the Zoological Garden—Screening Research" Pathogens 13, no. 4: 294. https://doi.org/10.3390/pathogens13040294
APA StylePlewa-Tutaj, K., Twarużek, M., Kosicki, R., & Soszczyńska, E. (2024). Analysis of Mycotoxins and Cytotoxicity of Airborne Molds Isolated from the Zoological Garden—Screening Research. Pathogens, 13(4), 294. https://doi.org/10.3390/pathogens13040294