Development and Application of an In Vitro Tick Feeding System to Identify Ixodes Tick Environment-Induced Genes of the Lyme Disease Agent, Borrelia burgdorferi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adjusting Membrane-Based Artificial Feeding System for Ixodes spp. of Ticks
2.2. Artificial Feeding System Bloodmeal Optimization for B. burgdorferi Infection
2.3. Recovering B. burgdorferi from Infected Ixodes Ticks
2.4. Bacterial Strains
2.5. Recovering IVET B. burgdorferi Clones from Infected Ticks
2.6. PCR Analysis and Screening
2.7. qRT-PCR Analysis
3. Results
3.1. In Vitro Tick Feeding System Can Replace Mice as a Source of an Infected Bloodmeal for Ixodes spp. of Ticks
3.2. The Effects of the Bloodmeal Source on B. burgdorferi Infectivity of Ticks
3.3. Screening of a pIVETBb Promoter Library in I. scapularis Ticks
3.4. Validation of Tick-Induced Gene Promoters Identified from IVET Screening
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardenas-de la Garza, J.A.; De la Cruz-Valadez, E.; Ocampo-Candiani, J.; Welsh, O. Clinical Spectrum of Lyme Disease. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2019, 38, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Aucott, J.N. Posttreatment Lyme Disease Syndrome. Infect. Dis. Clin. N. Am. 2015, 29, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Bobe, J.R.; Jutras, B.L.; Horn, E.J.; Embers, M.E.; Bailey, A.; Moritz, R.L.; Zhang, Y.; Soloski, M.J.; Ostfeld, R.S.; Marconi, R.T.; et al. Recent Progress in Lyme Disease and Remaining Challenges. Front. Med. 2021, 8, 666554. [Google Scholar] [CrossRef] [PubMed]
- Nigrovic, L.E.; Thompson, K.M. The Lyme Vaccine: A Cautionary Tale. Epidemiol. Infect. 2007, 135, 1–8. [Google Scholar] [CrossRef]
- Brooks, C.S.; Hefty, P.S.; Jolliff, S.E.; Akins, D.R. Global Analysis of Borrelia burgdorferi Genes Regulated by Mammalian Host-Specific Signals. Infect. Immun. 2003, 71, 3371–3383. [Google Scholar] [CrossRef]
- Ojaimi, C.; Brooks, C.; Casjens, S.; Rosa, P.; Elias, A.; Barbour, A.; Jasinskas, A.; Benach, J.; Katona, L.; Radolf, J.; et al. Profiling of Temperature-Induced Changes in Borrelia burgdorferi Gene Expression by Using Whole Genome Arrays. Infect. Immun. 2003, 71, 1689–1705. [Google Scholar] [CrossRef]
- Revel, A.T.; Talaat, A.M.; Norgard, M. V DNA Microarray Analysis of Differential Gene Expression in Borrelia burgdorferi, the Lyme Disease Spirochete. Proc. Natl. Acad. Sci. USA 2002, 99, 1562–1567. [Google Scholar] [CrossRef]
- Caimano, M.J.; Iyer, R.; Eggers, C.H.; Gonzalez, C.; Morton, E.A.; Gilbert, M.A.; Schwartz, I.; Radolf, J.D. Analysis of the RpoS Regulon in Borrelia burgdorferi in Response to Mammalian Host Signals Provides Insight into RpoS Function during the Enzootic Cycle. Mol. Microbiol. 2007, 65, 1193–1217. [Google Scholar] [CrossRef]
- Tokarz, R.; Anderton, J.M.; Katona, L.I.; Benach, J.L. Combined Effects of Blood and Temperature Shift on Borrelia burgdorferi Gene Expression as Determined by Whole Genome DNA Array. Infect. Immun. 2004, 72, 5419–5432. [Google Scholar] [CrossRef]
- Carroll, J.A.; Cordova, R.M.; Garon, C.F. Identification of 11 pH-Regulated Genes in Borrelia burgdorferi Localizing to Linear Plasmids. Infect. Immun. 2000, 68, 6677–6684. [Google Scholar] [CrossRef]
- Iyer, R.; Caimano, M.J.; Luthra, A.; Axline, D.J.; Corona, A.; Iacobas, D.A.; Radolf, J.D.; Schwartz, I. Stage-Specific Global Alterations in the Transcriptomes of Lyme Disease Spirochetes during Tick Feeding and Following Mammalian Host Adaptation. Mol. Microbiol. 2015, 95, 509–538. [Google Scholar] [CrossRef]
- Ellis, T.C.; Jain, S.; Linowski, A.K.; Rike, K.; Bestor, A.; Rosa, P.A.; Halpern, M.; Kurhanewicz, S.; Jewett, M.W. In Vivo Expression Technology Identifies a Novel Virulence Factor Critical for Borrelia burgdorferi Persistence in Mice. PLoS Pathog. 2013, 9, e1003567. [Google Scholar] [CrossRef] [PubMed]
- Casselli, T.; Bankhead, T. Use of In Vivo Expression Technology for the Identification of Putative Host Adaptation Factors of the Lyme Disease Spirochete. J. Mol. Microbiol. Biotechnol. 2015, 25, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Adams, P.P.; Avile, C.F.; Popitsch, N.; Bilusic, I.; Schroeder, R.; Lybecker, M.; Jewett, M.W. In Vivo Expression Technology and 5′ End Mapping of the Borrelia burgdorferi Transcriptome Identify Novel RNAs Expressed during Mammalian Infection. Nucleic Acids Res. 2017, 45, 775–792. [Google Scholar] [CrossRef]
- Mahan, M.J.; Slauch, J.M.; Mekalanos, J.J. Selection of Bacterial Virulence Genes That Are Specifically Induced in Host Tissues. Science 1993, 259, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Angelichio, M.J.; Camilli, A. In Vivo Expression Technology. Infect. Immun. 2002, 70, 6518–6523. [Google Scholar] [CrossRef] [PubMed]
- Fedhila, S.; Daou, N.; Lereclus, D.; Nielsen-LeRoux, C. Identification of Bacillus cereus Internalin and Other Candidate Virulence Genes Specifically Induced during Oral Infection in Insects. Mol. Microbiol. 2006, 62, 339–355. [Google Scholar] [CrossRef] [PubMed]
- Hanin, A.; Sava, I.; Bao, Y.; Huebner, J.; Hartke, A.; Auffray, Y.; Sauvageot, N. Screening of In Vivo Activated Genes in Enterococcus faecalis during Insect and Mouse Infections and Growth in Urine. PLoS ONE 2010, 5, e11879. [Google Scholar] [CrossRef]
- Strother, K.O.; de Silva, A. Role of Borrelia burgdorferi Linear Plasmid 25 in Infection of Ixodes scapularis Ticks. J. Bacteriol. 2005, 187, 5776–5781. [Google Scholar] [CrossRef]
- Grimm, D.; Tilly, K.; Bueschel, D.M.; Fisher, M.A.; Policastro, P.F.; Gherardini, F.C.; Schwan, T.G.; Rosa, P.A. Defining Plasmids Required by Borrelia burgdorferi for Colonization of Tick Vector Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 2005, 42, 676–684. [Google Scholar] [CrossRef]
- Vimonish, R.; Johnson, W.C.; Mousel, M.R.; Brayton, K.A.; Scoles, G.A.; Noh, S.M.; Ueti, M.W. Quantitative Analysis of Anaplasma marginale Acquisition and Transmission by Dermacentor andersoni Fed In Vitro. Sci. Rep. 2020, 10, 470. [Google Scholar] [CrossRef]
- Purser, J.E.; Norris, S.J. Correlation between Plasmid Content and Infectivity in Borrelia burgdorferi. Proc. Natl. Acad. Sci. USA 2000, 97, 13865–13870. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, H.; Norris, S.J.; Watanabe, H. BBE02 Disruption Mutants of Borrelia burgdorferi B31 have a Highly Transformable, Infectious Phenotype. Infect. Immun. 2004, 72, 7147–7154. [Google Scholar] [CrossRef] [PubMed]
- Barbour, A.G. Isolation and Cultivation of Lyme Disease Spirochetes. Yale J. Biol. Med. 1984, 57, 521–525. [Google Scholar] [PubMed]
- Gilmore, R.D.; Brandt, K.S.; Hyde, J.A. pncA and bptA are not Sufficient to Complement Ixodes scapularis Colonization and Persistence by Borrelia burgdorferi in a Linear Plasmid lp25-Deficient Background. Infect. Immun. 2014, 82, 5110–5116. [Google Scholar] [CrossRef]
- Revel, A.T.; Blevins, J.S.; Almazán, C.; Neil, L.; Kocan, K.M.; de la Fuente, J.; Hagman, K.E.; Norgard, M.V. bptA (bbe16) is Essential for the Persistence of the Lyme Disease Spirochete, Borrelia burgdorferi, in Its Natural Tick Vector. Proc. Natl. Acad. Sci. USA 2005, 102, 6972–6977. [Google Scholar] [CrossRef] [PubMed]
- Schwan, T.G.; Piesman, J.; Golde, W.T.; Dolan, M.C.; Rosa, P.A. Induction of an Outer Surface Protein on Borrelia burgdorferi during Tick Feeding. Proc. Natl. Acad. Sci. USA 1995, 92, 2909–2913. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.M.; Caimano, M.; McDowell, J.; Theisen, M.; Holme, A.; Orff, E.; Nelson, D.; Wikel, S.; Radolf, J.; Marconi, R.T. Environmental Regulation and Differential Production of Members of the Bdr Protein Family of Borrelia burgdorferi. Infect. Immun. 2002, 70, 7033–7041. [Google Scholar] [CrossRef]
- Kurtenbach, K.; Sewell, H.S.; Ogden, N.H.; Randolph, S.E.; Nuttall, P.A. Serum Complement Sensitivity as a Key Factor in Lyme Disease Ecology. Infect. Immun. 1998, 66, 1248–1251. [Google Scholar] [CrossRef]
- Purser, J.E.; Lawrenz, M.B.; Caimano, M.J.; Howell, J.K.; Radolf, J.D.; Norris, S.J. A Plasmid-Encoded Nicotinamidase (PncA) is Essential for Infectivity of Borrelia burgdorferi in a Mammalian Host. Mol. Microbiol. 2003, 48, 753–764. [Google Scholar] [CrossRef]
- Jacobs, M.B.; Norris, S.J.; Phillippi-Falkenstein, K.M.; Philipp, M.T. Infectivity of the Highly Transformable BBE02–lp56–Mutant of Borrelia burgdorferi, the Lyme Disease Spirochete, via Ticks. Infect. Immun. 2006, 74, 3678–3681. [Google Scholar] [CrossRef] [PubMed]
Tick Species | Spirochete Density (Spirochetes/µL) | Attachment (%) | Engorgement (%) | Infected 3 Days Post-Repletion (%) a | Infected 7 Days Post-Repletion (%) | Infected 17 Days Post-Repletion (%) |
---|---|---|---|---|---|---|
I. scapularis | 5000 | (46/50) 92% | (33/46) 71.7% | (0/11) 0% | (0/11) 0% | (0/11) 0% |
I. scapularis | 5000 | (35/50) 70% | (30/35) 85.7% | (0/10) 0% | (0/10) 0% | (0/10) 0% |
I. scapularis | 10,000 | (37/50) 74% | (33/37) 89.2% | (0/11) 0% | (0/11) 0% | (0/11) 0% |
I. scapularis | 10,000 | (36/50) 72% | (26/36) 72.2% | (0/8) 0% | (0/9) 0% | (0/9) 0% |
I. pacificus | 5000 | (12/50) 24% | (8/12) 66.7% | (0/2) 0% | (2/3) 66.7% | (1/3) 33.3% |
I. pacificus | 10,000 | (14/50) 28% | (9/14) 64.3% | (2/3) 66.7% | (2/3) 66.7% | (1/3) 33.3% |
I. ricinus | 5000 | (42/50) 84% | (39/42) 92.9% | (4/13) 30.8% | (5/13) 38.5% | (3/13) 23% |
I. ricinus | 10,000 | (40/50) 80% | (36/40) 90% | (10/12) 83.3% | (4/12) 33.3% | (3/12) 25% |
Blood Type | Dilution Plate, Positive Wells |
---|---|
Bovine | (0/96) |
Rabbit | (32/96) |
Bovine, Heat Inactivated Serum | (16/96) |
Rabbit/Bovine Heat Inactivated Serum | (15/96) |
Tick Species | Spirochete Density (Spirochetes/µL) | Attachment (%) | Engorgement (%) | Infected 3 Days Post-Repletion (%) a | Infected 7 Days Post-Repletion (%) | Infected 17 Days Post-Repletion (%) |
---|---|---|---|---|---|---|
I. scapularis | 2000 | (29/50) 58% | (23/29) 79.3% | (2/7) 28.6% | (1/7) 14.3% | (2/8) 25% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamasaki, Y.; Singh, P.; Vimonish, R.; Ueti, M.; Bankhead, T. Development and Application of an In Vitro Tick Feeding System to Identify Ixodes Tick Environment-Induced Genes of the Lyme Disease Agent, Borrelia burgdorferi. Pathogens 2024, 13, 487. https://doi.org/10.3390/pathogens13060487
Yamasaki Y, Singh P, Vimonish R, Ueti M, Bankhead T. Development and Application of an In Vitro Tick Feeding System to Identify Ixodes Tick Environment-Induced Genes of the Lyme Disease Agent, Borrelia burgdorferi. Pathogens. 2024; 13(6):487. https://doi.org/10.3390/pathogens13060487
Chicago/Turabian StyleYamasaki, Youki, Preeti Singh, Rubikah Vimonish, Massaro Ueti, and Troy Bankhead. 2024. "Development and Application of an In Vitro Tick Feeding System to Identify Ixodes Tick Environment-Induced Genes of the Lyme Disease Agent, Borrelia burgdorferi" Pathogens 13, no. 6: 487. https://doi.org/10.3390/pathogens13060487
APA StyleYamasaki, Y., Singh, P., Vimonish, R., Ueti, M., & Bankhead, T. (2024). Development and Application of an In Vitro Tick Feeding System to Identify Ixodes Tick Environment-Induced Genes of the Lyme Disease Agent, Borrelia burgdorferi. Pathogens, 13(6), 487. https://doi.org/10.3390/pathogens13060487