New Insights into the Phylogeny of the A.Br.161 (“A.Br.Heroin”) Clade of Bacillus anthracis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Culture and Inactivation and Genomic DNA Preparation
2.2. Interrogation of canSNPs via PCR by Relative Ct-Value Analysis (Delayed Mismatch Amplification PCR Assay, DMAA)
2.3. Whole-Genome Sequencing
2.4. Analysis of Whole-Genome Sequencing Data and SNP Calling
3. Results and Discussion
3.1. Identification of Additional Isolates of canSNP Clade A.Br.161 from Strain Collection
3.2. New Genomes Complement the Phylogeny of the A.Br.161 canSNP Clade
3.3. A New PCR Assay for the Facile Interrogation of an Informative SNP Position of the canSNP A.Br.161 Sub-Clade 161-L2.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turnbull, P.C. Anthrax in Humans and Animals; WHO Press: Geneva, Switzerland, 2008. [Google Scholar]
- Ringertz, S.H.; Hoiby, E.A.; Jensenius, M.; Maehlen, J.; Caugant, D.A.; Myklebust, A.; Fossum, K. Injectional Anthrax in a Heroin Skin-Popper. Lancet 2000, 356, 1574–1575. [Google Scholar] [CrossRef] [PubMed]
- Caffes, N.; Hendricks, K.; Bradley, J.S.; Twenhafel, N.A.; Simard, J.M. Anthrax Meningoencephalitis and Intracranial Emorrhage. Clin. Infect. Dis. 2022, 75, S451–S458. [Google Scholar] [CrossRef] [PubMed]
- Grunow, R.; Klee, S.R.; Beyer, W.; George, M.; Grunow, D.; Barduhn, A.; Klar, S.; Jacob, D.; Elschner, M.; Sandven, P.; et al. Anthrax among Heroin Users in Europe Possibly Caused by Same Bacillus anthracis Strain since 2000. Euro Surveill. 2013, 18, 20437. [Google Scholar] [CrossRef] [PubMed]
- Berger, T.; Kassirer, M.; Aran, A.A. Injectional Anthrax—New Presentation of an Old Disease. Euro Surveill. 2014, 19, 20877. [Google Scholar] [CrossRef] [PubMed]
- Hanczaruk, M.; Reischl, U.; Holzmann, T.; Frangoulidis, D.; Wagner, D.M.; Keim, P.S.; Antwerpen, M.H.; Meyer, H.; Grass, G. Injectional Anthrax in Heroin Users, Europe, 2000–2012. Emerg. Infect. Dis. 2014, 20, 322–323. [Google Scholar] [CrossRef] [PubMed]
- Price, E.P.; Seymour, M.L.; Sarovich, D.S.; Latham, J.; Wolken, S.R.; Mason, J.; Vincent, G.; Drees, K.P.; Beckstrom-Sternberg, S.M.; Phillippy, A.M.; et al. Molecular Epidemiologic Investigation of an Anthrax Outbreak among Heroin Users, Europe. Emerg. Infect. Dis. 2012, 18, 1307–1313. [Google Scholar] [CrossRef] [PubMed]
- Thouret, J.-M.; Rogeaux, O.; Beaudouin, E.; Levast, M.; Ramisse, V.; Biot, F.V.; Valade, E.; Thibault, F.; Gorgé, O.; Tournier, J.-N. Case Report of an Injectional Anthrax in France, 2012. Microorganisms 2020, 8, 985. [Google Scholar] [CrossRef] [PubMed]
- Keim, P.; Grunow, R.; Vipond, R.; Grass, G.; Hoffmaster, A.; Birdsell, D.N.; Klee, S.R.; Pullan, S.; Antwerpen, M.; Bayer, B.N.; et al. Whole Genome Analysis of Injectional Anthrax Identifies Two Disease Clusters Spanning More than 13 Years. eBioMedicine 2015, 2, 1613–1618. [Google Scholar] [CrossRef] [PubMed]
- Sahl, J.W.; Pearson, T.; Okinaka, R.; Schupp, J.M.; Gillece, J.D.; Heaton, H.; Birdsell, D.; Hepp, C.; Fofanov, V.; Noseda, R.; et al. A Bacillus anthracis Genome Sequence from the Sverdlovsk 1979 Autopsy Specimens. mBio 2016, 7, e01501-16. [Google Scholar] [CrossRef]
- Antwerpen, M.; Beyer, W.; Bassy, O.; Ortega-García, M.V.; Cabria-Ramos, J.C.; Grass, G.; Wölfel, R. Phylogenetic Placement of Isolates within the Trans-Eurasian Clade A.Br.008/009 of Bacillus anthracis. Microorganisms 2019, 7, 689. [Google Scholar] [CrossRef]
- Shevtsov, A.; Lukhnova, L.; Izbanova, U.; Vernadet, J.-P.; Kuibagarov, M.; Amirgazin, A.; Ramankulov, Y.; Vergnaud, G. Bacillus anthracis Phylogeography: New Clues from Kazakhstan, Central Asia. Front. Microbiol. 2021, 12, 3797. [Google Scholar] [CrossRef] [PubMed]
- Fasanella, A.; Di Taranto, P.; Garofolo, G.; Colao, V.; Marino, L.; Buonavoglia, D.; Pedarra, C.; Adone, R.; Hugh-Jones, M. Ground Anthrax Bacillus Refined Isolation (GABRI) Method for Analyzing Environmental Samples with Low Levels of Bacillus anthracis Contamination. BMC Microbiol. 2013, 13, 167. [Google Scholar] [CrossRef] [PubMed]
- Braun, P.; Wolfschläger, I.; Reetz, L.; Bachstein, L.; Jacinto, A.C.; Tocantins, C.; Poppe, J.; Grass, G. Rapid Microscopic Detection of Bacillus anthracis by Fluorescent Receptor Binding Proteins of Bacteriophages. Microorganisms 2020, 8, 934. [Google Scholar] [CrossRef] [PubMed]
- Birdsell, D.N.; Pearson, T.; Price, E.P.; Hornstra, H.M.; Nera, R.D.; Stone, N.; Gruendike, J.; Kaufman, E.L.; Pettus, A.H.; Hurbon, A.N.; et al. Melt Analysis of Mismatch Amplification Mutation Assays (Melt-MAMA): A Functional Study of a Cost-Effective SNP Genotyping Assay in Bacterial Models. PLoS ONE 2012, 7, e32866. [Google Scholar] [CrossRef] [PubMed]
- Rueckert, C.; Licht, K.; Kalinowski, J.; Espirito Santo, C.; Antwerpen, M.; Hanczaruk, M.; Reischl, U.; Holzmann, T.; Gessner, A.; Tiemann, C.; et al. Draft Genome Sequence of Bacillus anthracis UR-1, Isolated from a German Heroin User. J. Bacteriol. 2012, 194, 5997–5998. [Google Scholar] [CrossRef] [PubMed]
- Braun, P.; Grass, G.; Aceti, A.; Serrecchia, L.; Affuso, A.; Marino, L.; Grimaldi, S.; Pagano, S.; Hanczaruk, M.; Georgi, E.; et al. Microevolution of Anthrax from a Young Ancestor (M.A.Y.A.) Suggests a Soil-Borne Life Cycle of Bacillus anthracis. PLoS ONE 2015, 10, e0135346. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS ONE 2014, 9, e112963. [Google Scholar] [CrossRef]
- Angiuoli, S.V.; Gussman, A.; Klimke, W.; Cochrane, G.; Field, D.; Garrity, G.; Kodira, C.D.; Kyrpides, N.; Madupu, R.; Markowitz, V.; et al. Toward an Online Repository of Standard Operating Procedures (SOPs) for (Meta)Genomic Annotation. Omics J. Integr. Biol. 2008, 12, 137–141. [Google Scholar] [CrossRef]
- Treangen, T.J.; Ondov, B.D.; Koren, S.; Phillippy, A.M. The Harvest Suite for Rapid Core-Genome Alignment and Visualization of Thousands of Intraspecific Microbial Genomes. Genome Biol. 2014, 15, 524. [Google Scholar] [CrossRef]
- Nixon, K.C. The Parsimony Ratchet, a New Method for Rapid Parsimony Analysis. Cladistics Int. J. Willi Hennig Soc. 1999, 15, 407–414. [Google Scholar] [CrossRef]
- Schliep, K.P. Phangorn: Phylogenetic Analysis in R. Bioinformatics 2011, 27, 592–593. [Google Scholar] [CrossRef]
- Zhou, Z.; Alikhan, N.-F.; Sergeant, M.J.; Luhmann, N.; Vaz, C.; Francisco, A.P.; Carriço, J.A.; Achtman, M. GrapeTree: Visualization of Core Genomic Relationships among 100,000 Bacterial Pathogens. Genome Res. 2018, 28, 1395–1404. [Google Scholar] [CrossRef]
- Palmateer, N.E.; Hope, V.D.; Roy, K.; Marongiu, A.; White, J.M.; Grant, K.A.; Ramsay, C.N.; Goldberg, D.J.; Ncube, F. Infections with Spore-Forming Bacteria in Persons Who Inject Drugs, 2000–2009. Emerg. Infect. Dis. 2013, 19, 29–34. [Google Scholar] [CrossRef]
- Wattiau, P.; Klee, S.R.; Fretin, D.; Van Hessche, M.; Menart, M.; Franz, T.; Chasseur, C.; Butaye, P.; Imberechts, H. Occurrence and Genetic Diversity of Bacillus anthracis Strains Isolated in an Active Wool-Cleaning Factory. Appl. Environ. Microbiol. 2008, 74, 4005–4011. [Google Scholar] [CrossRef]
- Derzelle, S.; Aguilar-Bultet, L.; Frey, J. Comparative Genomics of Bacillus anthracis from the Wool Industry Highlights Polymorphisms of Lineage A.Br.Vollum. Infect. Genet. Evol. 2016, 46, 50–58. [Google Scholar] [CrossRef]
- Saile, E.; Koehler, T.M. Bacillus anthracis Multiplication, Persistence, and Genetic Exchange in the Rhizosphere of Grass Plants. Appl. Environ. Microbiol. 2006, 72, 3168–3174. [Google Scholar] [CrossRef]
- Dey, R.; Hoffman, P.S.; Glomski, I.J. Germination and Amplification of Anthrax Spores by Soil-Dwelling Amoebas. Appl. Environ. Microbiol. 2012, 78, 8075–8081. [Google Scholar] [CrossRef]
- Schuch, R.; Pelzek, A.J.; Kan, S.; Fischetti, V.A. Prevalence of Bacillus anthracis-like Organisms and Bacteriophages in the Intestinal Tract of the Earthworm Eisenia fetida. Appl. Environ. Microbiol. 2010, 76, 2286–2294. [Google Scholar] [CrossRef] [PubMed]
- Van Ness, G.B. Ecology of Anthrax. Science 1971, 172, 1303–1307. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Glil, M.Y.; Chiaverini, A.; Garofolo, G.; Fasanella, A.; Parisi, A.; Harmsen, D.; Jolley, K.A.; Elschner, M.C.; Tomaso, H.; Linde, J.; et al. A Whole-Genome-Based Gene-by-Gene Typing System for Standardized High-Resolution Strain Typing of Bacillus anthracis. J. Clin. Microbiol. 2021, 59, e0288920. [Google Scholar] [CrossRef]
- Mitchell, C.L.; Andrianaivoarimanana, V.; Colman, R.E.; Busch, J.; Hornstra-O’Neill, H.; Keim, P.S.; Wagner, D.M.; Rajerison, M.; Birdsell, D.N. Low Cost, Low Tech SNP Genotyping Tools for Resource-Limited Areas: Plague in Madagascar as a Model. PLoS Negl. Trop. Dis. 2017, 11, e0006077. [Google Scholar] [CrossRef]
Strain | Ct Range (Derived Allele, DER) | Ct Range (Ancestral Allele, ANC) | Δ(CtDER − CtANC) | SNP Allele | SNP Group 1 |
---|---|---|---|---|---|
Sterne | 38.7–40.0 | 28.7–28.8 | 10.6 ± 0.9 | ANC | Non-A.Br.161 |
UR-1 | 23.1–23.7 | 33.9–34.1 | −10.6 ± 0.3 | DER | A.Br.161 |
3016 | 25.7–26.0 | 39.1–40.0 | −13.7 ± 0.5 | DER | A.Br.161 |
IP4009 | 26.5–26.8 | 39.2–40.0 | −13.4 ± 0.2 | DER | A.Br.161 |
IP4001 | 26.3–26.8 | 37.0–40.0 | −15.4 ± 3.2 | DER | A.Br.161 |
A033 | 20.9–22.2 | 32.2–34.1 | −11.7 ± 0.3 | DER | A.Br.161 |
A034 | 20.0–21.5 | 33.8–35.6 | −13.9 ± 0.2 | DER | A.Br.161 |
A162 | 21.0–21.5 | 37.4–40.0 | −17.5 ± 1.4 | DER | A.Br.161 |
A164 | 20.1–20.2 | 35.5–37.0 | −16.0 ± 1.1 | DER | A.Br.161 |
Sterne | 38.4–38.5 | 27.7–27.9 | 10.7 ± 0.1 | ANC | Non-161-L2 |
UR-1 | 28.8–32.2 | 16.0–19.8 | 12.6 ± 0.4 | ANC | Non-161-L2 |
3016 | 19.5–23.1 | 30.8–34.9 | −11.5 ± 0.3 | DER | 161-L2 |
IP4009 | 18.5–22.8 | 30.9–35.5 | −12.5 ± 0.2 | DER | 161-L2 |
IP4001 | 18.8–22.9 | 30.8–35.3 | −12.2 ± 0.3 | DER | 161-L2 |
A033 | 18.0–18.5 | 30.0–30.1 | −11.8 ± 0.4 | DER | 161-L2 |
A034 | 17.2–17.3 | 28.8–28.9 | −11.7 ± 0.2 | DER | 161-L2 |
A162 | 14.2–17.4 | 25.9–29.6 | −11.9 ± 0.4 | DER | 161-L2 |
A164 | 13.8–16.6 | 26.2–28.8 | −12.3 ± 0.2 | DER | 161-L2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antwerpen, M.; Beyer, W.; Grass, G. New Insights into the Phylogeny of the A.Br.161 (“A.Br.Heroin”) Clade of Bacillus anthracis. Pathogens 2024, 13, 593. https://doi.org/10.3390/pathogens13070593
Antwerpen M, Beyer W, Grass G. New Insights into the Phylogeny of the A.Br.161 (“A.Br.Heroin”) Clade of Bacillus anthracis. Pathogens. 2024; 13(7):593. https://doi.org/10.3390/pathogens13070593
Chicago/Turabian StyleAntwerpen, Markus, Wolfgang Beyer, and Gregor Grass. 2024. "New Insights into the Phylogeny of the A.Br.161 (“A.Br.Heroin”) Clade of Bacillus anthracis" Pathogens 13, no. 7: 593. https://doi.org/10.3390/pathogens13070593
APA StyleAntwerpen, M., Beyer, W., & Grass, G. (2024). New Insights into the Phylogeny of the A.Br.161 (“A.Br.Heroin”) Clade of Bacillus anthracis. Pathogens, 13(7), 593. https://doi.org/10.3390/pathogens13070593