Metabolic Footprint of Treponema phagedenis and Treponema pedis Reveals Potential Interaction Towards Community Succession and Pathogenesis in Bovine Digital Dermatitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolates and Culture Medium
2.2. Metabolomic Profiling
2.3. Data Analysis
3. Results
3.1. Organic Acids (OAs)
3.2. Amino Acids (AAs)
3.3. Fatty Acids (FAs/SCFAs)
4. Discussion
4.1. Organic Acids
4.2. Amino Acids
4.3. Fatty Acids
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lubbe, A.; Bowen, B.P.; Northen, T. Exometabolomic Analysis of Cross-Feeding Metabolites. Metabolites 2017, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Zelezniak, A.; Andrejev, S.; Ponomarova, O.; Mende, D.R.; Bork, P.; Patil, K.R. Metabolic Dependencies Drive Species Co-Occurrence in Diverse Microbial Communities. Proc. Natl. Acad. Sci. USA 2015, 112, 6449–6454. [Google Scholar] [CrossRef] [PubMed]
- Molina, C.A.; Vilchez, S. Cooperation and Bacterial Pathogenicity: An Approach to Social Evolution. Rev. Chil. Hist. Nat. 2014, 87, 14. [Google Scholar] [CrossRef]
- Gabrilska, R.A.; Rumbaugh, K.P. Biofilm Models of Polymicrobial Infection. Future Microbiol. 2015, 10, 1997. [Google Scholar] [CrossRef] [PubMed]
- Krull, A.C.; Shearer, J.K.; Gorden, P.J.; Cooper, V.L.; Phillips, G.J.; Plummera, P.J. Deep Sequencing Analysis Reveals Temporal Microbiota Changes Associated with Development of Bovine Digital Dermatitis. Infect. Immun. 2014, 82, 3359–3373. [Google Scholar] [CrossRef]
- Espiritu, H.M.; Mamuad, L.L.; Kim, S.; Jin, S.; Lee, S.; Kwon, S.; Cho, Y. Microbiome Shift, Diversity, and Overabundance of Opportunistic Pathogens in Bovine Digital Dermatitis Revealed by 16S RRNA Amplicon Sequencing. Animals 2020, 10, 1798. [Google Scholar] [CrossRef]
- Moreira, T.F.; Facury Filho, E.J.; Carvalho, A.U.; Strube, M.L.; Nielsen, M.W.; Klitgaard, K.; Jensen, T.K. Pathology and Bacteria Related to Digital Dermatitis in Dairy Cattle in All Year-Round Grazing System in Brazil. PLoS ONE 2018, 13, e0193870. [Google Scholar] [CrossRef]
- Bay, V.; Griffiths, B.; Carter, S.; Evans, N.J.; Lenzi, L.; Bicalho, R.C.; Oikonomou, G. 16S RRNA Amplicon Sequencing Reveals a Polymicrobial Nature of Complicated Claw Horn Disruption Lesions and Interdigital Phlegmon in Dairy Cattle. Sci. Rep. 2018, 8, 15529. [Google Scholar] [CrossRef]
- Zinicola, M.; Lima, F.; Lima, S.; Machado, V.; Gomez, M. Altered Microbiomes in Bovine Digital Dermatitis Lesions, and the Gut as a Pathogen Reservoir. PLoS ONE 2015, 10, e0120504. [Google Scholar] [CrossRef]
- Schrank, K.; Choi, B.K.; Grund, S.; Moter, A.; Heuner, K.; Nattermann, H.; Göbel, U.B. Treponema brennaborense sp. nov., a Novel Spirochaete Isolated from a Dairy Cow Suffering from Digital Dermatitis. Int. J. Syst. Bacteriol. 1999, 49, 43–50. [Google Scholar] [CrossRef]
- Nally, J.E.; Hornsby, R.L.; Alt, D.P.; Whitelegge, J.P. Phenotypic and Proteomic Characterization of Treponemes Associated with Bovine Digital Dermatitis. Vet. Microbiol. 2019, 235, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Evans, N.J.; Brown, J.M.; Demirkan, I.; Murray, R.D.; Birtles, R.J.; Hart, C.A.; Carter, S.D. Treponema pedis sp. nov., a Spirochaete Isolated from Bovine Digital Dermatitis Lesions. Int. J. Syst. Evol. Microbiol. 2009, 59, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Kuhnert, P.; Brodard, I.; Alsaaod, M.; Steiner, A.; Stoffel, M.H.; Jores, J. Treponema phagedenis (Ex Noguchi 1912) Brumpt 1922 sp. nov., nom. rev., Isolated from Bovine Digital Dermatitis. Int. J. Syst. Evol. Microbiol. 2020, 70, 2115–2123. [Google Scholar] [CrossRef] [PubMed]
- Staton, G.J.; Clegg, S.R.; Ainsworth, S.; Armstrong, S.; Carter, S.D.; Radford, A.D.; Darby, A.; Wastling, J.; Hall, N.; Evans, N.J. Dissecting the Molecular Diversity and Commonality of Bovine and Human Treponemes Identifies Key Survival and Adhesion Mechanisms. PLoS Pathog. 2021, 17, e1009464. [Google Scholar] [CrossRef]
- Nielsen, M.W.; Strube, M.L.; Isbrand, A.; Al-Medrasi, W.D.H.M.; Boye, M.; Jensen, T.K.; Klitgaard, K. Potential Bacterial Core Species Associated with Digital Dermatitis in Cattle Herds Identified by Molecular Profiling of Interdigital Skin Samples. Vet. Microbiol. 2016, 186, 139–149. [Google Scholar] [CrossRef]
- Demirkan, I.; Evans, N.J.; Singh, P.; Brown, J.M.; Getty, B.; Carter, S.D.; Timofte, D.; Hart, C.A.; Vink, W.D.; Birtles, R.J.; et al. Association of Unique, Isolated Treponemes with Bovine Digital Dermatitis Lesions. J. Clin. Microbiol. 2009, 47, 689–696. [Google Scholar] [CrossRef]
- Espiritu, H.M.; Mamuad, L.L.; Jin, S.; Kim, S.; Kwon, S.; Lee, S.; Lee, S.; Cho, Y. Genotypic and Phenotypic Characterization of Treponema phagedenis from Bovine Digital Dermatitis. Microorganisms 2020, 8, 1520. [Google Scholar] [CrossRef]
- Espiritu, H.; Mamuad, L.; Valete, E.J.; Jung, M.; Lee, S.S.; Cho, Y.L. Complete Genome Sequence of Treponema pedis GNW45 Isolated from Dairy Cattle with Active Bovine Digital Dermatitis in Korea. J. Anim. Sci. Technol. 2023. pISSN: 2055-0391, eISSN: 2672-0191. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, S.H.; Oh, S.J.; Lee, H.S.; Ji, M.; Choi, S.; Lee, S.S.; Paik, M.J. Metabolomic Analysis of Organic Acids, Amino Acids, and Fatty Acids in Plasma of Hanwoo Beef on a High-Protein Diet. Metabolomics 2020, 16, 114. [Google Scholar] [CrossRef]
- Silva, L.P.; Northen, T.R. Exometabolomics and MSI: Deconstructing How Cells Interact to Transform Their Small Molecule Environment. Curr. Opin. Biotechnol. 2015, 34, 209–216. [Google Scholar] [CrossRef]
- Freilich, S.; Zarecki, R.; Eilam, O.; Segal, E.S.; Henry, C.S.; Kupiec, M.; Gophna, U.; Sharan, R.; Ruppin, E. Competitive and Cooperative Metabolic Interactions in Bacterial Communities. Nat. Commun. 2011, 2, 589. [Google Scholar] [CrossRef]
- Doelle, H.W. Carbohydrate Metabolism. In Bacterial Metabolism; Elsevier: Amsterdam, The Netherlands, 1975; pp. 208–311. [Google Scholar]
- Kreth, J.; Lengeler, J.W.; Jahreis, K. Characterization of Pyruvate Uptake in Escherichia Coli K-12. PLoS ONE 2013, 8, e67125. [Google Scholar] [CrossRef] [PubMed]
- Nichols, J.C.; Baseman, J.B. Carbon Sources Utilized by Virulent Treponema pallidum. Infect. Immun. 1975, 12, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.; Dong, Z.; Xu, X.; Cochran, D.L.; Ebersole, J.L. Role of Glutathione Metabolism of Treponema denticola in Bacterial Growth and Virulence Expression. Infect. Immun. 2002, 70, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Blötz, C.; Stülke, J. Glycerol Metabolism and Its Implication in Virulence in Mycoplasma. FEMS Microbiol. Rev. 2017, 41, 640–652. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.J.; Wu, L.; Huang, W.; Chen, C.; Chen, Y.; Lu, X.L.; Zhang, X.L.; Yang, B.F.; Dong, D.L. Glycolic Acid Modulates the Mechanical Property and Degradation of Poly(Glycerol, Sebacate, Glycolic Acid). J. Biomed. Mater. Res. A 2010, 92, 332–339. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, F.; Thomas, S.C.; Zhang, Y.; Paul, B.; Sakilam, S.; Chae, S.; Li, P.; Almeter, C.; Kamer, A.R.; et al. Targeting the Succinate Receptor Effectively Inhibits Periodontitis. Cell Rep. 2022, 40, 111389. [Google Scholar] [CrossRef]
- Rotstein, O.D.; Pruett, T.L.; Fiegel, V.D.; Nelson, R.D.; Simmons, R.L. Succinic Acid, a Metabolic by-Product of Bacteroides Species, Inhibits Polymorphonuclear Leukocyte Function. Infect. Immun. 1985, 48, 402. [Google Scholar] [CrossRef]
- Sharma, A. Virulence Mechanisms of Tannerella forsythia. Periodontol. 2000 2010, 54, 106. [Google Scholar] [CrossRef]
- Konze, S.A.; Abraham, W.R.; Goethe, E.; Surges, E.; Kuypers, M.M.M.; Hoeltig, D.; Meens, J.; Vogel, C.; Stiesch, M.; Valentin-Weigand, P.; et al. Link between Heterotrophic Carbon Fixation and Virulence in the Porcine Lung Pathogen Actinobacillus pleuropneumoniae. Infect. Immun. 2019, 87, 10–1128. [Google Scholar] [CrossRef]
- Pierzynowski, S.; Pierzynowska, K. Alpha-Ketoglutarate, a Key Molecule Involved in Nitrogen Circulation in Both Animals and Plants, in the Context of Human Gut Microbiota and Protein Metabolism. Adv. Med. Sci. 2022, 67, 142–147. [Google Scholar] [CrossRef]
- Sidiq, K.R.; Chow, M.W.; Zhao, Z.; Daniel, R.A. Alanine Metabolism in Bacillus Subtilis. Mol. Microbiol. 2020, 115, 739–757. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Rajendran, R.; Zhao, Y.; Tan, B.; Wu, G.; Bazer, F.W.; Zhu, G.; Peng, Y.; Huang, X.; Deng, J.; et al. Amino Acids as Mediators of Metabolic Cross Talk between Host and Pathogen. Front. Immunol. 2018, 9, 319. [Google Scholar] [CrossRef] [PubMed]
- Citterio, F.; Romano, F.; Meoni, G.; Iaderosa, G.; Grossi, S.; Sobrero, A.; Dego, F.; Corana, M.; Berta, G.N.; Tenori, L.; et al. Changes in the Salivary Metabolic Profile of Generalized Periodontitis Patients after Non-Surgical Periodontal Therapy: A Metabolomic Analysis Using Nuclear Magnetic Resonance Spectroscopy. J. Clin. Med. 2020, 9, 3977. [Google Scholar] [CrossRef] [PubMed]
- Szafrański, S.P.; Deng, Z.L.; Tomasch, J.; Jarek, M.; Bhuju, S.; Meisinger, C.; Kühnisch, J.; Sztajer, H.; Wagner-Döbler, I. Functional Biomarkers for Chronic Periodontitis and Insights into the Roles of Prevotella nigrescens and Fusobacterium nucleatum; a Metatranscriptome Analysis. npj Biofilms Microbiomes 2015, 1, 15017. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.L.; Johnson, R.C.; Peterson, D. Metabolism of Common Substrates by the Reiter Strain of Treponema pallidum. Infect. Immun. 1971, 3, 727–734. [Google Scholar] [CrossRef]
- Miao, R.; Fieldsteel, A.H. Genetics of Treponema: Relationship between Treponema pallidum and Five Cultivable Treponemes. J. Bacteriol. 1978, 133, 101–107. [Google Scholar] [CrossRef]
- Silva Junior, A.R.D.; Semenoff Segundo, A.; Semenoff, T.A.D.V.; Silva, N.F.D.; CoporossiI, C. Effect of Glutamine Ingestion on the Progression of Induced Periodontitis: Experimental Study in Rats. Rev. Odontol. UNESP 2018, 47, 119–123. [Google Scholar] [CrossRef]
- Téllez, N.; Aguilera, N.; Quiñónez, B.; Silva, E.; González, L.E.; Hernández, L. Arginine and Glutamate Levels in the Gingival Crevicular Fluid from Patients with Chronic Periodontitis. Braz. Dent. J. 2008, 19, 318–322. [Google Scholar] [CrossRef]
- Kang, D.; Shi, B.; Erfe, M.C.; Craft, N.; Li, H. Vitamin B12 Modulates the Transcriptome of the Skin Microbiota in Acne Pathogenesis. Sci. Transl. Med. 2015, 7, 293ra103. [Google Scholar] [CrossRef]
- Tsuchida, S.; Nakayama, T. Metabolomics Research in Periodontal Disease by Mass Spectrometry. Molecules 2022, 27, 2864. [Google Scholar] [CrossRef]
- Tan, K.H.; Seers, C.A.; Dashper, S.G.; Mitchell, H.L.; Pyke, J.S.; Meuric, V.; Slakeski, N.; Cleal, S.M.; Chambers, J.L.; McConville, M.J.; et al. Porphyromonas gingivalis and Treponema denticola Exhibit Metabolic Symbioses. PLoS Pathog. 2014, 10, e1003955. [Google Scholar] [CrossRef] [PubMed]
- Dashper, S.G.; Brownfield, L.; Slakeski, N.; Zilm, P.S.; Rogers, A.H.; Reynolds, E.C. Sodium Ion-Driven Serine/Threonine Transport in Porphyromonas gingivalis. J. Bacteriol. 2001, 183, 4142–4148. [Google Scholar] [CrossRef]
- Jelsbak, L.; Hartman, H.; Schroll, C.; Rosenkrantz, J.T.; Lemire, S.; Wallrodt, I.; Thomsen, L.E.; Poolman, M.; Kilstrup, M.; Jensen, P.R.; et al. Identification of Metabolic Pathways Essential for Fitness of Salmonella Typhimurium in Vivo. PLoS ONE 2014, 9, e101869. [Google Scholar] [CrossRef] [PubMed]
- Cleaver, L.M.; Moazzez, R.V.; Carpenter, G.H. Evidence for Proline Utilization by Oral Bacterial Biofilms Grown in Saliva. Front. Microbiol. 2021, 11, 619968. [Google Scholar] [CrossRef]
- Fukamachi, H.; Nakano, Y.; Okano, S.; Shibata, Y.; Abiko, Y.; Yamashita, Y. High Production of Methyl Mercaptan by L-Methionine-α-Deamino-γ-Mercaptomethane Lyase from Treponema denticola. Biochem. Biophys. Res. Commun. 2005, 331, 127–131. [Google Scholar] [CrossRef]
- Stephen, A.S.; Millhouse, E.; Sherry, L.; Aduse-Opoku, J.; Culshaw, S.; Ramage, G.; Bradshaw, D.J.; Burnett, G.R.; Allaker, R.P. In Vitro Effect of Porphyromonas gingivalis Methionine Gamma Lyase on Biofilm Composition and Oral Inflammatory Response. PLoS ONE 2016, 11, e0169157. [Google Scholar] [CrossRef]
- De Ciccio, A.; McLaughlin, R.; Chan, E.C.S. Factors Affecting the Formation of Spherical Bodies in the Spirochete Treponema denticola. Oral Microbiol. Immunol. 1999, 14, 384–386. [Google Scholar] [CrossRef]
- Van Horn, K.G.; Smibert, R.M. Fatty Acid Requirement of Treponema denticola and Treponema vincentii. Can. J. Microbiol. 1982, 28, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.K.; Ellermann, M. Long Chain Fatty Acids and Virulence Repression in Intestinal Bacterial Pathogens. Front. Cell. Infect. Microbiol. 2022, 12, 801. [Google Scholar] [CrossRef]
- Wyss, C. Fatty Acids Synthesized by Oral Treponemes in Chemically Defined Media. FEMS Microbiol. Lett. 2007, 269, 70–76. [Google Scholar] [CrossRef]
- Teoh, W.P.; Chen, X.; Laczkovich, I.; Alonzo, F. Staphylococcus aureus Adapts to the Host Nutritional Landscape to Overcome Tissue-Specific Branched-Chain Fatty Acid Requirement. Proc. Natl. Acad. Sci. USA 2021, 118, e2022720118. [Google Scholar] [CrossRef] [PubMed]
- Shikama, Y.; Kudo, Y.; Ishimaru, N.; Funaki, M. Possible Involvement of Palmitate in Pathogenesis of Periodontitis. J. Cell. Physiol. 2015, 230, 2981–2989. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, F.; Guo, X.; Liu, F.; Liu, Z.; Wu, X.; Zhao, M.; Ma, M.; Liu, H.; Qin, L.; et al. Interception of Host Fatty Acid Metabolism by Mycobacteria under Hypoxia to Suppress Anti-TB Immunity. Cell Discov. 2021, 7, 90. [Google Scholar] [CrossRef] [PubMed]
- Krieg, N.R.; Staley, J.T.; Brown, D.R.; Hedlund, B.P.; Paster, B.J.; Ward, N.L.; Ludwig, W.; Whitman, W.B.; Parte, A.C. Bergey’s Manual of Systematic Bacteriology Volume 4: The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes; Springer: New York, NY, USA, 2011; ISBN 9780387950426. [Google Scholar]
- O’Leary, W. Practical Handbook of Microbiology; CRC Press: New York, NY, USA; Washington, DC, USA, 1989; ISBN 9781466587403. [Google Scholar]
- Tax, G.; Urbán, E.; Palotás, Z.; Puskás, R.; Kónya, Z.; Bíró, T.; Kemény, L.; Szabó, K. Propionic Acid Produced by Propionibacterium acnes Strains Contributes to Their Pathogenicity. Acta Derm. Venereol. 2016, 96, 43–49. [Google Scholar] [CrossRef]
- Wilson-Welder, J.H.; Elliott, M.K.; Zuerner, R.L.; Bayles, D.O.; Alt, D.P.; Stanton, T.B. Biochemical and Molecular Characterization of Treponema phagedenis-like Spirochetes Isolated from a Bovine Digital Dermatitis Lesion. BMC Microbiol. 2013, 13, 280. [Google Scholar] [CrossRef]
- Shirasugi, M.; Nakagawa, M.; Nishioka, K.; Yamamoto, T.; Nakaya, T.; Kanamura, N. Relationship between Periodontal Disease and Butyric Acid Produced by Periodontopathic Bacteria. Inflamm. Regen. 2018, 38, 23. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.; Guo, W.; Li, H.; Lei, L. Periodontitis-Level Butyrate-Induced Ferroptosis in Periodontal Ligament Fibroblasts by Activation of Ferritinophagy. Cell Death Discov. 2020, 6, 119. [Google Scholar] [CrossRef]
- Hou, J.; Xu, J.; Liu, Y.; Zhang, H.; Wang, S.; Jiao, Y.; Guo, L.; Li, S. Sodium Butyrate Inhibits Osteogenesis in Human Periodontal Ligament Stem Cells by Suppressing Smad1 Expression. BMC Oral Health 2022, 22, 301. [Google Scholar] [CrossRef]
- Guan, X.; Li, W.; Meng, H. A Double-Edged Sword: Role of Butyrate in the Oral Cavity and the Gut. Mol. Oral Microbiol. 2021, 36, 121–131. [Google Scholar] [CrossRef]
- VanHook, A.M. Formate for Tumor Progression. Sci. Signal. 2022, 15, eadd1844. [Google Scholar] [CrossRef]
- Hatanaka, K.; Shirahase, Y.; Yoshida, T.; Kono, M.; Toya, N.; Sakasegawa, S.I.; Konishi, K.; Yamamoto, T.; Ochiai, K.; Takashiba, S. Enzymatic Measurement of Short-Chain Fatty Acids and Application in Periodontal Disease Diagnosis. PLoS ONE 2022, 17, e0268671. [Google Scholar] [CrossRef] [PubMed]
OA (ng/5 µL) | Control | T. pedis | T. phagedenis | SEM | p-Value |
---|---|---|---|---|---|
Pyruvic acid | 1258.4 a | 484.2 b | 239.6 b | 64.76 | <0.001 |
Glycolic acid | 1666.9 a | 1680.9 a | 1302.5 b | 48.0 | <0.001 |
2-Hydroxybutyric acid | 8.0 b | 47.5 a | 8.5 b | 0.69 | <0.001 |
3-Hydroxypropionic acid | 365.8 a | 322.3 a | 198.5 b | 28.69 | 0.019 |
Succinic acid | 217 b | 284.9 a | 213.1 b | 8.74 | <0.001 |
Fumaric acid | 12 b | 16.4 a | 6.2 c | 0.77 | <0.001 |
Oxaloacetic acid | 17.1 a | 19.8 a | 12.1 b | 0.85 | <0.001 |
α-Ketoglutaric acid | 34.1 a | 32.8 a | 13.4 b | 1.56 | <0.001 |
Malic acid | 95.6 | 114.5 | 132.7 | 10.89 | 0.205 |
2-Hydroxyglutaric acid | 82.2 | 121.6 | 76.3 | 15.45 | 0.231 |
OA (ng/2 µL) | Control | T. pedis | T. phagedenis | SEM | p-Value |
---|---|---|---|---|---|
Alanine | 59.1 c | 83.3 a | 71.4 b | 52.09 | <0.001 |
Glycine | 23.4 b | 0.6 c | 38.4 a | 13.79 | <0.001 |
Valine | 62.3 | 68.7 | 64.4 | 46.39 | 0.556 |
Leucine | 86.9 | 92.4 | 87.3 | 60.69 | 0.188 |
Isoleucine | 112.5 | 109.4 | 107.8 | 77.06 | 0.933 |
Proline | 50.8 b | 89.7 a | 43.9 b | 46.78 | <0.001 |
Pyroglutamic acid | 39.2 | 41.7 | 26.3 | 24.73 | 0.060 |
Methionine | 24.4 a | 14.2 b | 21.5 ab | 12.5 | 0.047 |
Serine | 28.0 a | 29.1 a | 0.6 b | 12.17 | 0.004 |
Threonine | 24.0 b | 38.1 a | 13.2 b | 18.93 | 0.008 |
Phenylalanine | 47.0 | 46.1 | 48.6 | 0.75 | 0.165 |
Aspartic acid | 32.4 ab | 23.7 b | 48.4 a | 3.96 | 0.030 |
Glutamic acid | 205.8 a | 147.8 a | 0 b | 17.46 | 0.003 |
Asparagine | 21.4 | 16.4 | 8.6 | 2.29 | 0.078 |
Ornithine | 10.7 | 10.7 | 11.0 | 0.62 | 0.931 |
Glutamine | 12.5 a | 10.1 a | 0 b | 0.87 | 0.001 |
Lysine | 135.4 | 133.4 | 126.6 | 15.01 | 0.925 |
Tyrosine | 39.8 | 34.5 | 35.0 | 3.66 | 0.633 |
Tryptophan | 52.0 | 39.9 | 33.9 | 7.35 | 0.383 |
FA (ng/2 µL) | Control | T. pedis | T. phagedenis | SEM | p-Value |
---|---|---|---|---|---|
cis-9-Hexadecenoic acid (C16:1) | 146.9 a | 28.8 b | 18.6 c | 2.12 | <0.001 |
Palmitic acid (C16:0) | 1115.3 a | 191.4 b | 142.2 b | 79.98 | <0.001 |
Linoleic acid (C18:2) | 135.1 a | 18.5 c | 70.5 b | 2.29 | <0.001 |
Oleic acid (C18:1) | 745.1 a | 431.4 b | 386.2 b | 14.24 | <0.001 |
Octadecanoic acid (C18:0) | 730.9 | 405.7 | 228.4 | 159.48 | 0.203 |
Octacosanoic acid (C28:0) | 257.0 | 93.4 | 310.7 | 100.56 | 0.523 |
SCFA (mM) | |||||
Lactic acid | 26.1 a | 15.28 b | 12.99 b | 2.15 | 0.002 |
Formic acid | 0 b | 0 b | 5.1 a | 0.85 | <0.001 |
Acetic acid | 22.08 b | 50.96 a | 26.59 b | 4.72 | <0.001 |
Propionic acid | 5.73 c | 59.18 a | 28.41 b | 7.79 | <0.001 |
Butyric acid | 16.19 c | 67.55 b | 116.58 a | 14.50 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espiritu, H.M.; Valete, E.J.P.; Mamuad, L.L.; Jung, M.; Paik, M.-J.; Lee, S.-S.; Cho, Y.-I. Metabolic Footprint of Treponema phagedenis and Treponema pedis Reveals Potential Interaction Towards Community Succession and Pathogenesis in Bovine Digital Dermatitis. Pathogens 2024, 13, 796. https://doi.org/10.3390/pathogens13090796
Espiritu HM, Valete EJP, Mamuad LL, Jung M, Paik M-J, Lee S-S, Cho Y-I. Metabolic Footprint of Treponema phagedenis and Treponema pedis Reveals Potential Interaction Towards Community Succession and Pathogenesis in Bovine Digital Dermatitis. Pathogens. 2024; 13(9):796. https://doi.org/10.3390/pathogens13090796
Chicago/Turabian StyleEspiritu, Hector M., Edeneil Jerome P. Valete, Lovelia L. Mamuad, Myunghwan Jung, Man-Jeong Paik, Sang-Suk Lee, and Yong-Il Cho. 2024. "Metabolic Footprint of Treponema phagedenis and Treponema pedis Reveals Potential Interaction Towards Community Succession and Pathogenesis in Bovine Digital Dermatitis" Pathogens 13, no. 9: 796. https://doi.org/10.3390/pathogens13090796
APA StyleEspiritu, H. M., Valete, E. J. P., Mamuad, L. L., Jung, M., Paik, M.-J., Lee, S.-S., & Cho, Y.-I. (2024). Metabolic Footprint of Treponema phagedenis and Treponema pedis Reveals Potential Interaction Towards Community Succession and Pathogenesis in Bovine Digital Dermatitis. Pathogens, 13(9), 796. https://doi.org/10.3390/pathogens13090796