Antiparasitic Evaluation of Aquiluscidin, a Cathelicidin Obtained from Crotalus aquilus, and the Vcn-23 Derivative Peptide against Babesia bovis, B. bigemina and B. ovata
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bioethics Approval
2.2. Source of B. bigemina and B. bovis Field Isolates
2.3. In Vitro Culture Adaptation
2.4. In Vitro Culture Maintenance
2.5. Antiparasitic Activity Assay
2.6. Statistical Analysis
3. Results
3.1. Selection of Healthy Bovine Erythrocyte Donors
3.2. Antiparasitic Effect
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suarez, C.E.; Noh, S. Emerging perspectives in the research of bovine babesiosis and anaplasmosis. Veter. Parasitol. 2011, 180, 109–125. [Google Scholar] [CrossRef]
- Krause, P.J. Human babesiosis. Int. J. Parasitol. 2019, 49, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Mosqueda, J.; Olvera-Ramirez, A.; Aguilar-Tipacamu, G.; Canto, G.J. Current advances in detection and treatment of babesiosis. Curr. Med. Chem. 2012, 19, 1504–1518. [Google Scholar] [CrossRef]
- Smith, T.; Kilborne, F.L. Investigations into the Nature, Causation and Prevention of Texas or Southern Cattle Fever; United States Department of Agriculture Bureau of Animal Industry: Washington, DC, USA, 1893. [Google Scholar]
- Fang, D.C.; McCullough, J. Transfusion-Transmitted Babesia microti. Transfus. Med. Rev. 2016, 30, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Krause, P.J.; Vannier, E. Transplacental Transmission of Human Babesiosis. Infect. Dis. Clin. Pract. 2012, 20, 365–367. [Google Scholar] [CrossRef]
- Bednarska, M.; Bajer, A.; Drozdowska, A.; Mierzejewska, E.J.; Tolkacz, K.; Welc-Falęciak, R. Vertical Transmission of Babesia microti in BALB/c Mice: Preliminary Report. PLoS ONE 2015, 10, e0137731. [Google Scholar] [CrossRef] [PubMed]
- Vannier, E.G.; Diuk-Wasser, M.A.; Ben Mamoun, C.; Krause, P.J. Babesiosis. Infect. Dis. Clin. N. Am. 2015, 29, 357–370. [Google Scholar] [CrossRef]
- Vial, H.J.; Gorenflot, A. Chemotherapy against babesiosis. Vet. Parasitol. 2006, 138, 147–160. [Google Scholar] [CrossRef]
- Beugnet, F.; Moreau, Y. Babesiosis. Rev. Sci. Tech. De l’OIE 2015, 34, 627–639. [Google Scholar] [CrossRef]
- Ristic, M.; McIntyre, I. Babesiosis. In Diseases of Cattle in the Tropics, 2nd ed.; Ristic, M., McIntyre, I., Eds.; Current Topics in Veterinary Medicine and Animal Science; Springer: Dordrecht, The Netherlands, 1981; Volume 6, pp. 154–196. [Google Scholar]
- Wormser, G.P.; Dattwyler, R.J.; Shapiro, E.D.; Halperin, J.J.; Steere, A.C.; Klempner, M.S.; Krause, P.J.; Bakken, J.S.; Strle, F.; Stanek, G.; et al. The clinical assessment, treatment, and prevention of lyme disease, human granulocytic anaplasmosis, and babesiosis: Clinical practice guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 2006, 43, 1089–1134. [Google Scholar] [CrossRef]
- Shimamoto, Y.; Sasaki, M.; Ikadai, H.; Ishizuka, M.; Yokoyama, N.; Igarashi, I.; Hoshi, F.; Kitamura, H. Downregulation of Hepatic Cytochrome P450 3A in Mice Infected with Babesia microti. J. Veter. Med. Sci. 2012, 74, 241–245. [Google Scholar] [CrossRef]
- Okła, H.; Jasik, K.P.; Słodki, J.; Rozwadowska, B.; Słodki, A.; Jurzak, M.; Pierzchaa, E. Hepatic Tissue Changes in Rats Due to Chronic Invasion of Babesia microti. Folia Biol. 2014, 62, 353–359. [Google Scholar] [CrossRef]
- Nassar, Y.; Richter, S. Babesiosis Presenting as Acute Liver Failure. Case Rep. Gastroenterol. 2017, 11, 769–773. [Google Scholar] [CrossRef]
- Esmaeilnejad, B.; Tavassoli, M.; Samiei, A.; Abbasi, A.; Shafipour, A.; Esmaeilnejad, N. Histopathological changes and oxidative damage in hepatic tissue of rats experimentally infected with Babesia bigemina. Pol. J. Veter. Sci. 2018, 21, 517–524. [Google Scholar] [CrossRef]
- Reuling, I.J.; de Jong, G.M.; Yap, X.Z.; Asghar, M.; Walk, J.; van de Schans, L.A.; Koelewijn, R.; Färnert, A.; de Mast, Q.; van der Ven, A.J.; et al. Liver Injury in Uncomplicated Malaria is an Overlooked Phenomenon: An Observational Study. EBioMedicine 2018, 36, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.; Swan, G.; Lobetti, R.; Jacobson, L. The pharmacokinetics of diminazene aceturate after intramuscular administration in healthy dogs. J. S. Afr. Veter. Assoc. 2005, 76, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Collett, M. Survey of canine babesiosis in South Africa. J. S. Afr. Veter. Assoc. 2000, 71, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Rajapakshage, B.K.W.; Yamasaki, M.; Hwang, S.-J.; Sasaki, N.; Murakami, M.; Tamura, Y.; Lim, S.Y.; Nakamura, K.; Ohta, H.; Takiguchi, M. Involvement of Mitochondrial Genes of Babesia gibsoni in Resistance to Diminazene Aceturate. J. Veter. Med. Sci. 2012, 74, 1139–1148. [Google Scholar] [CrossRef]
- Rajapakshage, B.K.W.; Yamasaki, M.; Murakami, M.; Tamura, Y.; Lim, S.Y.; Osuga, T.; Sasaki, N.; Nakamura, K.; Ohta, H.; Takiguchi, M. Analysis of energy generation and glycolysis pathway in diminazene aceturate-resistant Babesia gibsoni isolate in vitro. Jpn. J. Vet. Res. 2012, 60, 51–61. [Google Scholar]
- Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules 2018, 8, 4. [Google Scholar] [CrossRef]
- Giovati, L.; Ciociola, T.; Magliani, W.; Conti, S. Antimicrobial peptides with antiprotozoal activity: Current state and future perspectives. Futur. Med. Chem. 2018, 10, 2569–2572. [Google Scholar] [CrossRef] [PubMed]
- Thennarasu, S.; Tan, A.; Penumatchu, R.; Shelburne, C.E.; Heyl, D.L.; Ramamoorthy, A. Antimicrobial and membrane disrupting activities of a peptide derived from the human cathelicidin antimicrobial peptide LL37. Biophys. J. 2010, 98, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Arvizu, E.E.; Silis-Moreno, T.M.; García-Arredondo, J.A.; Rodríguez-Torres, A.; Cervantes-Chávez, J.A.; Mosqueda, J. Aquiluscidin, a Cathelicidin from Crotalus aquilus, and the Vcn-23 Derivative Peptide, Have Anti-Microbial Activity against Gram-Negative and Gram-Positive Bacteria. Microorganisms 2023, 11, 2778. [Google Scholar] [CrossRef] [PubMed]
- Ordóñez, R. Técnicas Quirúrgicas en Bovinos, 3rd ed.; Trillas: Mexico City, Mexico, 2021; 286p. [Google Scholar]
- Garnero, O.J.; Perusia, O.R. Manual de Anestesia y Cirugía en Bovinos, 2nd ed.; Esperanza: San Cayetano, Argentina, 2002. [Google Scholar]
- Misty, A.E. Local, Regional, and Spinal Anesthesia in Ruminants. Vet. Clin. N. Am. Food Anim. Pract. 2016, 32, 535–552. [Google Scholar]
- Matt, D.M. Bovine Surgery of the Skin. Vet. Clin. N. Am. Food Anim. Pract. 2008, 24, 505–526. [Google Scholar]
- Sánchez, N.R. Laparotomía Exploratoria en Bovinos: Técnica Quirúrgica. Curso de Graduación en Buiatría. Módulo Quirúrgico. 2011. Available online: https://www.slideshare.net/slideshow/laparotomia-exploratoria-bovinos/3804786 (accessed on 26 March 2024).
- Vega, C.A.; Buening, G.M.; Green, T.J.; Carson, C.A. In vitro cultivation of Babesia bigemina. Am. J. Veter. Res. 1985, 46, 416–420. [Google Scholar]
- Igarashi, I.; Avarzed, A.; Tanaka, T.; Inoue, N.; Ito, M.; Omata, Y.; Saito, A.; Suzuki, N. Continuous in vitro cultivation of Babesia ovata. J. Protozool. Res. 1994, 4, 111–293. [Google Scholar]
- Bork, S.; Okamura, M.; Matsuo, T.; Kumar, S.; Yokoyama, N.; Igarashi, I. Host serum modifies the drug susceptibility of Babesia bovis in vitro. Parasitology 1999, 130, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Batiha, G.E.-S.; Beshbishy, A.M.; Tayebwa, D.S.; Shaheen, H.M.; Yokoyama, N.; Igarashi, I. Inhibitory effects of Syzygium aromaticum and Camellia sinensis methanolic extracts on the growth of Babesia and Theileria parasites. Ticks Tick-Borne Dis. 2019, 10, 949–958. [Google Scholar] [CrossRef]
- AbouLaila, M.; Sivakumar, T.; Yokoyama, N.; Igarashi, I. Inhibitory effect of terpene nerolidol on the growth of Babesia parasites. Parasitol. Int. 2010, 59, 278–282. [Google Scholar] [CrossRef]
- Batiha, G.E.-S.; Beshbishy, A.M.; Adeyemi, O.S.; Nadwa, E.; Rashwan, E.; Yokoyama, N.; Igarashi, I. Safety and efficacy of hydroxyurea and eflornithine against most blood parasites Babesia and Theileria. PLoS ONE 2020, 15, e0228996. [Google Scholar] [CrossRef] [PubMed]
- Beshbishy, A.M.; Batiha, G.E.-S.; Alkazmi, L.; Nadwa, E.; Rashwan, E.; Abdeen, A.; Yokoyama, N.; Igarashi, I. Therapeutic Effects of Atranorin towards the Proliferation of Babesia and Theileria Parasites. Pathogens 2020, 9, 127. [Google Scholar] [CrossRef] [PubMed]
- AbouLaila, M.; Munkhjargal, T.; Sivakumar, T.; Ueno, A.; Nakano, Y.; Yokoyama, M.; Yoshinari, T.; Nagano, D.; Katayama, K.; El-Bahy, N.; et al. Apicoplast-targeting antibacterials inhibit the growth of babesia parasites. Antimicrob. Agents Chemother. 2012, 56, 3196–3206. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Rizk, M.A.; Galon, E.M.; Liu, M.; Li, J.; Ringo, A.E.; Ji, S.; Zafar, I.; Tumwebaze, M.A.; Benedicto, B.; et al. Discovering the Potent Inhibitors Against Babesia bovis in vitro and Babesia microti in vivo by Repurposing the Natural Product Compounds. Front. Veter. Sci. 2021, 8, 762107. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; He, X.; Zhang, P.; Shen, C.; Mwangi, J.; Xu, C.; Mo, G.; Lai, R.; Zhang, Z. In Vitro and In Vivo Antimalarial Activity of LZ1, a Peptide Derived from Snake Cathelicidin. Toxins 2019, 11, 379. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, T.; Igarashi, I.; Yokoyama, N. Babesia ovata: Taxonomy, phylogeny and epidemiology. Veter. Parasitol. 2016, 229, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Almazán, C.; Scimeca, R.C.; Reichard, M.V.; Mosqueda, J. Babesiosis and Theileriosis in North America. Pathogens 2022, 11, 168. [Google Scholar] [CrossRef] [PubMed]
- Hakimi, H.; Verocai, G.G. Babesia bovis. Trends Parasitol. 2023, 39, 708–709. [Google Scholar] [CrossRef]
- Mohanram, H.; Bhattacharjya, S. Salt-resistant short antimicrobial peptides. Biopolymers 2016, 106, 345–356. [Google Scholar] [CrossRef]
- Pachón-Ibáñez, M.E.; Smani, Y.; Pachón, J.; Sánchez-Céspedes, J. Perspectives for clinical use of engineered human host defense antimicrobial peptides. FEMS Microbiol. Rev. 2017, 41, 323–342. [Google Scholar] [CrossRef]
- Browne, K.; Chakraborty, S.; Chen, R.; Willcox, M.D.; Black, D.S.; Walsh, W.R.; Kumar, N. A new era of antibiotics: The clinical potential of antimicrobial peptides. Int. J. Mol. Sci. 2020, 21, 7047. [Google Scholar] [CrossRef]
- Schweizer, F. Cationic amphiphilic peptides with cancer-selective toxicity. Eur. J. Pharmacol. 2009, 625, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Lichtenstein, A.; Ganz, T.; Selsted, M.E.; Lehrer, R.I. In vitro tumor cell cytolysis mediated by peptide defensins of human and rabbit granulocytes. Blood 1986, 68, 1407–1410. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Chau, J.K.; Perry, N.A.; De Boer, L.; Zaat, S.A.J.; Vogel, H.J. Serum stabilities of short tryptophan- and arginine-rich antimicrobial peptide analogs. PLoS ONE 2010, 5, e12684. [Google Scholar] [CrossRef]
- Rivas, L.; Luque-Ortega, J.R.; Andreu, D. Amphibian antimicrobial peptides and Protozoa: Lessons from parasites. Biochim. Biophys. Acta (BBA)-Biomembr. 2008, 1788, 1570–1581. [Google Scholar] [CrossRef] [PubMed]
- Mura, M.; Wang, J.; Zhou, Y.; Pinna, M.; Zvelindovsky, A.V.; Dennison, S.R.; Phoenix, D.A. The effect of amidation on the behaviour of antimicrobial peptides. Eur. Biophys. J. 2016, 45, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Greber, K.E.; Dawgul, M. Antimicrobial peptides under clinical trials. Curr. Top. Med. Chem. 2017, 17, 620–628. [Google Scholar] [CrossRef]
- Pérez-Peinado, C.; Dias, S.A.; Mendonça, D.A.; Castanho, M.A.; Veiga, A.S.; Andreu, D. Structural determinants conferring unusual long life in human serum to rattlesnake-derived antimicrobial peptide Ctn[15-34]. J. Pept. Sci. 2019, 25, e3195. [Google Scholar] [CrossRef]
- Konno, K.; Rangel, M.; Oliveira, J.S.; Cabrera, M.P.d.S.; Fontana, R.; Hirata, I.Y.; Hide, I.; Nakata, Y.; Mori, K.; Kawano, M.; et al. Decoralin, a novel linear cationic α-helical peptide from the venom of the solitary eumenine wasp Oreumenes decoratus. Peptides 2007, 28, 2320–2327. [Google Scholar] [CrossRef]
- Pérez-Peinado, C.; Defaus, S.; Sans-Comerma, L.; Valle, J.; Andreu, D. Decoding the human serum interactome of snake-derived antimicrobial peptide Ctn[15-34]: Toward an explanation for unusually long half-life. J. Proteom. 2019, 204, 103372. [Google Scholar] [CrossRef]
- Cauchard, S.; Van Reet, N.; Büscher, P.; Goux, D.; Grötzinger, J.; Leippe, M.; Cattoir, V.; Laugier, C.; Cauchard, J. Killing of Trypanozoon Parasites by the Equine Cathelicidin eCATH1. Antimicrob. Agents Chemother. 2016, 60, 2610–2619. [Google Scholar] [CrossRef] [PubMed]
- Bandeira, I.C.J.; Bandeira-Lima, D.; Mello, C.P.; Pereira, T.P.; De Menezes, R.R.P.P.B.; Sampaio, T.L.; Falcão, C.B.; Rádis-Baptista, G.; Martins, A.M.C. Antichagasic effect of crotalicidin, a cathelicidin-like vipericidin, found in Crotalus durissus terrificus rattlesnake’s venom gland. Parasitology 2018, 145, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Mello, C.P.; Lima, D.B.; de Menezes, R.R.P.P.B.; Bandeira, I.C.J.; Tessarolo, L.D.; Sampaio, T.L.; Falcão, C.B.; Rádis-Baptista, G.; Martins, A.M.C. Evaluation of the antichagasic activity of batroxicidin, a cathelicidin-related antimicrobial peptide found in Bothrops atrox venom gland. Toxicon 2017, 130, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Maluf, S.E.C.; Mas, C.D.; Oliveira, E.; Melo, P.; Carmona, A.; Gazarini, M.; Hayashi, M. Inhibition of malaria parasite Plasmodium falciparum development by crotamine, a cell penetrating peptide from the snake venom. Peptides 2016, 78, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Lynn, M.A.; Kindrachuk, J.; Marr, A.K.; Jenssen, H.; Panté, N.; Elliott, M.R.; Napper, S.; Hancock, R.E.; McMaster, W.R. Effect of BMAP-28 Antimicrobial Peptides on Leishmania major Promastigote and Amastigote Growth: Role of Leishmanolysin in Parasite Survival. PLoS Neglected Trop. Dis. 2011, 5, e1141. [Google Scholar] [CrossRef] [PubMed]
- Marr, A.K.; Cen, S.; Hancock, R.E.W.; McMaster, W.R. Identification of Synthetic and Natural Host Defense Peptides with Leishmanicidal Activity. Antimicrob. Agents Chemother. 2016, 60, 2484–2491. [Google Scholar] [CrossRef] [PubMed]
- Galay, R.L.; Maeda, H.; Aung, K.M.; Umemiya-Shirafuji, R.; Xuan, X.; Igarashi, I.; Tsuji, N.; Tanaka, T.; Fujisaki, K. Anti-babesial activity of a potent peptide fragment derived from longicin of Haemaphysalis longicornis. Trop. Anim. Health Prod. 2011, 44, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Falcao, C.B.; Pérez-Peinado, C.; de la Torre, B.G.; Mayol, X.; Zamora-Carreras, H.; Jiménez, M.Á.; Rádis-Baptista, G.; Andreu, D. Structural Dissection of Crotalicidin, a Rattlesnake Venom Cathelicidin, Retrieves a Fragment with Antimicrobial and Antitumor Activity. J. Med. Chem. 2015, 58, 8553–8563. [Google Scholar] [CrossRef] [PubMed]
- Bock, R.; Jackson, L.; De Vos, A.; Jorgensen, W. Babesiosis of cattle. Parasitology 2004, 129, S247–S269. [Google Scholar] [CrossRef]
- Cavani, L.; Braz, C.U.; Giglioti, R.; Okino, C.H.; Gulias-Gomes, C.C.; Caetano, A.R.; Oliveira, M.C.S.; Cardoso, F.F.; de Oliveira, H.N. Genomic Study of Babesia bovis Infection Level and Its Association with Tick Count in Hereford and Braford Cattle. Front. Immunol. 2020, 11, 1905. [Google Scholar] [CrossRef]
- Kulkarni, M.M.; McMaster, W.R.; Kamysz, E.; Kamysz, W.; Engman, D.M.; McGwire, B.S. The major surface-metalloprotease of the parasitic protozoan, Leishmania, protects against antimicrobial peptide-induced apoptotic killing. Mol. Microbiol. 2006, 62, 1484–1497. [Google Scholar] [CrossRef] [PubMed]
- Munkhjargal, T.; Ishizaki, T.; Guswanto, A.; Takemae, H.; Yokoyama, N.; Igarashi, I. Molecular and biochemical characterization of methionine aminopeptidase of Babesia bovis as a potent drug target. Vet. Parasitol. 2016, 221, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.D.; James, M.A.; Ristic, M.; Aikawa, M.; Murguia, C.A.V.Y. Bovine babesiosis: Protection of cattle with culture-derived soluble Babesia bovis antigen. Science 1981, 212, 335–338. [Google Scholar] [CrossRef] [PubMed]
- Aikawa, M.; Udeinya, I.J.; Rabbege, J.; Dayan, M.; Leech, J.H.; Howard, R.J.; Miller, L.H. Structural alteration of the membrane of erythrocytes infected with Plasmodium falciparum. J. Protozool. 1985, 32, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Aikawa, M. Morphological changes in erythrocytes induced by malarial parasites. Biol. Cell 1988, 64, 173–181. [Google Scholar] [CrossRef]
- Hsiao, L.L.; Howard, R.J.; Aikawa, M.; Taraschi, T.F. Modification of host cell membrane lipid composition by the intra-erythrocytic human malaria parasite Plasmodium falciparum. Biochem. J. 1991, 274, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Gohil, S.; Kats, L.M.; Sturm, A.; Cooke, B.M. Recent insights into alteration of red blood cells by Babesia bovis: Moovin’ forward. Trends Parasitol. 2010, 26, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Gelhaus, C.; Jacobs, T.; Andrä, J.; Leippe, M. The antimicrobial peptide NK-2, the core region of mammalian NK-lysin, kills intraerythrocytic Plasmodium falciparum. Antimicrob. Agents Chemother. 2008, 52, 1713–1720. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Gao, J.; Zhang, S.; Wu, S.; Xie, Z.; Ling, G.; Kuang, Y.-Q.; Yang, Y.; Yu, H.; Wang, Y. Identification and characterization of the first cathelicidin from sea snakes with potent antimicrobial and anti-inflammatory activity and special mechanism. J. Biol. Chem. 2015, 290, 16633–16652. [Google Scholar] [CrossRef]
- Tsuji, N.; Battsetseg, B.; Boldbaatar, D.; Miyoshi, T.; Xuan, X.; Oliver, J.H., Jr.; Fujisaki, K. Babesial vector tick defensin against Babesia sp. parasites. Infect. Immun. 2007, 75, 3633–3640. [Google Scholar] [CrossRef]
- Mansour, S.C.; Pena, O.M.; Hancock, R.E. Host defense peptides: Front-line immunomodulators. Trends Immunol. 2014, 35, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Hancock, R.E.W.; Haney, E.F.; Gill, E.E. The immunology of host defence peptides: Beyond antimicrobial activity. Nat. Rev. Immunol. 2016, 16, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Nijnik, A.; Madera, L.; Ma, S.; Waldbrook, M.; Elliott, M.R.; Easton, D.M.; Mayer, M.L.; Mullaly, S.C.; Kindrachuk, J.; Jenssen, H.; et al. Synthetic cationic peptide IDR-1002 provides protection against bacterial infections through chemokine induction and enhanced leukocyte recruitment. J. Immunol. 2010, 184, 2539–2550. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Kotian, A.; Subramanian, H.; Daniell, H.; Ali, H. Activation of human mast cells by retrocyclin and protegrin highlight their immunomodulatory and antimicrobial properties. Oncotarget 2015, 6, 28573–28587. [Google Scholar] [CrossRef] [PubMed]
- Penney, J.; Li, J. Protegrin 1 Enhances Innate Cellular Defense via the Insulin-Like Growth Factor 1 Receptor Pathway. Front. Cell. Infect. Microbiol. 2018, 8, 331. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, A.; Hedegaard, C.J.; Haagsman, H.P.; Heegaard, P.M.H. The potential for immunoglobulins and host defense peptides (HDPs) to reduce the use of antibiotics in animal production. Veter. Res. 2018, 49, 141. [Google Scholar] [CrossRef] [PubMed]
- Davidson, D.J.; Currie, A.J.; Reid, G.S.D.; Bowdish, D.M.E.; MacDonald, K.L.; Ma, R.C.; Hancock, R.E.W.; Speert, D.P. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J. Immunol. 2004, 172, 1146–1156. [Google Scholar] [CrossRef] [PubMed]
- Achtman, A.H.; Pilat, S.; Law, C.W.; Lynn, D.J.; Janot, L.; Mayer, M.L.; Ma, S.; Kindrachuk, J.; Finlay, B.B.; Brinkman, F.S.L.; et al. Effective adjunctive therapy by an innate defense regulatory peptide in a preclinical model of severe malaria. Sci. Transl. Med. 2012, 4, 135ra64. [Google Scholar] [CrossRef]
- Haney, E.F.; Hancock, R.E.W. Peptide design for antimicrobial and immunomodulatory applications. Pept. Sci. 2013, 100, 572–583. [Google Scholar] [CrossRef]
Antibabesia Compound | IC50 (µM) against B. bigemina | IC50 (µM) against B. bovis | IC50 (µM) against B. ovata | Reference |
---|---|---|---|---|
Syzygium aromaticum (clove) | 8.7 | 109.8 | - | Batiha et al., 2019 [34] |
Camellia sinensis (green tea) | 71.3 | 114 | - | Batiha et al., 2019 [34] |
Nerodilol | 29.6 | 21 | 29.6 | AbouLaila et al., 2010 [35] |
Ciprofloxacin derivative: | Batiha et al., 2020 [36] | |||
3 | 13.7 | 32.9 | - | |
5 | 25.8 | 14.9 | - | |
10 | 33.9 | 34.9 | - | |
14 | 28.3 | 26.7 | - | |
15 | 26.6 | 4.7 | - | |
Atranorin | 64.5 | 98.4 | - | Beshbishy et al., 2020 [37] |
Clindamycin | 206 | 126.6 | - | AbouLaila et al., 2012 [38] |
Aquiluscidin | = | 20.70 | 14.48 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Arvizu, E.E.; Asada, M.; Kawazu, S.-I.; Vega, C.A.; Rodríguez-Torres, A.; Morales-García, R.; Pavón-Rocha, A.J.; León-Ávila, G.; Rivas-Santiago, B.; Mosqueda, J. Antiparasitic Evaluation of Aquiluscidin, a Cathelicidin Obtained from Crotalus aquilus, and the Vcn-23 Derivative Peptide against Babesia bovis, B. bigemina and B. ovata. Pathogens 2024, 13, 496. https://doi.org/10.3390/pathogens13060496
Hernández-Arvizu EE, Asada M, Kawazu S-I, Vega CA, Rodríguez-Torres A, Morales-García R, Pavón-Rocha AJ, León-Ávila G, Rivas-Santiago B, Mosqueda J. Antiparasitic Evaluation of Aquiluscidin, a Cathelicidin Obtained from Crotalus aquilus, and the Vcn-23 Derivative Peptide against Babesia bovis, B. bigemina and B. ovata. Pathogens. 2024; 13(6):496. https://doi.org/10.3390/pathogens13060496
Chicago/Turabian StyleHernández-Arvizu, Edwin Esaú, Masahito Asada, Shin-Ichiro Kawazu, Carlos Agustín Vega, Angelina Rodríguez-Torres, Rodrigo Morales-García, Aldo J. Pavón-Rocha, Gloria León-Ávila, Bruno Rivas-Santiago, and Juan Mosqueda. 2024. "Antiparasitic Evaluation of Aquiluscidin, a Cathelicidin Obtained from Crotalus aquilus, and the Vcn-23 Derivative Peptide against Babesia bovis, B. bigemina and B. ovata" Pathogens 13, no. 6: 496. https://doi.org/10.3390/pathogens13060496
APA StyleHernández-Arvizu, E. E., Asada, M., Kawazu, S. -I., Vega, C. A., Rodríguez-Torres, A., Morales-García, R., Pavón-Rocha, A. J., León-Ávila, G., Rivas-Santiago, B., & Mosqueda, J. (2024). Antiparasitic Evaluation of Aquiluscidin, a Cathelicidin Obtained from Crotalus aquilus, and the Vcn-23 Derivative Peptide against Babesia bovis, B. bigemina and B. ovata. Pathogens, 13(6), 496. https://doi.org/10.3390/pathogens13060496