Evaluation of 16S-Based Metagenomic NGS as Diagnostic Tool in Different Types of Culture-Negative Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standard Culture Methods
2.2. Culture-Negative Samples
2.3. Next Generation Sequencing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2019 Antimicrobial Resistance Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhang, L.; Gao, D.; Wang, J.; Li, Y.; Sun, N. Comparison of metagenomic next-generation sequencing and blood culture for diagnosis of bloodstream infections. Front. Cell Infect. Microbiol. 2024, 14, 1338861. [Google Scholar] [CrossRef]
- Deshmukh, D.; Joseph, J.; Chakrabarti, M.; Sharma, S.; Jayasudha, R.; Sama, K.C.; Sontam, B.; Tyagi, M.; Narayanan, R.; Shivaji, S. New insights into culture negative endophthalmitis by unbiased next generation sequencing. Sci. Rep. 2019, 9, 844. [Google Scholar] [CrossRef] [PubMed]
- Wouthuyzen-Bakker, M. Cultures in periprosthetic joint infections, the imperfect gold standard? EFORT Open Rev. 2023, 8, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Werneburg, G.T.; Farber, N.; Gotwald, P.; Shoskes, D.A. Culture-independent Next Generation Sequencing of Urine and Expressed Prostatic Secretions in Men with Chronic Pelvic Pain Syndrome. Urology 2021, 147, 230–234. [Google Scholar] [CrossRef]
- Hong, H.L.; Flurin, L.; Greenwood-Quaintance, K.E.; Wolf, M.J.; Pritt, B.S.; Norgan, A.P.; Patel, R. 16S rRNA Gene PCR/Sequencing of Heart Valves for Diagnosis of Infective Endocarditis in Routine Clinical Practice. J. Clin. Microbiol. 2023, 61, e0034123. [Google Scholar] [CrossRef]
- Michalowitz, A.; Yang, J.; Castaneda, P.; Litrenta, J. Existing and emerging methods of diagnosis and monitoring of pediatric musculoskeletal infection. Injury 2020, 51, 2110–2117. [Google Scholar] [CrossRef]
- Choi, Y.; Oda, E.; Waldman, O.; Sajda, T.; Beck, C.; Oh, I. Next-Generation Sequencing for Pathogen Identification in Infected Foot Ulcers. Foot Ankle Orthop. 2021, 6, 24730114211026933. [Google Scholar] [CrossRef]
- Jiang, J.; Lv, M.; Yang, K.; Zhao, G.; Fu, Y. A case report of diagnosis and dynamic monitoring of Listeria monocytogenes meningitis with NGS. Open Life Sci. 2023, 18, 20220738. [Google Scholar] [CrossRef]
- Lin, A.; Cheng, B.; Han, X.; Zhang, H.; Liu, X.; Liu, X. Value of next-generation sequencing in early diagnosis of patients with tuberculous meningitis. J. Neurol. Sci. 2021, 422, 117310. [Google Scholar] [CrossRef]
- Heitz, M.; Levrat, A.; Lazarevic, V.; Barraud, O.; Bland, S.; Santiago-Allexant, E.; Louis, K.; Schrenzel, J.; Hauser, S. Metagenomics for the microbiological diagnosis of hospital-acquired pneumonia and ventilator-associated pneumonia (HAP/VAP) in intensive care unit (ICU): A proof-of-concept study. Respir. Res. 2023, 24, 285. [Google Scholar] [CrossRef]
- Kimseng, H.; Rossi, G.; Danjean, M.; Jimenez-Araya, B.; Chaligne, C.; Galy, A.; Souhail, B.; Bert, F.; Leflon, V.; Fihman, V.; et al. Evaluation of the contribution of shotgun metagenomics in the microbiological diagnosis of liver abscesses. J. Infect. 2023, 87, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Guilhot, E.; Khelaifia, S.; La Scola, B.; Raoult, D.; Dubourg, G. Methods for culturing anaerobes from human specimen. Future Microbiol. 2018, 13, 369–381. [Google Scholar] [CrossRef]
- Haddad, S.F.; DeSimone, D.C.; Chesdachai, S.; Gerberi, D.J.; Baddour, L.M. Utility of Metagenomic Next-Generation Sequencing in Infective Endocarditis: A Systematic Review. Antibiotics 2022, 11, 1798. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kim, Y.J.; Kim, W.Y. Characteristics and clinical outcomes of culture-negative and culture-positive septic shock: A single-center retrospective cohort study. Crit. Care 2021, 25, 11. [Google Scholar] [CrossRef]
- Wehrenberg, K.; Mitchell, M.; Thompson, N. The Diagnostic and Therapeutic Challenges of Culture Negative Sepsis. Curr. Treat. Options Pediatr. 2024, 10, 52–63. [Google Scholar] [CrossRef]
- Abayasekara, L.M.; Perera, J.; Chandrasekharan, V.; Gnanam, V.S.; Udunuwara, N.A.; Liyanage, D.S.; Bulathsinhala, N.E.; Adikary, S.; Aluthmuhandiram, J.V.S.; Thanaseelan, C.S.; et al. Detection of bacterial pathogens from clinical specimens using conventional microbial culture and 16S metagenomics: A comparative study. BMC Infect. Dis. 2017, 17, 631. [Google Scholar] [CrossRef]
- Hong, H.L.; Flurin, L.; Thoendel, M.J.; Wolf, M.J.; Abdel, M.P.; Greenwood-Quaintance, K.E.; Patel, R. Targeted Versus Shotgun Metagenomic Sequencing-based Detection of Microorganisms in Sonicate Fluid for Periprosthetic Joint Infection Diagnosis. Clin. Infect. Dis. 2023, 76, e1456–e1462. [Google Scholar] [CrossRef] [PubMed]
- Rimoldi, S.G.; Brioschi, D.; Curreli, D.; Salari, F.; Pagani, C.; Tamoni, A.; Longobardi, C.; Bosari, R.; Rizzo, A.; Landonio, S.; et al. Traditional Cultures versus Next Generation Sequencing for Suspected Orthopedic Infection: Experience Gained from a Reference Centre. Antibiotics 2023, 12, 1588. [Google Scholar] [CrossRef]
- Rimoldi, S.G.; Caron, L.; Alvaro, A.; Comandatore, F.; Curreli, D.; Salari, F.; Pagani, C.; Lombardi, A.; Micheli, V.; Tamoni, A.; et al. Gut Microbiota Signature in Atopics Dermatitis: Experience gained at the “L. Sacco” University Hospital, in Milan, Italy. Arch. Microbiol. Immunol. 2023, 7, 111–120. [Google Scholar]
- Mishra, D.; Satpathy, G.; Chawla, R.; Paliwal, D.; Panda, S.K. Targeted metagenomics using next generation sequencing in laboratory diagnosis of culture negative endophthalmitis. Heliyon 2021, 7, e06780. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Hu, H.; Kang, Y.; Chen, W.; Fang, W.; Wang, K.; Zhang, Q.; Fu, A.; Zhou, S.; Cheng, C.; et al. Identification of pathogens in culture-negative infective endocarditis cases by metagenomic analysis. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 43. [Google Scholar] [CrossRef]
- Kullar, R.; Chisari, E.; Snyder, J.; Cooper, C.; Parvizi, J.; Sniffen, J. Next-Generation Sequencing Supports Targeted Antibiotic Treatment for Culture Negative Orthopedic Infections. Clin. Infect. Dis. 2023, 76, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Li, W.; Qiu, E.; Han, S.; Li, Z. Metagenomic NGS optimizes the use of antibiotics in appendicitis patients: Bacterial culture is not suitable as the only guidance. Am. J. Transl. Res. 2021, 13, 3010–3021. [Google Scholar] [PubMed]
- Pitashny, M.; Kadry, B.; Shalaginov, R.; Gazit, L.; Zohar, Y.; Szwarcwort, M.; Stabholz, Y.; Paul, M. NGS in the clinical microbiology settings. Front. Cell Infect. Microbiol. 2022, 12, 955481. [Google Scholar] [CrossRef] [PubMed]
- Gwinn, M.; MacCannell, D.; Armstrong, G.L. Next-Generation Sequencing of Infectious Pathogens. JAMA 2019, 321, 893–894. [Google Scholar] [CrossRef]
- Wang, K.; Li, P.; Lin, Y.; Chen, H.; Yang, L.; Li, J.; Zhang, T.; Chen, Q.; Li, Z.; Du, X.; et al. Metagenomic Diagnosis for a Culture-Negative Sample From a Patient With Severe Pneumonia by Nanopore and Next-Generation Sequencing. Front. Cell Infect. Microbiol. 2020, 10, 182. [Google Scholar] [CrossRef]
- Ma, L.; Zhu, C.; Yan, T.; Hu, Y.; Zhou, J.; Li, Y.; Du, F.; Zhou, J. Illumina and Nanopore sequencing in culture-negative samples from suspected lower respiratory tract infection patients. Front. Cell Infect. Microbiol. 2024, 14, 1230650. [Google Scholar] [CrossRef]
Sample Type | Sample Number | |
---|---|---|
Total Samples (n) | 105 | % |
orthopedics | 50 | 0.48 |
calcaneus biopsy | 1 | 0.01 |
joint fluid | 4 | 0.04 |
synovial tissue | 3 | 0.03 |
bone | 40 | 0.38 |
articular capsule | 2 | 0.02 |
CNS | 16 | 0.15 |
cerebrospinal fluid | 5 | 0.05 |
ventriculoperitoneal shunt | 8 | 0.07 |
brain abscess | 1 | 0.01 |
ventricular biopsy | 2 | 0.02 |
heart | 13 | 0.12 |
heart valve | 13 | 0.12 |
general surgery | 11 | 0.10 |
breast implant | 1 | 0.01 |
esophageal biopsy | 1 | 0.01 |
duodenal biopsy | 1 | 0.01 |
abdominal resection | 1 | 0.01 |
wound | 2 | 0.02 |
gluteal abscess | 2 | 0.02 |
lymph node | 3 | 0.02 |
lung | 6 | 0.06 |
lung biopsy | 1 | 0.01 |
pleural fluid | 1 | 0.01 |
bronchial brushing | 3 | 0.03 |
sputum | 1 | 0.01 |
fluids | 4 | 0.04 |
blood culture | 2 | 0.02 |
dialysis fluid | 1 | 0.01 |
ascitic fluid | 1 | 0.01 |
H&N | 3 | 0.03 |
maxillary sinus | 1 | 0.01 |
tracheal tissue | 1 | 0.01 |
auricle bone | 1 | 0.01 |
eye | 2 | 0.02 |
ocular prosthesis | 1 | 0.01 |
vitreous humor | 1 | 0.01 |
culture unidentifiable | 13 |
n | ||
---|---|---|
Samples | 105 | % |
Microorganism | ||
Cutibacterium acnes | 12 | 0.11 |
Staphylococcus epidermidis | 11 | 0.10 |
Staphylococcus aureus | 10 | 0.10 |
Streptococcus gallolyticus | 4 | 0.04 |
Finegoldia magna | 4 | 0.04 |
Fusobacterium nucleatum | 3 | 0.03 |
Abiotrophia defectiva | 3 | 0.03 |
Actinomyces spp. | 4 | 0.04 |
Bacteroides vulgatus | 2 | 0.02 |
Corynebacterium spp. | 2 | 0.02 |
Prevotella spp. | 4 | 0.04 |
Staphylococcus intermedius | 2 | 0.02 |
Streptococcus pneumoniae | 3 | 0.03 |
Alloprevotella spp. | 1 | 0.01 |
Berthella aurantiaca | 1 | 0.01 |
Bacteroides fragilis | 1 | 0.01 |
Bacillus cereus sushi | 1 | 0.01 |
Bacteroides spp. | 1 | 0.01 |
Burkholderia spp. | 1 | 0.01 |
Enterobacter cloacae | 1 | 0.01 |
Enterobacter spp. | 1 | 0.01 |
Granulicatella spp. | 1 | 0.01 |
Haemophilus parainfluenzae | 1 | 0.01 |
Klebsiella pneumoniae | 1 | 0.01 |
Leifsonia aquatica | 1 | 0.01 |
Parvimonas micra | 1 | 0.01 |
Paenibacillus spp. | 1 | 0.01 |
Proteus spp. | 1 | 0.01 |
Pseudomonas spp. | 1 | 0.01 |
M. catarrhalis | 1 | 0.01 |
Veillonella spp. | 1 | 0.01 |
Biological Specimen | NGS Result | n | ||
---|---|---|---|---|
orthopedics—total | 50 | % | ||
orthopedics | calcaneus biopsy | |||
negative | 1 | 0.02 | ||
joint fluid | ||||
C. acnes | 1 | 0.02 | ||
negative | 3 | 0.06 | ||
synovial tissue | ||||
K. pneumoniae | 1 | 0.02 | ||
C. acnes | 1 | 0.02 | ||
negative | 1 | 0.02 | ||
articular capsule | ||||
negative | 2 | 0.04 | ||
bone | ||||
F. nucleatum | 2 | 0.04 | ||
Actinomyces spp. | 1 | 0.02 | ||
B. vulgatus | 2 | 0.04 | ||
Proteus spp. | 1 | 0.02 | ||
S. aureus | 6 | 0.12 | ||
C. acnes | 6 | 0.12 | ||
Prevotella spp. | 1 | 0.02 | ||
Corynebacterium spp. | 1 | 0.02 | ||
E. cloacae | 1 | 0.02 | ||
F. magna | 3 | 0.06 | ||
S. epidermidis | 10 | 0.20 | ||
P. micra | 1 | 0.02 | ||
B. smithii | 1 | 0.02 | ||
A. defectiva | 1 | 0.02 | ||
negative | 3 | 0.06 | ||
CNS—total | 16 | % | ||
CNS | cerebrospinal fluid | |||
S. intermedius | 1 | 0.06 | ||
Paenibacillus spp. | 1 | 0.06 | ||
H. parainfluenzae | 1 | 0.06 | ||
negative | 2 | 0.13 | ||
ventriculoperitoneal shunt | ||||
Pseudomonas spp. | 1 | 0.06 | ||
Corynebacterium spp. | 1 | 0.06 | ||
C. acnes | 1 | 0.06 | ||
K. pneumoniae | 1 | 0.06 | ||
negative | 4 | 0.25 | ||
brain abscess | ||||
S. aureus | 1 | 0.06 | ||
ventricular biopsy | ||||
Prevotella spp.—C. acnes | 2 | 0.13 | ||
heart | heart—total | 13 | % | |
heart valve | ||||
S. gallolyticus | 2 | 0.14 | ||
A. defectiva | 1 | 0.08 | ||
S. pneumoiae | 1 | 0.08 | ||
B. fragilis | 1 | 0.08 | ||
B. aurantica | 1 | 0.08 | ||
Granulicatella | 1 | 0.08 | ||
S. gallolyticus | 1 | 0.08 | ||
S. intermedius | 1 | 0.08 | ||
negative | 4 | 0.30 | ||
general surgery—total | 11 | % | ||
general surgery | breast implant | |||
Bacteroides spp. | 1 | 0.09 | ||
esophageal biopsy | ||||
F. nucleatum | 1 | 0.09 | ||
duodenal biopsy | ||||
negative | 1 | 0.09 | ||
abdominal resection | ||||
negative | 1 | 0.09 | ||
wound | ||||
Enterobacter spp. | 1 | 0.09 | ||
negative | 1 | 0.09 | ||
gluteal abscess | ||||
S. aureus | 2 | 0.18 | ||
lymph node | ||||
S. aureus—A. defectiva | 1 | 0.09 | ||
Prevotella spp. | 1 | 0.09 | ||
negative | 1 | 0.09 | ||
lung—total | 6 | % | ||
lung | lung biopsy | |||
F. magna—Actinomyces spp. | 1 | 0.17 | ||
pleural fluid | ||||
Alloprevotella spp. | 1 | 0.17 | ||
bronchial brushing | ||||
Burkholderia spp. | 1 | 0.17 | ||
Veillonella spp. | 1 | 0.17 | ||
Actinomyces spp. | 1 | 0.17 | ||
sputum | ||||
S. pneumoniae—M. catarrhalis | 1 | 0.17 | ||
fluid | fluid—total | 4 | % | |
blood culture | ||||
negative | 2 | 0.50 | ||
dialysis fluid | ||||
L. aquatica | 1 | 0.25 | ||
ascitic fluid | ||||
negative | 1 | 0.25 | ||
H&N | H&N—total | 3 | % | |
maxillary sinus | ||||
Prevotella spp.—Actinomyces spp. | 1 | 0.33 | ||
auricle bone | ||||
C. acnes | 1 | 0.33 | ||
tracheal tissue | ||||
C. acnes | 1 | 0.33 | ||
eye | eye—total | 2 | % | |
ocular prosthesis | ||||
S. epidermidis | 1 | 0.50 | ||
vitreous humor | ||||
S. gallolyticus | 1 | 0.50 |
NGS Result | n | ||
---|---|---|---|
Culture Unidentifiable | 13 | % | |
Acinetobacter lwoffii | 2 | 0.15 | |
Peptostreptococcus spp. | 2 | 0.15 | |
Actinomyces spp. | 1 | 0.08 | |
Bacillus vietnamensis | 1 | 0.08 | |
Enterobacter spp. | 1 | 0.08 | |
Facklamia languida | 1 | 0.08 | |
Pantoea cypripedii | 1 | 0.08 | |
Pseudomonas spp. | 1 | 0.08 | |
Terribacillus spp. | 1 | 0.08 | |
negative | 2 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rimoldi, S.G.; Tamoni, A.; Rizzo, A.; Longobardi, C.; Pagani, C.; Salari, F.; Matinato, C.; Vismara, C.; Gagliardi, G.; Cutrera, M.; et al. Evaluation of 16S-Based Metagenomic NGS as Diagnostic Tool in Different Types of Culture-Negative Infections. Pathogens 2024, 13, 743. https://doi.org/10.3390/pathogens13090743
Rimoldi SG, Tamoni A, Rizzo A, Longobardi C, Pagani C, Salari F, Matinato C, Vismara C, Gagliardi G, Cutrera M, et al. Evaluation of 16S-Based Metagenomic NGS as Diagnostic Tool in Different Types of Culture-Negative Infections. Pathogens. 2024; 13(9):743. https://doi.org/10.3390/pathogens13090743
Chicago/Turabian StyleRimoldi, Sara Giordana, Alessandro Tamoni, Alberto Rizzo, Concetta Longobardi, Cristina Pagani, Federica Salari, Caterina Matinato, Chiara Vismara, Gloria Gagliardi, Miriam Cutrera, and et al. 2024. "Evaluation of 16S-Based Metagenomic NGS as Diagnostic Tool in Different Types of Culture-Negative Infections" Pathogens 13, no. 9: 743. https://doi.org/10.3390/pathogens13090743
APA StyleRimoldi, S. G., Tamoni, A., Rizzo, A., Longobardi, C., Pagani, C., Salari, F., Matinato, C., Vismara, C., Gagliardi, G., Cutrera, M., & Gismondo, M. R. (2024). Evaluation of 16S-Based Metagenomic NGS as Diagnostic Tool in Different Types of Culture-Negative Infections. Pathogens, 13(9), 743. https://doi.org/10.3390/pathogens13090743