Plasma-Activated Tap Water with Oxidative Potential Has an Inactivating Effect on Microbiological Contaminants in Aqueous Suspensions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Cultivation of Bacterial Strains and Isolates
2.2. Generation and Use of Plasma-Activated Water (PAW)
2.3. Kinetics of Bacterial Inactivation by PAW
2.4. Effect of PAW on Various Bacterial Species
2.5. Data Analysis
3. Results
3.1. Impact of Plasma Activation Settings on Cell Reduction in Gram-Negative and Gram-Positive Microorganisms over Time
3.2. Impact of the Aquatic Matrix on Microbiological Reduction and Inactivation by PAW
4. Discussion
4.1. Antimicrobial Efficiency of Plasma-Activated Water
4.2. Impact of the Microbial Nature to Inactivation by PAW
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perry, E.K.; Meirelles, L.A.; Newman, D.K. From the soil to the clinic: The impact of microbial secondary metabolites on antibiotic tolerance and resistance. Nat. Rev. Microbiol. 2022, 20, 129–142. [Google Scholar] [CrossRef]
- Davin-Regli, A.; Pages, J.M. Cross-resistance between biocides and antimicrobials: An emerging question. Rev. Sci. Tech. OIE 2012, 31, 89–104. [Google Scholar] [CrossRef]
- van Alen, S.; Kaspar, U.; Idelevich, E.A.; Köck, R.; Becker, K. Increase of zinc resistance in German human derived livestock-associated MRSA between 2000 and 2014. Vet. Microbiol. 2018, 214, 7–12. [Google Scholar] [CrossRef]
- Li, X.; Rensing, C.; Vestergaard, G.; Arumugam, M.; Nesme, J.; Gupta, S.; Brejnrod, A.D.; Sørensen, S.J. Metagenomic evidence for co-occurrence of antibiotic, biocide and metal resistance genes in pigs. Environ. Int. 2022, 158, 106899. [Google Scholar] [CrossRef]
- Konchekov, E.M.; Gusein-Zade, N.; Burmistrov, D.E.; Kolik, L.V.; Dorokhov, A.S.; Izmailov, A.Y.; Shokri, B.; Gudkov, S.V. Advancements in Plasma Agriculture: A Review of Recent Studies. Int. J. Mol. Sci. 2023, 24, 15093. [Google Scholar] [CrossRef]
- Zhao, Y.-M.; Patange, A.; Sun, D.-W.; Tiwari, B. Plasma-activated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3951–3979. [Google Scholar] [CrossRef]
- Chen, Z.; Cheng, X.; Lin, L.; Keidar, M. Cold atmospheric plasma discharged in water and its potential use in cancer therapy. J. Phys. D Appl. Phys. 2017, 50, 15208. [Google Scholar] [CrossRef]
- Pan, S.; Xu, M.; Gan, L.; Zhang, S.; Chen, H.; Liu, D.; Li, Y.; Lu, X. Plasma activated radix arnebiae oil as innovative antimicrobial and burn wound healing agent. J. Phys. D Appl. Phys. 2019, 52, 335201. [Google Scholar] [CrossRef]
- Zou, X.; Xu, M.; Pan, S.; Gan, L.; Zhang, S.; Chen, H.; Liu, D.; Lu, X.; Ostrikov, K.K. Plasma Activated Oil: Fast Production, Reactivity, Stability, and Wound Healing Application. ACS Biomater. Sci. Eng. 2019, 5, 1611–1622. [Google Scholar] [CrossRef]
- Mahdikia, H.; Shokri, B.; Majidzadeh, A.K. The Feasibility Study of Plasma-activated Water as a Physical Therapy to Induce Apoptosis in Melanoma Cancer Cells In-vitro. Iran. J. Pharm. Res. IJPR 2021, 20, 337–350. [Google Scholar]
- Bălan, G.G.; Roşca, I.; Ursu, E.-L.; Doroftei, F.; Bostănaru, A.-C.; Hnatiuc, E.; Năstasă, V.; Şandru, V.; Ştefănescu, G.; Trifan, A.; et al. Plasma-activated water: A new and effective alternative for duodenoscope reprocessing. Infect. Drug Resist. 2018, 11, 727–733. [Google Scholar] [CrossRef]
- Li, Y.; Pan, J.; Wu, D.; Tian, Y.; Zhang, J.; Fang, J. Regulation of Enterococcus faecalis Biofilm Formation and Quorum Sensing Related Virulence Factors with Ultra-low Dose Reactive Species Produced by Plasma Activated Water. Plasma Chem. Plasma Process 2019, 39, 35–49. [Google Scholar] [CrossRef]
- Perez, S.M.; Biondi, E.; Laurita, R.; Proto, M.; Sarti, F.; Gherardi, M.; Bertaccini, A.; Colombo, V. Plasma activated water as resistance inducer against bacterial leaf spot of tomato. PLoS ONE 2019, 14, e0217788. [Google Scholar] [CrossRef]
- Judée, F.; Simon, S.; Bailly, C.; Dufour, T. Plasma-activation of tap water using DBD for agronomy applications: Identification and quantification of long lifetime chemical species and production/consumption mechanisms. Water Res. 2018, 133, 47–59. [Google Scholar] [CrossRef]
- Chiappim, W.; Da Sampaio, A.G.; Miranda, F.; Fraga, M.; Petraconi, G.; Da Silva Sobrinho, A.; Kostov, K.; Koga-Ito, C.; Pessoa, R. Antimicrobial Effect of Plasma-Activated Tap Water on Staphylococcus aureus, Escherichia coli, and Candida albicans. Water 2021, 13, 1480. [Google Scholar] [CrossRef]
- Kamgang-Youbi, G.; Herry, J.-M.; Brisset, J.-L.; Bellon-Fontaine, M.-N.; Doubla, A.; Naïtali, M. Impact on disinfection efficiency of cell load and of planktonic/adherent/detached state: Case of Hafnia alvei inactivation by plasma activated water. Appl. Microbiol. Biotechnol. 2008, 81, 449–457. [Google Scholar] [CrossRef]
- Ercan, U.K.; Wang, H.; Ji, H.; Fridman, G.; Brooks, A.D.; Joshi, S.G. Nonequilibrium Plasma-Activated Antimicrobial Solutions are Broad-Spectrum and Retain their Efficacies for Extended Period of Time. Plasma Process. Polym. 2013, 10, 544–555. [Google Scholar] [CrossRef]
- Zhao, Y.-M.; Ojha, S.; Burgess, C.M.; Sun, D.-W.; Tiwari, B.K. Inactivation efficacy and mechanisms of plasma activated water on bacteria in planktonic state. J. Appl. Microbiol. 2020, 129, 1248–1260. [Google Scholar] [CrossRef]
- Kamgang-Youbi, G.; Herry, J.-M.; Meylheuc, T.; Brisset, J.-L.; Bellon-Fontaine, M.-N.; Doubla, A.; Naïtali, M. Microbial inactivation using plasma-activated water obtained by gliding electric discharges. Lett. Appl. Microbiol. 2009, 48, 13–18. [Google Scholar] [CrossRef]
- Chen, T.-P.; Su, T.-L.; Liang, J. Plasma-Activated Solutions for Bacteria and Biofilm Inactivation. CBC 2016, 13, 59–65. [Google Scholar] [CrossRef]
- Ryu, Y.-H.; Kim, Y.-H.; Lee, J.-Y.; Shim, G.-B.; Uhm, H.-S.; Park, G.; Choi, E.H. Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma. PLoS ONE 2013, 8, e66231. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Huang, K.; Wang, X.; Lyu, C.; Yang, N.; Li, Y.; Wang, J. Inactivation of Yeast on Grapes by Plasma-Activated Water and Its Effects on Quality Attributes. J. Food Prot. 2017, 80, 225–230. [Google Scholar] [CrossRef]
- Zhou, R.; Zhou, R.; Wang, P.; Xian, Y.; Mai-Prochnow, A.; Lu, X.; Cullen, P.J.; Ostrikov, K.; Bazaka, K. Plasma-activated water: Generation, origin of reactive species and biological applications. J. Phys. D Appl. Phys. 2020, 53, 303001. [Google Scholar] [CrossRef]
- Zeghioud, H.; Nguyen-Tri, P.; Khezami, L.; Amrane, A.; Assadi, A.A. Review on discharge Plasma for water treatment: Mechanism, reactor geometries, active species and combined processes. J. Water Process Eng. 2020, 38, 101664. [Google Scholar] [CrossRef]
- Pemen, A.J.M.; van Ooij, P.P.; Beckers, F.J.C.M.; Hoeben, W.F.L.M.; Koonen-Reemst, A.M.C.B.; Huiskamp, T.; Leenders, P.H.M. Power Modulator for High-Yield Production of Plasma-Activated Water. IEEE Trans. Plasma Sci. 2017, 45, 2725–2733. [Google Scholar] [CrossRef]
- Lu, P.; Boehm, D.; Bourke, P.; Cullen, P.J. Achieving reactive species specificity within plasma-activated water through selective generation using air spark and glow discharges. Plasma Process. Polym. 2017, 14, 1600207. [Google Scholar] [CrossRef]
- Patange, A.; Lu, P.; Boehm, D.; Cullen, P.J.; Bourke, P. Efficacy of cold plasma functionalised water for improving microbiological safety of fresh produce and wash water recycling. Food Microbiol. 2019, 84, 103226. [Google Scholar] [CrossRef]
- Naïtali, M.; Kamgang-Youbi, G.; Herry, J.-M.; Bellon-Fontaine, M.-N.; Brisset, J.-L. Combined effects of long-living chemical species during microbial inactivation using atmospheric plasma-treated water. Appl. Environ. Microbiol. 2010, 76, 7662–7664. [Google Scholar] [CrossRef]
- Oehmigen, K.; Hähnel, M.; Brandenburg, R.; Wilke, C.; Weltmann, K.-D.; von Woedtke, T. The Role of Acidification for Antimicrobial Activity of Atmospheric Pressure Plasma in Liquids. Plasma Process. Polym. 2010, 7, 250–257. [Google Scholar] [CrossRef]
- Shen, J.; Tian, Y.; Li, Y.; Ma, R.; Zhang, Q.; Zhang, J.; Fang, J. Bactericidal Effects against S. aureus and Physicochemical Properties of Plasma Activated Water stored at different temperatures. Sci. Rep. 2016, 6, 28505. [Google Scholar] [CrossRef]
- Thirumdas, R.; Kothakota, A.; Annapure, U.; Siliveru, K.; Blundell, R.; Gatt, R.; Valdramidis, V.P. Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci. Technol. 2018, 77, 21–31. [Google Scholar] [CrossRef]
- Hummert, M.; Leenders, P.; Mellmann, A.; Becker, K.; Kuczius, T. Generation of Plasma-Activated Fluids for Successful Disinfection of Pseudomonas aeruginosa in Liquid Environments and Determination of Microbial Damage. Plasma 2023, 6, 699–713. [Google Scholar] [CrossRef]
- Dezest, M.; Bulteau, A.-L.; Quinton, D.; Chavatte, L.; Le Bechec, M.; Cambus, J.P.; Arbault, S.; Nègre-Salvayre, A.; Clément, F.; Cousty, S. Oxidative modification and electrochemical inactivation of Escherichia coli upon cold atmospheric pressure plasma exposure. PLoS ONE 2017, 12, e0173618. [Google Scholar] [CrossRef]
- Joshi, S.G.; Cooper, M.; Yost, A.; Paff, M.; Ercan, U.K.; Fridman, G.; Friedman, G.; Fridman, A.; Brooks, A.D. Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob. Agents Chemother. 2011, 55, 1053–1062. [Google Scholar] [CrossRef]
- Ölmez, H.; Kretzschmar, U. Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. LWT—Food Sci. Technol. 2009, 42, 686–693. [Google Scholar] [CrossRef]
- Ma, R.; Wang, G.; Tian, Y.; Wang, K.; Zhang, J.; Fang, J. Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. J. Hazard. Mater. 2015, 300, 643–651. [Google Scholar] [CrossRef]
- Chizoba Ekezie, F.-G.; Sun, D.-W.; Cheng, J.-H. A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends Food Sci. Technol. 2017, 69, 46–58. [Google Scholar] [CrossRef]
- Dong, X.; Wang, J.; Raghavan, V. Critical reviews and recent advances of novel non-thermal processing techniques on the modification of food allergens. Crit. Rev. Food Sci. Nutr. 2021, 61, 196–210. [Google Scholar] [CrossRef]
- Droste, N.C.; Leenders, P.; Mellmann, A.; Becker, K.; Kuczius, T. Efficiency of Plasma Activated Water on Planktonic Waterborne Microorganisms Occurring in Water Supply Systems and Dental Unit Waterlines. Dent. Res. Oral Health 2023, 6, 79–87. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Q.; Ma, R.; Yu, S.; Wang, K.; Zhang, J.; Fang, J. Reactive radical-driven bacterial inactivation by hydrogen-peroxide-enhanced plasma-activated-water. Eur. Phys. J. Spec. Top. 2017, 226, 2887–2899. [Google Scholar] [CrossRef]
- Liu, F.; Sun, P.; Bai, N.; Tian, Y.; Zhou, H.; Wei, S.; Zhou, Y.; Zhang, J.; Zhu, W.; Becker, K.; et al. Inactivation of Bacteria in an Aqueous Environment by a Direct-Current, Cold-Atmospheric-Pressure Air Plasma Microjet. Plasma Process. Polym. 2010, 7, 231–236. [Google Scholar] [CrossRef]
- Ikawa, S.; Kitano, K.; Hamaguchi, S. Effects of pH on Bacterial Inactivation in Aqueous Solutions due to Low-Temperature Atmospheric Pressure Plasma Application. Plasma Process. Polym. 2010, 7, 33–42. [Google Scholar] [CrossRef]
- Da Sampaio, A.G.; Chiappim, W.; Milhan, N.V.M.; Botan Neto, B.; Pessoa, R.; Koga-Ito, C.Y. Effect of the pH on the Antibacterial Potential and Cytotoxicity of Different Plasma-Activated Liquids. Int. J. Mol. Sci. 2022, 23, 13893. [Google Scholar] [CrossRef]
- Lukes, P.; Locke, B.; Brisset, J.-L. Aqueous-Phase Chemistry of Electrical Discharge Plasma in Water and in Gas-Liquid Environments. Plasma Chem. Catal. Gases Liq. 2012, 1, 243–308. [Google Scholar]
- Zhang, Q.; Ma, R.; Tian, Y.; Su, B.; Wang, K.; Yu, S.; Zhang, J.; Fang, J. Sterilization Efficiency of a Novel Electrochemical Disinfectant against Staphylococcus aureus. Environ. Sci. Technol. 2016, 50, 3184–3192. [Google Scholar] [CrossRef]
- Xiang, Q.; Kang, C.; Niu, L.; Zhao, D.; Li, K.; Bai, Y. Antibacterial activity and a membrane damage mechanism of plasma-activated water against Pseudomonas deceptionensis CM2. LWT 2018, 96, 395–401. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, Z.; Cheng, C.; Wei, J.; Lan, Y.; Ni, G.; Sun, Q.; Qian, S.; Zhang, H.; Xia, W.; et al. Bactericidal Effects of Plasma Induced Reactive Species in Dielectric Barrier Gas–Liquid Discharge. Plasma Chem. Plasma Process 2017, 37, 415–431. [Google Scholar] [CrossRef]
- Han, L.; Patil, S.; Boehm, D.; Milosavljević, V.; Cullen, P.J.; Bourke, P. Mechanisms of Inactivation by High-Voltage Atmospheric Cold Plasma Differ for Escherichia coli and Staphylococcus aureus. Appl. Environ. Microbiol. 2016, 82, 450–458. [Google Scholar] [CrossRef]
- Machala, Z.; Tarabová, B.; Sersenová, D.; Janda, M.; Hensel, K. Chemical and antibacterial effects of plasma activated water: Correlation with gaseous and aqueous reactive oxygen and nitrogen species, plasma sources and air flow conditions. J. Phys. D Appl. Phys. 2019, 52, 34002. [Google Scholar] [CrossRef]
- Girard, F.; Peret, M.; Dumont, N.; Badets, V.; Blanc, S.; Gazeli, K.; Noël, C.; Belmonte, T.; Marlin, L.; Cambus, J.-P.; et al. Correlations between gaseous and liquid phase chemistries induced by cold atmospheric plasmas in a physiological buffer. Phys. Chem. Chem. Phys. PCCP 2018, 20, 9198–9210. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, J.G.; Alam, D.; Carter, D.A.; Soltani, B.; McConchie, R.; Zhou, R.; Cullen, P.J.; Mai-Prochnow, A. The antimicrobial efficacy of plasma-activated water against Listeria and E. coli is modulated by reactor design and water composition. J. Appl. Microbiol. 2022, 132, 2490–2500. [Google Scholar] [CrossRef]
- Lin, C.-M.; Chu, Y.-C.; Hsiao, C.-P.; Wu, J.-S.; Hsieh, C.-W.; Hou, C.-Y. The Optimization of Plasma-Activated Water Treatments to Inactivate Salmonella Enteritidis (ATCC 13076) on Shell Eggs. Foods 2019, 8, 520. [Google Scholar] [CrossRef]
- Yusupov, M.; Bogaerts, A.; Huygh, S.; Snoeckx, R.; van Duin, A.C.T.; Neyts, E.C. Plasma-Induced Destruction of Bacterial Cell Wall Components: A Reactive Molecular Dynamics Simulation. J. Phys. Chem. C 2013, 117, 5993–5998. [Google Scholar] [CrossRef]
- Laroussi, M.; Mendis, D.A.; Rosenberg, M. Plasma interaction with microbes. New J. Phys. 2003, 5, 41. [Google Scholar] [CrossRef]
- Zheng, J. Inactivation of Staphylococcus aureus in water by pulsed spark discharge. Sci. Rep. 2017, 7, 10311. [Google Scholar] [CrossRef]
- Deng, S.; Ruan, R.; Mok, C.K.; Huang, G.; Lin, X.; Chen, P. Inactivation of Escherichia coli on almonds using nonthermal plasma. J. Food Sci. 2007, 72, M62–M66. [Google Scholar] [CrossRef]
Gram-Negative | 1 vol. Saline + 1 vol. PAW * | 1 vol. Tap Water + 1 vol. PAW * | 1 vol. Tap Water + 2 vol. PAW * | ||||||
---|---|---|---|---|---|---|---|---|---|
Strain/Isolate | Pre-Incubation | Post-Incubation | Reduction (Log10) | Pre- Incubation | Post- Incubation | Reduction (Log10) | Pre-Incubation | Post-Incubation | Reduction (Log10) |
Citrobacter freundii ATCC43864 | 7.7 × 105 (±3.1 ×104) | ngr | 5.9 | 1.3 × 105 (±6.0 × 104) | 1.0 × 103 (±3.5 × 102) | 2.1 | 1.0 × 105 (±2.6 × 104) | 1.0 × 103 (±3.5 × 102) | 2.0 |
Enterobacter cloacae ATCC13047 | - | - | - | 5.9 × 105 (±5.3 × 104) | 6.0 × 105 (±6.1 × 104) | 0 | 1.9 × 105 (±3.0 × 104) | ngr | 5.3 |
E. coli ATCC25922 | 1.8 × 107 (±5.0 × 106) | ngr | 7.3 | 2.8 × 107 (±7.0 × 106) | 1.7 × 107 (±3.1 × 106) | 0.2 | 2.9 × 107 (±4.6 × 106) | ngr | 7.5 |
E. coli A2904-1-1-12/94 **/*** | 1 × 107 (±0) | ngr | 7.0 | 4.4 × 107 (±6.1 × 106) | 2.2 × 107 (±4.2 × 106) | 0.3 | 3.4 × 107 (±9.6 × 106) | ngr | 7.5 |
Klebsiella pneumoniae ATCC13883 | 1 × 107 (±0) | ngr | 7.0 | 4.3 × 105 (±6.0 × 104) | 2.5 × 106 (±2.0 × 105) | 0 | 2.5 × 105 (±9.2 × 104) | ngr | 5.4 |
Lelliottia amnigena 670 ** | 2.2 × 107 (±1.2 × 107) | ngr | 7.3 | 1.9 × 107 (±2.1 × 106) | 1.0 × 106 (±0.8 × 105) | 1.3 | 1.9 × 107 (±1.2 × 106) | ngr | 7.3 |
Lelliottia amnigena 671 ** | 2.1 × 107 (±2.3 × 106) | ngr | 7.3 | 1.5 × 107 (±4.7 × 105) | 1.0 × 107 (±0.8 × 106) | 0.2 | 1.5 × 107 (±4.7 × 105) | ngr | 7.2 |
Pseudomonas aeruginosa ATCC27853 | 3.2 × 107 (±7.4 × 106) | ngr | 7.5 | 2.4 × 104 (±5.3 × 103) | 5.7 × 104 (±6.1 × 103) | 0 | 3.0 × 104 (±1.2 × 104) | ngr | 4.5 |
Serratia fonticola DSM14576 | 1 × 107 (±0) | ngr | 7.0 | - | - | - | - | - | - |
Serratia fonticola 612 ** | 1.5 × 107 (±4.2 × 106) | ngr | 7.2 | 1.6 × 107 (±8.3 × 106) | 5.2 × 106 (±1.1 × 106) | 0.5 | 2.2 × 107 (±1.7 × 106) | ngr | 7.3 |
Serratia fonticola 624 ** | 1.5 × 107 (±1.1 × 107) | ngr | 7.2 | 1.9 × 107 (±1.2 × 106) | 1.7 × 107 (±4.2 × 106) | 0 | 1.8 × 107 (±3.0 × 106) | ngr | 7.3 |
Serratia fonticola 9–65 **/*** | - | - | - | 1.8 × 107 (±7.2 × 106) | 2.5 × 107 (±4.2 × 106) | 0 | 1.2 × 107 (±1.8 × 106) | ngr | 7.1 |
Sphingomonas paucimobilis 549 **/*** | - | - | - | 7.0 × 106 (±1.1 × 106) | 6.6 × 106 (±5.3 × 105) | 0 | 7.0 × 106 (±1.1 × 106) | ngr | 7.1 |
Stenotrophomonas maltophilia 650 **/*** | 3.5 × 107 (±8.7 × 106) | ngr | 7.5 | 3.6 × 107 (±3.5 × 106) | 1.7 × 107 (±8.3 × 106) | 0.3 | 3.6 × 107 (±3.5 × 106) | ngr | 7.6 |
Gram-positive | |||||||||
Enterococcus faecalis ATCC19434 | 6.2 × 106 (±7.2 × 105) | 2.5 × 106 (±3.3 × 105) | 0.4 | 8.4 × 106 (±5.0 × 105) | 5.4 × 106 (±8.7 × 105) | 0.2 | 5.5 × 106 (±1.7 × 105) | 2.3 × 106 (±2.3 × 105) | 0.4 |
Enterococcus faecium HYMS015 | 3.3 × 106 (±7.5 × 105) | 9.5 × 105 (±1.0 × 105) | 0.5 | 3.2 × 106 (±9.0 × 105) | 3.2 × 106 (±7.6 × 105) | 0 | 3.1 × 106 (±8.7 × 105) | 1.8 × 106 (±1.1 × 105) | 0.2 |
Staphylococcus aureus ATCC6538 | 5.6 × 105 (±1.3 × 105) | ngr | 5.8 | 4.1 × 105 (±1.6 × 105) | 1.6 × 103 (±2.0 × 102) | 2.4 | 3.2 × 105 (±1.7 × 104) | 1.0 × 102 (±1.7 × 102) | 3.5 |
Staphylococcus epidermidis ATCC12228 | 1.1 × 107 (±1.5 × 106) | 1.3 × 102 (±1.2 × 102) | 4.9 | 1.1 × 107 (±1.6 × 106) | 2.4 × 104 (±8.8 × 103) | 2.6 | 8.6 × 106 (±1.4 × 106) | ngr | 6.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Droste, N.C.; Hummert, M.; Leenders, P.; Mellmann, A.; Becker, K.; Kuczius, T. Plasma-Activated Tap Water with Oxidative Potential Has an Inactivating Effect on Microbiological Contaminants in Aqueous Suspensions. Pathogens 2024, 13, 535. https://doi.org/10.3390/pathogens13070535
Droste NC, Hummert M, Leenders P, Mellmann A, Becker K, Kuczius T. Plasma-Activated Tap Water with Oxidative Potential Has an Inactivating Effect on Microbiological Contaminants in Aqueous Suspensions. Pathogens. 2024; 13(7):535. https://doi.org/10.3390/pathogens13070535
Chicago/Turabian StyleDroste, Nahla C., Mareike Hummert, Paul Leenders, Alexander Mellmann, Karsten Becker, and Thorsten Kuczius. 2024. "Plasma-Activated Tap Water with Oxidative Potential Has an Inactivating Effect on Microbiological Contaminants in Aqueous Suspensions" Pathogens 13, no. 7: 535. https://doi.org/10.3390/pathogens13070535
APA StyleDroste, N. C., Hummert, M., Leenders, P., Mellmann, A., Becker, K., & Kuczius, T. (2024). Plasma-Activated Tap Water with Oxidative Potential Has an Inactivating Effect on Microbiological Contaminants in Aqueous Suspensions. Pathogens, 13(7), 535. https://doi.org/10.3390/pathogens13070535