Uncovering the Antifungal Potential of Plant-Associated Cultivable Bacteria from the Aral Sea Region against Phytopathogenic Fungi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cite Description, Plant Samples, and Fungal Strains
2.2. Bacterial Isolation
2.3. Isolation of Antagonistic Bacteria
2.4. Molecular Identification
2.5. Sequence Analysis
2.6. Determination of Enzymatic Activities
2.7. Bacterial Salt Tolerance Assay
3. Results
3.1. Research Site and Plant Collection
3.2. Identification of Cultivable Wild Plant-Associated Bacteria
3.3. Antifungal Activity of Bacterial Isolates against Phytopathogenic Fungi
3.4. Determination of the Enzymatic Activities of the Antagonistic Bacteria
3.5. Bacterial Growth during Salinity Stress
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Varotsos, C.A.; Krapivin, V.F.; Mkrtchyan, F.A. On the Recovery of the Water Balance. Water Air Soil Pollut. 2020, 231, 170. [Google Scholar] [CrossRef]
- Austin, P.; Mackay, A.; Palagushkina, O.; Leng, M. A High-resolution diatom-inferred palaeoconductivity and lake level record of the Aral Sea for the Last 1600 yr. Quat. Res. 2007, 67, 383–393. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Fang, G.; Li, Z.; Liu, Y. The growing water crisis in Central Asia and the driving forces behind it. J. Clean. Prod. 2022, 378, 134574. [Google Scholar] [CrossRef]
- Ma, X.; Huang, S.; Huang, Y.; Wang, X.; Luo, Y. Evaporation from the hypersaline Aral Sea in Central Asia. Sci. Total Environ. 2024, 908, 168412. [Google Scholar] [CrossRef] [PubMed]
- Shurigin, V.; Egamberdieva, D.; Li, L.; Davranov, K.; Panosyan, H.; Birkeland, N.-K.; Wirth, S.; Bellingrath-Kimura, S.D. Endophytic bacteria associated with halophyte Seidlitzia rosmarinus Ehrenb. ex Boiss. from saline soil of Uzbekistan and their plant beneficial traits. J. Arid Land 2020, 12, 730–740. [Google Scholar] [CrossRef]
- Triky-Dotan, S.; Yermiyahu, U.; Katan, J.; Gamliel, A. Development of crown and root rot disease of tomato under irrigation with saline water. Phytopathology 2005, 95, 1438–1444. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Davranov, K.; Wirth, S.; Hashem, A.; Abd Allah, E.F. Impact of soil salinity on the plant-growth-promoting and biological control abilities of root associated bacteria. Saudi J. Biol. Sci. 2017, 24, 1601–1608. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Kuang, Y.; Splivallo, R.; Chatterjee, P.; Karlovsky, P. Interactions among filamentous fungi Aspergillus niger, Fusarium verticillioides and Clonostachys rosea: Fungal biomass, diversity of secreted metabolites and fumonisin production. BMC Microbiol. 2016, 16, 83. [Google Scholar] [CrossRef]
- Gal-Hemed, I.; Atanasova, L.; Komon-Zelazowska, M.; Druzhinina, I.S.; Viterbo, A.; Yarden, O. Marine isolates of Trichoderma spp. as potential halotolerant agents of biological control for arid-zone agriculture. Appl. Environ. Microbiol. 2011, 77, 5100–5109. [Google Scholar] [CrossRef]
- Volova, T.G.; Prudnikova, S.V.; Zhila, N.O. Fungicidal activity of slow-release P(3HB)/TEB formulations in wheat plant communities infected by Fusarium moniliforme. Environ. Sci. Pollut. Res. Int. 2018, 25, 552–561. [Google Scholar] [CrossRef]
- Vurro, M.; Gressel, J. An Integrated Approach to Biological Control of Plant Diseases and Weeds in Europe. In An Ecological and Societal Approach to Biological Control; Eilenberg, J., Hokkanen, H.M.T., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 257–274. [Google Scholar]
- Li, J.; Gu, F.; Wu, R.; Yang, J.; Zhang, K.Q. Phylogenomic evolutionary surveys of subtilase superfamily genes in fungi. Sci. Rep. 2017, 7, 45456. [Google Scholar] [CrossRef] [PubMed]
- Marín-Menguiano, M.; Moreno-Sánchez, I.; Barrales, R.; Fernandez Alvarez, A.; Ibeas, J. N-glycosylation of the protein disulfide isomerase Pdi1 ensures full Ustilago maydis virulence. PLoS Pathog. 2019, 15, e1007687. [Google Scholar] [CrossRef] [PubMed]
- Javad, N.; Reza, H.; Khodakaramian, G. Biological control of Fusarium graminearum on wheat by antagonistic bacteria. Songklanakarin J. Sci. Technol. 2006, 28, 29–38. [Google Scholar]
- Li, E.; Ling, J.; Wang, G.; Xiao, J.; Yang, Y.; Mao, Z.; Wang, X.; Xie, B. Comparative Proteomics Analyses of Two Races of Fusarium oxysporum f. sp. conglutinans that Differ in Pathogenicity. Sci. Rep. 2015, 5, 13663. [Google Scholar] [CrossRef]
- Wu, L.; Shang, H.; Wang, Q.; Gu, H.; Liu, G.; Yang, S. Isolation and characterization of antagonistic endophytes from Dendrobium candidum Wall ex Lindl., and the biofertilizing potential of a novel Pseudomonas saponiphila strain. Appl. Soil Ecol. 2016, 105, 101–108. [Google Scholar] [CrossRef]
- Raaijmakers, J.M.; Paulitz, T.C.; Steinberg, C.; Alabouvette, C.; Moënne-Loccoz, Y. The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 2009, 321, 341–361. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, M.; Robles, M.; Sifuentes, L.; Fortis-Hernández, M.; Luna-Ortega, J.; González-Salas, U. Cepas nativas de Bacillus spp. como una alternativa sostenible en el rendimiento de forraje de maíz. Rev. Terra Latinoam. 2020, 38, 313–321. [Google Scholar] [CrossRef]
- Patrignani, F.; Siroli, L.; Serrazanetti, D.; Gardini, F.; Lanciotti, R. Innovative strategies based on the use of essential oils and their components to improve safety, shelf-life and quality of minimally processed fruits and vegetables. Trends Food Sci. Technol. 2015, 46, 311–319. [Google Scholar] [CrossRef]
- Ongena, M.; Jacques, P. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol. 2008, 16, 115–125. [Google Scholar] [CrossRef]
- Wang, N.; Chen, S.; Huang, J.; Frappart, F.; Taghizadeh, R.; Zhang, X.; Wigneron, J.-P.; Xue, J.; Xiao, Y.; Peng, J.; et al. Global Soil Salinity Estimation at 10 m Using Multi-Source Remote Sensing. J. Remote Sens. 2024, 4, 0130. [Google Scholar] [CrossRef]
- Berg, G.; Fritze, A.; Roskot, N.; Smalla, K. Evaluation of potential biocontrol rhizobacteria from different host plants of Verticillium dahliae Kleb. J. Appl. Microbiol. 2001, 91, 963–971. [Google Scholar] [CrossRef]
- Cazorla, F.M.; Romero, D.; Perez-Garcia, A.; Lugtenberg, B.J.; Vicente, A.; Bloemberg, G. Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. J. Appl. Microbiol. 2007, 103, 1950–1959. [Google Scholar] [CrossRef] [PubMed]
- Pappas, M.L.; Baptista, P.; Broufas, G.D.; Dalakouras, A.; Djobbi, W.; Flors, V.; Guerfali, M.M.; Khayi, S.; Mentag, R.; Pastor, V.; et al. Biological and Molecular Control Tools in Plant Defense. In Plant Defence: Biological Control; Mérillon, J.-M., Ramawat, K.G., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 3–43. [Google Scholar]
- Walsh, U.F.; Morrissey, J.P.; O’Gara, F. Pseudomonas for biocontrol of phytopathogens: From functional genomics to commercial exploitation. Curr. Opin. Biotechnol. 2001, 12, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Beneduzi, A.; Ambrosini, A.; Passaglia, L.M. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 2012, 35, 1044–1051. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Dubey, R.C.; Maheshwari, D.K. Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol. Res. 2012, 167, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.H.; Matthee, F.N.; Thomas, A.C. Biological control of Eutypa lata on grapevine by an antagonistic strain of Bacillus subtilis. Phytopathology 1991, 81, 283–287. [Google Scholar] [CrossRef]
- Vavourakis, C.D.; Ghai, R.; Rodriguez-Valera, F.; Sorokin, D.Y.; Tringe, S.G.; Hugenholtz, P.; Muyzer, G. Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines. Front. Microbiol. 2016, 7, 211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Bai, J.; Zhai, Y.; Jia, J.; Zhao, Q.; Wang, W.; Hu, X. Microbial diversity and functions in saline soils: A review from a biogeochemical perspective. J. Adv. Res. 2024, 59, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.B.; Karray, F. Prokaryotic diversity in a Tunisian hypersaline lake, Chott El Jerid. Extremophiles 2016, 20, 125–138. [Google Scholar] [CrossRef]
- de la Haba, R.R.; Sánchez-Porro, C.; Marquez, M.C.; Ventosa, A. Taxonomy of Halophiles. In Extremophiles Handbook; Horikoshi, K., Ed.; Springer: Tokyo, Japan, 2011; pp. 255–308. [Google Scholar]
- Sirisena, K.A.; Ramirez, S.; Steele, A.; Glamoclija, M. Microbial Diversity of Hypersaline Sediments from Lake Lucero Playa in White Sands National Monument, New Mexico, USA. Microb. Ecol. 2018, 76, 404–418. [Google Scholar] [CrossRef]
- Kuziev, R.K.; Sektimenko, V.E. Soils of Uzbekistan. Extremum Press: Tashkent, Uzbekistan, 2009; pp. 1–352. [Google Scholar]
- Alenezi, F.N.; Rekik, I.; Belka, M.; Ibrahim, A.F.; Luptakova, L.; Jaspars, M.; Woodward, S.; Belbahri, L. Strain-level diversity of secondary metabolism in the biocontrol species Aneurinibacillus migulanus. Microbiol. Res. 2016, 182, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Broderick, N.A.; Raffa, K.F.; Goodman, R.M.; Handelsman, J. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl. Environ. Microbiol. 2004, 70, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Reimerdes, E.H.; Klostermeyer, H. Determination of proteolytic activities on casein substrates. Methods Enzymol. 1976, 45, 26–28. [Google Scholar] [CrossRef] [PubMed]
- Mayerhofer, H.J.; Marshall, R.T.; White, C.H.; Lu, M. Characterization of a heat-stable protease of Pseudomonas fluorescens P26. Appl. Microbiol. 1973, 25, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Kumar, L.; Nagar, D.S.; Raina, C.; Parshad, R.; Gupta, V. Screening, isolation and production of lipase/esterase producing Bacillus sp. Strain DVL2 and its potential evaluation in esteritication and resolution reactions. Arch. Appl. Sci. Res. 2012, 4, 1763–1770. [Google Scholar]
- Vasanthakumar, A.; Handelsman, J.; Schloss, P.D.; Bauer, L.S.; Raffa, K.F. Gut microbiota of an invasive subcortical beetle, Agrilus planipennis Fairmaire, across various life stages. Environ. Entomol. 2008, 37, 1344–1353. [Google Scholar] [CrossRef]
- Vargas-Asensio, G.; Pinto-Tomas, A.; Rivera, B.; Hernandez, M.; Hernandez, C.; Soto-Montero, S.; Murillo, C.; Sherman, D.H.; Tamayo-Castillo, G. Uncovering the cultivable microbial diversity of costa rican beetles and its ability to break down plant cell wall components. PLoS ONE 2014, 9, e113303. [Google Scholar] [CrossRef]
- Rojas-Jimenez, K.; Hernandez, M. Isolation of Fungi and Bacteria Associated with the Guts of Tropical Wood-Feeding Coleoptera and Determination of Their Lignocellulolytic Activities. Int. J. Microbiol. 2015, 2015, 285018. [Google Scholar] [CrossRef]
- Devi, S.I.; Somkuwar, B.; Potshangbam, M.; Talukdar, N.C. Genetic characterization of Burkholderia cepacia strain from Northeast India: A potential bio-control agent. Adv. Biosci. Biotechnol. 2012, 3, 25835. [Google Scholar] [CrossRef]
- Wilson, C.L.; Wisniewski, M.E.; Biles, C.L.; McLaughlin, R.; Chalutz, E.; Droby, S. Biological control of post-harvest diseases of fruits and vegetables: Alternatives to synthetic fungicides. Crop Protect. 1991, 10, 172–177. [Google Scholar] [CrossRef]
- Prosser, J.I.; Bohannan, B.J.M.; Curtis, T.P.; Ellis, R.J.; Firestone, M.K.; Freckleton, R.P.; Green, J.L.; Green, L.E.; Killham, K.; Lennon, J.J.; et al. The role of ecological theory in microbial ecology. Nat. Rev. Microbiol. 2007, 5, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Riley, M.A.; Wertz, J.E.; Goldstone, C. The ecology and evolution of microbial defense systems in Escherichia coli. EcoSal Plus 2004, 1, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Berdy, J. Bioactive microbial metabolites. J. Antibiot. 2005, 58, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Coleman, J.J.; Ghosh, S.; Okoli, I.; Mylonakis, E. Antifungal activity of microbial secondary metabolites. PLoS ONE 2011, 6, e25321. [Google Scholar] [CrossRef] [PubMed]
- Kohl, J.; Kolnaar, R.; Ravensberg, W.J. Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance Beyond Efficacy. Front. Plant Sci. 2019, 10, 845. [Google Scholar] [CrossRef] [PubMed]
- Lugtenberg, B.; Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 2009, 63, 541–556. [Google Scholar] [CrossRef]
- Bozorov, T.A.; Toshmatov, Z.O.; Kahar, G.; Muhammad, S.M.; Liu, X.; Zhang, D.; Aytenov, I.S.; Turakulov, K.S. Uncovering the antifungal activities of wild apple-associated bacteria against two canker-causing fungi, Cytospora mali and C. parasitica. Sci. Rep. 2024, 14, 6307. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Pi, H.; Chandrangsu, P.; Li, Y.; Wang, Y.; Zhou, H.; Xiong, H.; Helmann, J.D.; Cai, Y. Antagonism of Two Plant-Growth Promoting Bacillus velezensis Isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci. Rep. 2018, 8, 4360. [Google Scholar] [CrossRef]
- Abbas, A.; Khan, S.U.; Khan, W.U.; Saleh, T.A.; Khan, M.H.U.; Ullah, S.; Ali, A.; Ikram, M. Antagonist effects of strains of Bacillus spp. against Rhizoctonia solani for their protection against several plant diseases: Alternatives to chemical pesticides. Comptes Rendus Biol. 2019, 342, 124–135. [Google Scholar] [CrossRef]
- Janakiev, T.; Dimkic, I.; Unkovic, N.; Ljaljevic Grbic, M.; Opsenica, D.; Gasic, U.; Stankovic, S.; Beric, T. Phyllosphere Fungal Communities of Plum and Antifungal Activity of Indigenous Phenazine-Producing Pseudomonas synxantha against Monilinia laxa. Front. Microbiol. 2019, 10, 2287. [Google Scholar] [CrossRef]
- Liu, Y.; Lai, Q.; Du, J.; Shao, Z. Bacillus zhangzhouensis sp. nov. and Bacillus australimaris sp. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
- Soliman, M.O.; Suleiman, W.B.; Roushdy, M.M.; Elbatrawy, E.N.; Gad, A.M. Characterization of some bacterial strains isolated from the Egyptian eastern and northern coastlines with antimicrobial activity of Bacillus zhangzhouensis OMER4. Acta Oceanol. Sin. 2022, 41, 86–93. [Google Scholar] [CrossRef]
- Kaul, N.; Kashyap, P.L.; Kumar, S.; Singh, D.; Singh, G.P. Diversity and Exploration of Endophytic Bacilli for the Management of Head Scab (Fusarium graminearum) of Wheat. Pathogens 2022, 11, 1088. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, B.; Wang, Y.; Guo, Q.; Lu, X.; Li, S.; Ma, P. Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1. Appl. Microbiol. Biotechnol. 2013, 97, 9525–9534. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Raza, W.; Shen, Q.; Huang, Q. Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Appl. Environ. Microbiol. 2012, 78, 5942–5944. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Adalia, E.J.; Meijer, A.; Campillo-Brocal, J.C.; Colinas, C. Antagonistic effect in vitro of three commercial strains of Bacillus sp. against the forest pathogen Diplodia corticola. For. Pathol. 2021, 51, e12711. [Google Scholar] [CrossRef]
- Schlusselhuber, M.; Girard, L.; Cousin, F.J.; Lood, C.; De Mot, R.; Goux, D.; Desmasures, N. Pseudomonas crudilactis sp. nov., isolated from raw milk in France. Antonie Leeuwenhoek 2021, 6, 719–730. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhu, L.; Jiang, L.; Xu, X.; Xu, Q.; Zhang, Z.; Huang, H. Draft genome sequence of Paenibacillus dauci sp. nov., a carrot-associated endophytic actinobacteria. Genom. Data 2015, 5, 241–253. [Google Scholar] [CrossRef] [PubMed]
- Ran, J.; Wu, Y.; Zhang, B.; Su, Y.; Lu, N.; Li, Y.; Liang, X.; Zhou, H.; Shi, J. Paenibacillus polymyxa Antagonism towards Fusarium: Identification and Optimisation of Antibiotic Production. Toxins 2023, 15, 138. [Google Scholar] [CrossRef]
- Ran, J.; Jiao, L.; Zhao, R.; Zhu, M.; Shi, J.; Xu, B.; Pan, L. Characterization of a novel antifungal protein produced by Paenibacillus polymyxa isolated from the wheat rhizosphere. J. Sci. Food Agric. 2021, 101, 1901–1909. [Google Scholar] [CrossRef]
- Kiroiants, M.O.; Patyka, T.I.; Patyka, M.V. Antagonistic activity of dominant bacteria isolated from the rhizosphere of spring barley against phytopathogenic micromycetes. Plant Soil Sci. 2021, 2, 54–59. [Google Scholar] [CrossRef]
- Human, Z.R.; Moon, K.; Bae, M.; de Beer, Z.W.; Cha, S.; Wingfield, M.J.; Slippers, B.; Oh, D.C.; Venter, S.N. Antifungal Streptomyces spp. Associated with the Infructescences of Protea spp. in South Africa. Front. Microbiol. 2016, 7, 1657. [Google Scholar] [CrossRef]
- Ezra, D.; Castillo, U.F.; Strobel, G.A.; Hess, W.M.; Porter, H.; Jensen, J.B.; Condron, M.A.M.; Teplow, D.B.; Sears, J.; Maranta, M.; et al. Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology 2004, 150, 785–793. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Shen, B.; Carter, G.T. Structural elucidation of lemonomycin, a potent antibiotic from Streptomyces candidus. Tetrahedron Lett. 2000, 41, 2067–2071. [Google Scholar] [CrossRef]
- Miyairi, N.; Sakai, H.; Konomi, T.; Imanaka, H. Enterocin, a new antibiotic taxonomy, isolation and characterization. J. Antibiot. 1976, 29, 227–235. [Google Scholar] [CrossRef]
- Suhadolnik, R.J.; Reichenbach, N.L. Glutamate as the common precursor for the aglycon of the naturally occurring C-nucleoside antibiotics. Biochemistry 1981, 20, 7042–7046. [Google Scholar] [CrossRef]
- Pensack, J.M.; Wang, G.T.; Simkins, K.L. Avoparcin—A Growth-Promoting Feed Antibiotic for Broiler Chickens. Poult. Sci. 1982, 61, 1009–1012. [Google Scholar] [CrossRef]
- Penttinen, P.; Pelkonen, J.; Huttunen, K.; Hirvonen, M.R. Co-cultivation of Streptomyces californicus and Stachybotrys chartarum stimulates the production of cytostatic compound(s) with immunotoxic properties. Toxicol. Appl. Pharmacol. 2006, 217, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Dubey, A.K. Isolation and Characterization of a New Endophytic Actinobacterium Streptomyces californicus Strain ADR1 as a Promising Source of Anti-Bacterial, Anti-Biofilm and Antioxidant Metabolites. Microorganisms 2020, 8, 929. [Google Scholar] [CrossRef]
- Minuto, A.; Spadaro, D.; Garibaldi, A.; Gullino, M.L. Control of soilborne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization. Crop Protect. 2006, 25, 468–475. [Google Scholar] [CrossRef]
- Bubici, G.; Marsico, A.D.; D’amico, M.; Amenduni, M.; Cirulli, M. Evaluation of Streptomyces spp. for the biological control of corky root of tomato and Verticillium wilt of eggplant. Appl. Soil Ecol. 2013, 72, 128–134. [Google Scholar] [CrossRef]
- Berg, G.; Marten, P.; Minkwitz, A.; Brückner, S. Efficient biological control of plant fungal diseases by Streptomyces sp. DSMZ 12424. J. Plant Dis. Protect. 2010, 108, 1–10. [Google Scholar]
- Zachow, C.; Grosch, R.; Berg, G. Impact of biotic and a-biotic parameters on structure and function of microbial communities living on sclerotia of the soil-borne pathogenic fungus Rhizoctonia solani. Appl. Soil Ecol. Sect. Agric. Ecosyst. Environ. 2011, 48, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Bozorov, T.A.; Toshmatov, Z.O.; Kahar, G.; Zhang, D.; Shao, H.; Gafforov, Y. Wild Apple-Associated Fungi and Bacteria Compete to Colonize the Larval Gut of an Invasive Wood-Borer Agrilus mali in Tianshan Forests. Front. Microbiol. 2021, 12, 743831. [Google Scholar] [CrossRef] [PubMed]
- Kushiev, K.K.; Allaniyazova, M.K.; Burkhiev, F.Z.; Djuraev, T.A.; Nuriyeva, M.O. Elemental composition in the soil layers of the dried bottom of the Aral sea and balance their amounts on the basis of equivalent ratios. Austrian J. Tech. Nat. Sci. 2023, 3, 40–46. [Google Scholar] [CrossRef]
- Benaissa, A.; Basseddik, A.; Chegga, A.; Djebbar, R. Halotolerant Bacillus Species as Plant Growth Promoting Rhizobacteria from Hyper–Arid Area of Algeria. Tarım Bilim. Derg. 2023, 30, 400–412. [Google Scholar] [CrossRef]
- Saghafi, D.; Ghorbanpour, M.; Shirafkan Ajirloo, H.; Asgari Lajayer, B. Enhancement of growth and salt tolerance in Brassica napus L. seedlings by halotolerant Rhizobium strains containing ACC-deaminase activity. Plant Physiol. Rep. 2019, 24, 225–235. [Google Scholar] [CrossRef]
- Egamberdiyeva, D. Plant-growth-promoting rhizobacteria isolated from a Calcisol in a semi-arid region of Uzbekistan: Biochemical characterization and effectiveness. J. Plant Nutr. Soil Sci. 2005, 168, 94–99. [Google Scholar] [CrossRef]
- Kapadia, C.; Sayyed, R.Z.; El Enshasy, H.A.; Vaidya, H.; Sharma, D.; Patel, N.; Zuan, A.T.K. Halotolerant microbial consortia for sustainable mitigation of salinity stress, growth promotion, and mineral uptake in tomato plants and soil nutrient enrichment. Sustainability 2021, 13, 8369. [Google Scholar] [CrossRef]
- Roongsawang, N.; Thaniyavarn, J.; Thaniyavarn, S.; Kameyama, T.; Haruki, M.; Imanaka, T.; Morikawa, M.; Kanaya, S. Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: Bacillomycin L, plipastatin, and surfactin. Extrem. Life Extrem. Cond. 2002, 6, 499–506. [Google Scholar] [CrossRef]
Location | GPS Coordinates | Elevation (m) | Plant Species |
---|---|---|---|
Small Aral Sea, western coast | N: 44 502 19 E: 058 207 88 | 80 | Ferula lehmannii, Amberboa turanica, Zygophyllum atriplicoides |
Small Aral Sea, western coast | N: 44 503 36 E: 058 20 900 | 42 | Rheum turkestanicum, Zygophyllum sp., Lactuca serriola |
Small Aral Sea, western coast | N: 44 50 335 E: 058 20 978 | 46 | Ferula sp., Zygophyllum oxianum, Senecio subdentatus |
Small Aral Sea, western coast | N: 44 503 40 E: 058 212 59 | 40 | Artemisia sp., Jurinea sp. |
Small Aral Sea, western coast | N: 44 50 361 E: 058 21 525 | 39 | Astragalus villosissimus, Datura sp. |
Small Aral Sea, western coast | N: 44 505 39 E: 058 230 98 | 22 | Kalidium foliatum |
Small Aral Sea, southwestern coast | N: 44 38 058 E: 058 281 58 | 34 | Tamarix sp., Euphorbia inderiensis, Euphorbia sp., Anabasis salsa, Eremopyrum orientale, Hyoscyamus pusillus |
Dry seabed | N: 44 155 22 E: 058 515 24 | 34 | Tamarix sp. |
Muynak, origin sea ex-coast | N: 43 78 967 E: 059 03 398 | 46 | Chamaesphacos ilicifolius |
Muynak, origin sea ex-coast | N: 43 79 009 E: 059 03 610 | 46 | Stipagrostis karelinii, Heliotropium ellipticum, Halocharis hispida, Corispermum lehmannianum, Salsola sp. |
Phylum | Class | Order | Family | Genus/Species | Number of Isolates |
---|---|---|---|---|---|
Bacillota | Bacilli | Bacillales | Bacillaceae | Bacillus zhangzhouensis | 47 |
B. rugosus | 15 | ||||
B. mojavensis | 2 | ||||
B. atrophaeus | 7 | ||||
B. safensis | 1 | ||||
B. halotolerans | 1 | ||||
Paenibacillaceae | Paenibacillus dauci | 1 | |||
Peribacillus simplex | 1 | ||||
Proteobacteria | γ-Proteobacteria | Pseudomonadales | Pseudomonadaceae | Pseudomonas crudilactis | 5 |
Ps. canavaninivorans | 1 | ||||
Ps. iranica | 1 | ||||
α-Proteobacteria | Hyphomicrobiales | Phyllobacteriaceae | Phyllobacterium ifriqiyense | 2 | |
Actinomycetota | Actinomycetes | Micrococcales | Micrococcaceae | Kocuria rosea | 1 |
Kitasatosporales | Streptomycetaceae | Streptomyces candidus | 2 | ||
St. californicus | 1 |
Family | Species | Bacterial Antagonists | Root | Twig |
---|---|---|---|---|
Apiaceae | Ferula lehannii | Pa. dauci | - | 1 |
St. californicus | - | 1 | ||
Ferula sp. | B. mojavensis | 1 | - | |
Asteraceae | Amberboa turanica | K. rosea | 1 | - |
St. candidus | 1 | - | ||
B. atrophaeus | - | 1 | ||
Lactuca serriola | B. rugosus | 1 | - | |
B. atrophaeus | 1 | - | ||
Senecio subdentatus | B. zhangzhouensis | 5 | - | |
B. rugosus | 7 | - | ||
Artemisia sp. | - | - | - | |
Jurinea sp. | - | - | - | |
Boraginaceae | Heliotropium ellipticum | - | - | - |
Chenopodiaceae | Halocharis hispida | B. atrophaeus | - | 3 |
B. rugosus | - | 2 | ||
Corispermum lehmannianum | Ps. crudilactis | - | 1 | |
Ps. canavaninivorans | 1 | - | ||
Salsola sp. | - | - | - | |
Anabasis salsa | B. zhangzhouensis | - | 1 | |
B. rugosus | 2 | - | ||
Kalidium foliatum | B. zhangzhouensis | 14 | - | |
Euphorbiaceae | Euphorbia sp. | - | - | - |
Euphorbia inderiensis | B. rugosus | 1 | 1 | |
Pe. simplex | 1 | - | ||
Fabaceae | Astragalus villosissimus | Ps. crudilactis | - | 1 |
B. zhangzhouensis | - | 19 | ||
Lamiaceae | Chamaesphacos ilicifolius | Ps. iranica | 1 | - |
Poaceae | Stipagrostis karelinii | Ps. crudilactis | 2 | - |
Eremopyrum orientale | B. safensis | - | 1 | |
B. zhangzhouensis | - | 2 | ||
Polygonaceae | Rheum turkestanicum | - | - | - |
Solanaceae | Hyoscyamus pusillus | St. candidus | - | 1 |
Datura sp. | Ps. crudilactis | - | 1 | |
Tamaricaceae | Tamarix sp. | - | - | - |
B. halotolerans | - | 1 | ||
Zygophyllaceae | Zygophyllum atriplicoides | B. atrophaeus | 2 | - |
Zygophyllum sp. | B. rugosus | - | 1 | |
B. mojavensis | - | 1 | ||
B. zhangzhouensis | - | 1 | ||
Zygophyllum oxianum | B. zhangzhouensis | 5 | - | |
Ph. ifriqiyense | 2 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aytenov, I.S.; Bozorov, T.A.; Zhang, D.; Samadiy, S.A.; Muhammadova, D.A.; Isokulov, M.Z.; Murodova, S.M.; Zakirova, O.R.; Chinikulov, B.K.; Sherimbetov, A.G. Uncovering the Antifungal Potential of Plant-Associated Cultivable Bacteria from the Aral Sea Region against Phytopathogenic Fungi. Pathogens 2024, 13, 585. https://doi.org/10.3390/pathogens13070585
Aytenov IS, Bozorov TA, Zhang D, Samadiy SA, Muhammadova DA, Isokulov MZ, Murodova SM, Zakirova OR, Chinikulov BK, Sherimbetov AG. Uncovering the Antifungal Potential of Plant-Associated Cultivable Bacteria from the Aral Sea Region against Phytopathogenic Fungi. Pathogens. 2024; 13(7):585. https://doi.org/10.3390/pathogens13070585
Chicago/Turabian StyleAytenov, Ilkham S., Tohir A. Bozorov, Daoyuan Zhang, Sitora A. Samadiy, Dono A. Muhammadova, Marufbek Z. Isokulov, Sojida M. Murodova, Ozoda R. Zakirova, Bakhodir Kh. Chinikulov, and Anvar G. Sherimbetov. 2024. "Uncovering the Antifungal Potential of Plant-Associated Cultivable Bacteria from the Aral Sea Region against Phytopathogenic Fungi" Pathogens 13, no. 7: 585. https://doi.org/10.3390/pathogens13070585
APA StyleAytenov, I. S., Bozorov, T. A., Zhang, D., Samadiy, S. A., Muhammadova, D. A., Isokulov, M. Z., Murodova, S. M., Zakirova, O. R., Chinikulov, B. K., & Sherimbetov, A. G. (2024). Uncovering the Antifungal Potential of Plant-Associated Cultivable Bacteria from the Aral Sea Region against Phytopathogenic Fungi. Pathogens, 13(7), 585. https://doi.org/10.3390/pathogens13070585