A Simulation Study to Reveal the Epidemiology and Aerosol Transmission Characteristics of Botrytis cinerea in Grape Greenhouses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Air Sample Collection, Fungal Isolates, and Culture Conditions
2.2. Identification of B. cinerea and Pathogenicity
2.3. Establishment of PMA-qPCR for the Detection of Live Spores of B. cinerea
2.4. Quantitative Detection of B. cinerea in Naturally Infested Grapevines
2.5. Size Distribution and Infection Threshold of Aerosolized B. cinerea
2.6. Statistical Analysis
3. Results
3.1. Identification and Pathogenicity of B. cinerea Strains Isolated from the Bioaerosols in Greenhouses
3.2. Establishment of PMA-qPCR for the Detection of Live Spores of B. cinerea in the Air
3.2.1. Specificity of the Primers
3.2.2. PMA Concentration Optimization and Validation
3.3. Quantitative Detection of B. cinerea in the Air around Naturally Infested Grapevines
3.4. Population Dynamics and Size Distribution of B. cinerea Aerosols Released by Infested Grape Plants
3.5. The Pathogenicity of Aerosolized B. cinerea and the Infection Threshold
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fedorina, J.; Tikhonova, N.; Ukhatova, Y.; Ivanov, R.; Khlestkina, E. Grapevine gene systems for resistance to gray mold Botrytis cinerea and powdery mildew Erysiphe necator. Agronomy 2022, 12, 499. [Google Scholar] [CrossRef]
- Pande, S.; Galloway, J.; Gaur, P.; Siddique, K.; Tripathi, H.S.; Taylor, P.; Macleod, M.; Basandrai, A.; Bakr, A.; Joshi, S.; et al. Botrytis grey mould of chickpea: A review of biology, epidemiology, and disease management. Crop Pasture Sci. 2006, 57, 1137–1150. [Google Scholar] [CrossRef]
- Rahmani, A.; Hakimi, Y. Integrated management of grape gray mold disease agent Botrytis cinerea in vitro and post-harvest. Erwerbs-Obstbau 2022, 65, 1955–1964. [Google Scholar] [CrossRef]
- Wan, R.; Hou, X.; Wang, X.; Qu, J.; Singer, S.D.; Wang, Y.; Wang, X. Resistance evaluation of Chinese wild vitis genotypes against Botrytis cinerea and different responses of resistant and susceptible hosts to the infection. Front. Plant Sci. 2015, 6, 854. [Google Scholar] [CrossRef] [PubMed]
- De Simone, N.; Pace, B.; Grieco, F.; Chimienti, M.; Tyibilika, V.; Santoro, V.; Capozzi, V.; Colelli, G.; Spano, G.; Russo, P. Botrytis cinerea and Table Grapes: A Review of the main physical, chemical, and bio-based control treatments in post-harvest. Foods 2020, 9, 1138. [Google Scholar] [CrossRef] [PubMed]
- Caseys, C.; Shi, G.; Soltis, N.; Gwinner, R.; Corwin, J.; Atwell, S.; Kliebenstein, D.J. Quantitative interactions: The disease outcome of Botrytis cinerea across the plant kingdom. G3 Bethesda 2021, 11, 175. [Google Scholar] [CrossRef] [PubMed]
- Williamson, B.; Tudzynski, B.; Tudzynski, P.; van Kan, J.A. Botrytis cinerea: The cause of grey mould disease. Mol. Plant. Pathol. 2007, 8, 561–580. [Google Scholar] [CrossRef]
- González-Fernández, R.; Valero-Galván, J.; Gómez-Gálvez, F.J.; Jorrín-Novo, J.V. Unraveling the in vitro secretome of the phytopathogen Botrytis cinerea to understand the interaction with its hosts. Front. Plant Sci. 2015, 6, 839. [Google Scholar] [CrossRef]
- Martinez, F.; Blancard, D.; Lecomte, P.; Levis, C.; Dubos, B.; Fermaud, M. Phenotypic differences between vacuma and transposa subpopulations of Botrytis cinerea. Eur. J. Plant. Pathol. 2003, 109, 479–488. [Google Scholar] [CrossRef]
- Coertze, S.; Holz, G.; Sadie, A. Germination and establishment of infection on grape berries by single airborne conidia of Botrytis cinerea. Plant Dis. 2001, 85, 668–677. [Google Scholar] [CrossRef]
- Holz, G.; Coertze, S.; Williamson, B. The ecology of Botrytis on plant surfaces. In ‘Botrytis: Biology, Pathology and Control’; Elad, Y., Williamson, B., Tudzynski, P., Delen, N., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 9–27. [Google Scholar]
- Li, H.; Chen, Y.; Zhang, Z.; Li, B.; Qin, G.; Tian, S. Pathogenic mechanisms and control strategies of Botrytis cinerea causing post-harvest decay in fruits and vegetables. Food Qual. Saf. 2018, 2, 111–119. [Google Scholar] [CrossRef]
- Latorre, B.A.; Elfar, K.; Ferrada, E.E. Gray mold caused by Botrytis cinerea limits grape production in chile. Cien. Inv. Agr. 2015, 42, 305–330. [Google Scholar] [CrossRef]
- Gabler, F.M.; Fassel, R.; Mercier, J.; Smilanick, J.L. Influence of temperature, inoculation interval, and dosage on biofumigation with muscodor albus to control postharvest gray mold on grapes. Plant Dis. 2006, 90, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wang, X.; Almeida, L.C.S.S.; Pecoraro, L. Environmental factors affecting diversity, structure, and temporal variation of airborne fungal communities in a research and teaching building of Tianjin University, China. J. Fungi. 2022, 8, 431. [Google Scholar] [CrossRef] [PubMed]
- Su, K.; Zhao, W.; Lin, H.; Jiang, C.; Zhao, Y.; Guo, Y. Candidate gene discovery of Botrytis cinerea resistance in grapevine based on QTL mapping and RNA-seq. Front. Plant Sci. 2023, 14, 1127206. [Google Scholar] [CrossRef] [PubMed]
- Tijjani, A.; Ismail, S.I.; Khairulmazmi, A.; Dzolkhifli, O. First report of gray mold rot disease on tomato (Solanum lycopersicum L.) caused by Botrytis cinerea in Malaysia. J. Plant Pathol. 2019, 101, 207. [Google Scholar] [CrossRef]
- Ariya, P.A.; Amyot, M. New directions: The role of bioaerosols in atmospheric chemistry and physics. Atmos. Environ. 2004, 38, 1231–1232. [Google Scholar] [CrossRef]
- Chen, H.; Yao, M. A high-flow portable biological aerosol trap (HighBioTrap) for rapid microbial detection. J. Aerosol. Sci. 2018, 117, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Yu, A.; Chen, M.; Qiu, T.; Guo, Y.; Sun, X.; Wang, X. Airborne fungi and human exposure in different areas of composting facilities. Ecotoxicol. Environ. Saf. 2022, 243, 113991. [Google Scholar] [CrossRef]
- Chai, A.; Yuan, L.; Li, L.; Shi, Y.; Xie, X.; Wang, Q.; Li, B. Aerosol transmission of Pseudomonas amygdali pv. lachrymans in greenhouses. Sci. Total Environ. 2020, 748, 141433. [Google Scholar] [CrossRef]
- Morris, C.E.; Sands, D.C.; Vinatzer, B.A.; Glaux, C.; Guilbaud, C.; Buffière, A.; Yan, S.; Dominguez, H.; Thompson, B.M. The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. ISME J. 2008, 2, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Overbeek, L.S.V.; Nijhuis, E.H.M.; Koenraadt, H.; Visser, J.; Kruistum, G.V. The role of crop waste and soil in Pseudomonas syringae pathovar porri infection of leek (Allium porrum). Appl. Soil Ecol. 2010, 46, 457–463. [Google Scholar] [CrossRef]
- Roberts, D.P.; Maul, J.E.; McKenna, L.F.; Emche, S.E.; Meyer, S.L.; Collins, R.T.; Bowers, J.H. Selection of genetically diverse Trichoderma spp. isolates for suppression of Phytophthora capsici on bell pepper. Can. J. Microbiol. 2010, 56, 864–873. [Google Scholar] [CrossRef] [PubMed]
- Tontou, R.; Giovanardi, D.; Stefani, E. Pollen as a possible pathway for the dissemi nation of Pseudomonas syringae pv. actinide and bacterial canker of kiwifruit. Phytopathol. Mediterr. 2014, 53, 333–339. [Google Scholar] [CrossRef]
- Meyer, M.; Cox, J.A.; Hitchings, M.D.T.; Burgin, L.; Hort, M.C.; Hodson, D.P.; Gilligan, C.A. Quantifying airborne dispersal routes of pathogens over continents to safeguard global wheat supply. Nat. Plants. 2017, 3, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Zhao, H.; Li, J.; Gong, Y.; Li, X. The devastating rice blast airborne pathogen Magnaporthe oryzae-a review on genes studied with mutant analysis. Pathogens 2023, 12, 379. [Google Scholar] [CrossRef]
- Zhao, Q.; Shi, Y.; Wang, Y.; Xie, X.; Li, L.; Guo, L.; Chai, A.; Li, B. Quantifying airborne dispersal route of Corynespora cassiicola in greenhouses. Front. Microbiol. 2021, 12, 716758. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, E.; Kennedy, R.; Osborn, R.; Fernández-González, M.; Rodríguez-Rajo, F.J. Botrytis cinerea airborne conidia and their germination ability assessed by immunological methods in a NW Spain vineyard. Agronomy 2021, 11, 1441. [Google Scholar] [CrossRef]
- Monteil, C.L.; Bardin, M.; Morris, C.E. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall. ISME J. 2014, 8, 2290–2304. [Google Scholar] [CrossRef]
- Diguta, C.F.; Rousseaux, S.; Weidmann, S.; Bretin, N.; Vincent, B.; Guilloux-Benatier, M.; Alexandre, H. Development of a qPCR assay for specific quantification of Botrytis cinerea on grapes. FEMS Microbiol. Lett. 2010, 313, 81–87. [Google Scholar] [CrossRef]
- Xu, Z.; Wei, K.; Wu, Y.; Shen, F.; Chen, Q.; Li, M.; Yao, M. Enhancing bioaerosol sampling by andersen impactors using mineral-oil-spread agar plate. PLoS ONE. 2013, 8, e56896. [Google Scholar] [CrossRef] [PubMed]
- Sattar, S.A.; Zargar, B.; Wright, K.E.; Rubino, J.R.; Ijaz, M.K. Airborne Pathogens inside automobiles for domestic use: Assessing in-car air decontamination devices using staphylococcus aureus as the challenge bacterium. Appl. Environ. Microbiol. 2017, 83, e00258-17. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.; Zheng, Y.; Li, J.; Shen, F.; Zou, Z.; Fan, H.; Li, X.; Wu, C.; Yao, M. Microbial aerosol character istics in highly polluted and near-pristine environments featuring different climatic conditions. Sci. Bull. 2015, 60, 1439–1447. [Google Scholar] [CrossRef]
- Zheng, Y.; Yao, M. Liquid impinger biosampler’s performance for size-resolved viable bioaerosol particles. J. Aerosol Sci. 2017, 106, 34–42. [Google Scholar] [CrossRef]
- Arastehfar, A.; Carvalho, A.; Houbraken, J.; Lombardi, L.; Garcia-Rubio, R.; Jenks, J.D.; Rivero-Menendez, O.; Aljohani, R.; Jacobsen, I.D.; Berman, J.; et al. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud. Mycol. 2021, 100, 100115. [Google Scholar] [CrossRef]
- Grzyb, J.; Lenart-Boroń, A. Size distribution and concentration of fungal aerosol in animal premises of a zoological garden. Aerobiologia 2020, 36, 233–248. [Google Scholar] [CrossRef]
- Grzyb, J.; Pawlak, K. Impact of bacterial aerosol, particulate matter, and microclimatic parameters on animal welfare in Chorzów (Poland) zoological garden. Environ. Sci. Pollut. Res. Int. 2021, 28, 3318–3330. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Lai, S.; Liu, Y.; Gromov, S.; Zhang, Y. Fungal aerosol diversity over the northern south China sea: The influence of land and ocean. J. Geophys. Res. Atmospheres. 2022, 127, e2021JD035213. [Google Scholar] [CrossRef]
- Sowiak, M.; Bródka, K.; Buczyńska, A.; Cyprowski, M.; Kozajda, A.; Sobala, W.; Szadkowska-Stańczyk, I. An assessment of potential exposure to bioaerosol among swine farm workers with particular reference to airborne microorganisms in the respirable fraction under various breeding conditions. Aerobiologia 2012, 28, 121–133. [Google Scholar] [CrossRef]
- Straumfors, A.; Mundra, S.; Foss, O.A.H.; Mollerup, S.K.; Kauserud, H. The airborne mycobiome and associations with mycotoxins and inflammatory markers in the Norwegian grain industry. Sci. Rep. 2021, 11, 9357. [Google Scholar] [CrossRef]
- Ferguson, R.M.W.; Neath, C.E.E.; Nasir, Z.A.; Garcia-Alcega, S.; Tyrrel, S.; Coulon, F.; Dumbrell, A.J.; Colbeck, L.; Whitby, C. Size fractionation of bioaerosol emissions from green-waste composting. Environ. Int. 2020, 147, 106327. [Google Scholar] [CrossRef] [PubMed]
- Rupp, S.; Weber, R.W.S.; Rieger, D.; Detzel, P.; Hahn, M. Spread of Botrytis cinerea strains with multiple fungicide resistance in German horticulture. Front. Microbiol. 2017, 7, 2075. [Google Scholar] [CrossRef] [PubMed]
- Carisse, O. Epidemiology and aerobiology of Botrytis spp. In Botrytis–the Fungus, the Pathogen and Its Management in Agricultural Systems; Fillinger, S., Elad, Y., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Caroline, A.L.; Powell, D.S.; Bethel, L.M.; Oury, T.D.; Reed, D.S.; Hartman, A.L. Broad spectrum antiviral activity of favipiravir (T-705): Protection from highly lethal inhalational Rift Valley Fever. PLoS Negl. Trop. Dis. 2014, 8, e2790. [Google Scholar] [CrossRef] [PubMed]
- Woo, C.; An, C.; Xu, S.; Yi, S.M.; Yamamoto, N. Taxonomic diversity of fungi deposited from the atmosphere. ISME J. 2018, 12, 2051–2060, Correction in ISME J. 2020, 14, 657. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Hu, Q.; Xie, Z.; Kang, H.; Li, M.; Li, Z.; Ye, P. Concentration and size distribution of fungi aerosol over oceans along a cruise path during the fourth Chinese arctic research expedition. Atmosphere 2013, 4, 337–348. [Google Scholar] [CrossRef]
- Chai, A.; Yuan, L.; Li, X.; Li, L.; Shi, Y.; Xie, X. Effect of temperature and humidity on dynamics and transmission of Pseudomonas amygdali pv. lachrymans aerosols. Front. Plant Sci. 2023, 14, 1087496. [Google Scholar] [CrossRef] [PubMed]
- Tischner, Z.; Páldy, A.; Kocsubé, S.; Kredics, L.; Dobolyi, C.; Sebők, R.; Kriszt, B.; Szabó, B.; Magyar, D. Survival and growth of microscopic fungi derived from tropical regions under future heat waves in the Pannonian Biogeographical Region. Fungal Biol. 2022, 126, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Ji, T.; Languasco, L.; Li, M.; Rossi, V. Temperature-dependent sporulation of the fungus Coniella diplodiella, the causal agent of grape white rot. Plant Dis. 2023, 30, 2439. [Google Scholar] [CrossRef] [PubMed]
- Ji, T.; Altieri, V.; Salotti, I.; Li, M.; Rossi, V. Role of Rain in the Spore Dispersal of Fungal Pathogens Associated with Grapevine Trunk Diseases. Plant Dis. 2024, 108, 1041–1052. [Google Scholar] [CrossRef]
- Chaudhary, V.B.; Nolimal, S.; Sosa-Hernández, M.A.; Egan, C.; Kastens, J. Trait-based aerial dispersal of arbuscular mycorrhizal fungi. New Phytol. 2020, 18, 16667. [Google Scholar] [CrossRef]
- Odabasioglu, M.L.; Gürsz, S. Leaf and stomatal characteristics of grape varieties (vitis vinifera L.) cultivated under semi-arid climate conditions. Fresenius Environ. Bulletin. 2019, 28, 8501–8510. Available online: https://www.researchgate.net/publication/336812952 (accessed on 18 October 2019).
Jianan City | Zhaoyuan City | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sample No. | Greenhouse No. | Sampling Time | Disease Index (DI) | No. B. cinerea Isolated | Pathogenicity | Sample No. | Greenhouse No. | Sampling Time | Disease Index (DI) | No. B. cinerea Isolated | Pathogenicity |
1 | I | 2022.4.26 | 3.27 | 3 | + | 19 | IV | 2022.4.15 | 3.98 | 2 | + |
2 | II | 2022.4.27 | 2.35 | 2 | + | 20 | V | 2022.4.16 | 4.02 | 1 | + |
3 | III | 2022.4.28 | 4.33 | 2 | + | 21 | VI | 2022.4.17 | 2.19 | 0 | / |
4 | I | 2022.5.15 | 14.40 | 2 | + | 22 | IV | 2022.5.13 | 18.89 | 3 | + |
5 | II | 2022.5.16 | 19.86 | 3 | + | 23 | V | 2022.5.14 | 16.01 | 5 | + |
6 | III | 2022.5.17 | 18.98 | 7 | + | 24 | VI | 2022.5.15 | 15.23 | 1 | + |
7 | I | 2022.6.16 | 17.34 | 2 | + | 25 | IV | 2022.6.16 | 18.65 | 2 | + |
8 | II | 2022.6.17 | 21.98 | 7 | + | 26 | V | 2022.6.17 | 15.98 | 3 | + |
9 | III | 2022.6.18 | 18.45 | 3 | + | 27 | VI | 2022.6.18 | 18.56 | 2 | + |
10 | I | 2022.7.16 | 6.16 | 6 | + | 28 | IV | 2022.7.08 | 10.79 | 1 | + |
11 | II | 2022.7.17 | 9.08 | 4 | + | 29 | V | 2022.7.09 | 7.67 | 1 | + |
12 | III | 2022.7.18 | 7.23 | 5 | + | 30 | VI | 2022.7.10 | 8.95 | 0 | / |
13 | I | 2022.8.21 | 9.17 | 4 | + | 31 | IV | 2022.8.18 | 8.93 | 1 | + |
14 | II | 2022.8.22 | 8.32 | 1 | + | 32 | V | 2022.8.19 | 10.22 | 2 | + |
15 | III | 2022.8.23 | 7.76 | 3 | + | 33 | VI | 2022.8.20 | 9.13 | 1 | + |
16 | I | 2022.9.26 | 7.77 | 4 | + | 34 | IV | 2022.9.27 | 13.13 | 4 | + |
17 | II | 2022.9.27 | 6.04 | 0 | / | 35 | V | 2022.9.28 | 14.19 | 3 | + |
18 | III | 2022.9.28 | 3.65 | 2 | + | 36 | VI | 2022.9.29 | 9.67 | 1 | + |
Concentration of B. cinerea Suspension (spores/mL) | Concentration of B. cinerea Aerosol (CFU/m3) | Incidence Rate (%) |
---|---|---|
2.5 × 106 | 219.08 ± 3.53 a | 60.83 ± 1.44 |
2.5 × 105 | 77.74 ± 7.07 b | 43.47 ± 1.68 |
2.5 × 104 | 42.40 ± 6.42 b | 29.48 ± 1.30 |
2.5 × 103 | 16.49 ± 2.04 c | 0 |
2.5 × 102 | 2.36 ± 1.99 d | 0 |
2.5 × 101 | 1.18 ± 1.78 d | 0 |
CK | / | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, L.; Jiang, H.; Li, T.; Liu, Q.; Jiang, X.; Han, X.; Wei, Y.; Yin, X.; Wang, S. A Simulation Study to Reveal the Epidemiology and Aerosol Transmission Characteristics of Botrytis cinerea in Grape Greenhouses. Pathogens 2024, 13, 505. https://doi.org/10.3390/pathogens13060505
Yuan L, Jiang H, Li T, Liu Q, Jiang X, Han X, Wei Y, Yin X, Wang S. A Simulation Study to Reveal the Epidemiology and Aerosol Transmission Characteristics of Botrytis cinerea in Grape Greenhouses. Pathogens. 2024; 13(6):505. https://doi.org/10.3390/pathogens13060505
Chicago/Turabian StyleYuan, Lifang, Hang Jiang, Tinggang Li, Qibao Liu, Xilong Jiang, Xing Han, Yanfeng Wei, Xiangtian Yin, and Suna Wang. 2024. "A Simulation Study to Reveal the Epidemiology and Aerosol Transmission Characteristics of Botrytis cinerea in Grape Greenhouses" Pathogens 13, no. 6: 505. https://doi.org/10.3390/pathogens13060505
APA StyleYuan, L., Jiang, H., Li, T., Liu, Q., Jiang, X., Han, X., Wei, Y., Yin, X., & Wang, S. (2024). A Simulation Study to Reveal the Epidemiology and Aerosol Transmission Characteristics of Botrytis cinerea in Grape Greenhouses. Pathogens, 13(6), 505. https://doi.org/10.3390/pathogens13060505