Survey and Identification of Fusarium Head Blight Pathogens of Wheat in the Western Cape Region of South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Survey and Sampling of Wheat for FHB Assessment in the Western Cape
2.2. Isolation and Cultivation of Fusarium Isolates from FHB-Infected Wheat Spikelets
2.3. DNA Extraction from Fusarium Isolates for Molecular Analysis
2.4. Polymerase Chain Reaction (PCR) Amplification of Fusarium Isolates
Target | Primer | Primer Sequence (5-3) | Ta (°C) | Reference |
---|---|---|---|---|
F. pseudograminearum | Fp1-1 | CGGGGTAGTTTCACATTTCCG | 60 | [30] |
Fp1-2 | GAGAATGTGATGACGACAATA | |||
F. culmorum | Fc01F | ATGGTGAACTCGTCG TGG C | 60 | [31] |
Fc01R | CCC TTC TTA CGC CAA TCT CG | |||
F. graminearum | Fg16F | CTC CGG ATA TGT TGC GTC AA | 60 | [31] |
Fg16R | GGT AGG TAT CCG ACA TGG CAA | |||
F. avenaceum | FaF | CAA GCA TTG TCG CCA CTC TC | 60 | [35] |
FaR | GTT TGG CTC TAC CGG GAC TG | |||
F. equiseti | FeF1 | CATACCTATACGTTGCCTCG | 60 | [32] |
FeR1 | TTACCAGTAACGAGGTGTATG | |||
F. tricinctum | FtricACL1-f | CTG TGT GTT TGG TGG GAT TGG | 60 | [33] |
FtricACL1-r | TGG GAG TAG ACC GGG AAA AC | |||
F. ipomoeae | CL1F | GARTWCAAGGAGGCCTTCTC | 55 | [34] |
CL2R | TTTTTGCATCATGAGTTGGAC |
2.5. PCR Amplicon Sequencing and Phylogenetic Analysis
2.6. Profiling of Mycotoxin Chemotypes in the Fusarium Species
3. Results
3.1. Identification of Wheat Head Blight Pathogens in Western Cape Region of South Africa
3.2. Disease Severity and Rate from the Sampling Locations in the Western Cape Region
3.3. Frequency and Distribution of Different Fusarium Species Across the Different Sampling Locations
3.4. Profiling of Mycotoxin Chemotypes by Fusarium Species Isolated from FHB Diseased Wheat Spikelet
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Coller, G.J.; Rose, L.J.; Boutigny, A.-L.; Ward, T.J.; Lamprecht, S.C.; Viljoen, A. The Distribution and Type B Trichothecene Chemotype of Fusarium Species Associated with Head Blight of Wheat in South Africa During 2008 and 2009. PLoS ONE 2022, 17, e0275084. [Google Scholar] [CrossRef]
- Shude, S.P.; Yobo, K.S.; Mbili, N.C. Progress in the Management of Fusarium Head Blight of Wheat: An Overview. S. Afr. J. Sci. 2020, 116, 1–7. [Google Scholar] [CrossRef]
- Ma, Z.; Xie, Q.; Li, G.; Jia, H.; Zhou, J.; Kong, Z.; Li, N.; Yuan, Y. Germplasms, Genetics and Genomics for Better Control of Disastrous Wheat Fusarium Head Blight. Theor. Appl. Genet. 2020, 133, 1541–1568. [Google Scholar] [CrossRef]
- Wang, L.; Wang, D.; Yuan, S.; Feng, X.; Wang, M. Transcriptomic Insights into the Antifungal Effects of Magnolol on the Growth and Mycotoxin Production of Alternaria Alternata. Toxins 2020, 12, 665. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Liu, X.; Zhang, X.; Zhang, M.; Gu, Y.; Ali, Q.; Mohamed, M.S.R.; Xu, J.; Shi, J.; Gao, X.; et al. Mycosubtilin Produced by Bacillus subtilis ATCC6633 Inhibits Growth and Mycotoxin Biosynthesis of Fusarium graminearum and Fusarium verticillioides. Toxins 2021, 13, 791. [Google Scholar] [CrossRef]
- Spanic, V.; Maricevic, M.; Ikic, I.; Sulyok, M.; Sarcevic, H. Three-Year Survey of Fusarium Multi-Metabolites/Mycotoxins Contamination in Wheat Samples in Potentially Epidemic Fhb Conditions. Agronomy 2023, 13, 805. [Google Scholar] [CrossRef]
- Paudel, B.; Pedersen, C.; Yen, Y.; Marzano, S.-Y.L. Fusarium graminearum Virus-1 Strain FgV1-SD4 Infection Eliminates Mycotoxin Deoxynivalenol Synthesis by Fusarium graminearum in FHB. Microorganisms 2022, 10, 1484. [Google Scholar] [CrossRef]
- Hudec, K.; Kičinová, J.; Mihók, M. Changes of Species Spectrum Associated with Fusarium Head Blight Caused by Fungicides. J. Cent. Eur. Agric. 2019, 20, 376–388. [Google Scholar] [CrossRef]
- Powell, A.J.; Kim, S.H.; Cordero, J.; Vujanovic, V. Protocooperative Effect of Sphaerodes Mycoparasitica Biocontrol and Crop Genotypes on Fhb Mycotoxin Reduction in Bread and Durum Wheat Grains Intended for Human and Animal Consumption. Microorganisms 2023, 11, 159. [Google Scholar] [CrossRef]
- Qiu, M.; Zheng, S.; Tang, L.; Hu, X.; Xu, Q.; Zheng, L.; Weng, S. Raman Spectroscopy and Improved Inception Network for Determination of Fhb-Infected Wheat Kernels. Foods 2022, 11, 578. [Google Scholar] [CrossRef]
- Matić, M.; Vuković, R.; Vrandečić, K.; Štolfa Čamagajevac, I.; Ćosić, J.; Vuković, A.; Dvojković, K.; Novoselović, D. Defense Response to Fusarium Infection in Winter Wheat Varieties, Varying in Fhb Susceptibility, Grown under Different Nitrogen Levels. Agronomy 2022, 12, 1746. [Google Scholar] [CrossRef]
- Spanic, V.; Zdunic, Z.; Drezner, G.; Sarkanj, B. The Pressure of Fusarium Disease and Its Relation with Mycotoxins in the Wheat Grain and Malt. Toxins 2019, 11, 198. [Google Scholar] [CrossRef]
- Alisaac, E.; Mahlein, A.-K. Fusarium Head Blight on Wheat: Biology, Modern Detection and Diagnosis and Integrated Disease Management. Toxins 2023, 15, 192. [Google Scholar] [CrossRef]
- Minnaar-Ontong, A.; Herselman, L.; Kriel, W.-M.; Leslie, J.F. Morphological Characterization and Trichothecene Genotype Analysis of a Fusarium Head Blight Population in South Africa. Eur. J. Plant Pathol. 2017, 148, 261–269. [Google Scholar] [CrossRef]
- De Villiers, C.I. Glasshouse Screening of Cimmyt Wheat Germplasm for Fusarium Head Blight Response in South Africa. S. Afr. J. Plant Soil 2014, 31, 49–51. [Google Scholar] [CrossRef]
- Shah, L.; Ali, A.; Yahya, M.; Zhu, Y.; Wang, S.; Si, H.; Rahman, H.; Ma, C. Integrated Control of Fusarium Head Blight and Deoxynivalenol Mycotoxin in Wheat. Plant Pathol. 2018, 67, 532–548. [Google Scholar] [CrossRef]
- Hong, Y.; Zhang, M.; Yuan, Z.; Zhu, J.; Lv, C.; Guo, B.; Wang, F.; Xu, R. Genome-Wide Association Studies Reveal Stable Loci for Wheat Grain Size under Different Sowing Dates. PeerJ 2024, 12, e16984. [Google Scholar] [CrossRef]
- Goncharov, A.A.; Gorbatova, A.S.; Sidorova, A.A.; Tiunov, A.V.; Bocharov, G.A. Mathematical Modelling of the Interaction of Winter Wheat (Triticum aestivum) and Fusarium Species (Fusarium spp.). Ecol. Model. 2022, 465, 109856. [Google Scholar] [CrossRef]
- Imane, B.; Hannane, A.; Amor, B.; Noureddine, R. Fusarium Species Associated with Wheat Head Blight Disease in Algeria: Characterization and Effects of Triazole Fungicides. Pestic. Phytomed./Pestic. I Fitomed. 2022, 37, 49–62. [Google Scholar] [CrossRef]
- Hadjout, S.; Chéreau, S.; Mekliche, L.; Marchegay, G.; Ducos, C.; Boureghda, H.; Zouidi, M.; Barreau, C.; Bouznad, Z.; Richard-Forget, F. Molecular Identification of Some Fusarium Isolates and Their Chemotypes Involved in Fusarium Head Blight on Durum Wheat in Algeria. Arch. Phytopathol. Plant Prot. 2022, 55, 499–513. [Google Scholar] [CrossRef]
- Zhang, J.B.; Wang, J.H.; Gong, A.D.; Chen, F.F.; Song, B.; Li, X.; Li, H.P.; Peng, C.H.; Liao, Y.C. Natural Occurrence of Fusarium Head Blight, Mycotoxins and Mycotoxin-Producing Isolates of Fusarium in Commercial Fields of Wheat in Hubei. Plant Pathol. 2013, 62, 92–102. [Google Scholar] [CrossRef]
- Šíp, V.; Chrpová, J.; Leišová, L.; Sýkorová, S.; Kučera, L.; Ovesná, J. Effects of Genotype, Environment and Fungicide Treatment on Development of Fusarium Head Blight and Accumulation of Don in Winter Wheat Grain. Czech J. Genet. Plant Breed. 2007, 43, 16. [Google Scholar] [CrossRef]
- Peršić, V.; Božinović, I.; Varnica, I.; Babić, J.; Španić, V. Impact of Fusarium Head Blight on Wheat Flour Quality: Examination of Protease Activity, Technological Quality and Rheological Properties. Agronomy 2023, 13, 662. [Google Scholar] [CrossRef]
- Wenda-Piesik, A.; Lemańczyk, G.; Twarużek, M.; Błajet-Kosicka, A.; Kazek, M.; Grajewski, J. Fusarium Head Blight Incidence and Detection of Fusarium Toxins in Wheat in Relation to Agronomic Factors. Eur. J. Plant Pathol. 2017, 149, 515–531. [Google Scholar] [CrossRef]
- Kumar, N.; Upadhyay, G.; Chhetri, K.B.; Harsha, B.R.; Malik, G.K.; Kumar, R.; Jasrotia, P.; Samota, S.R.; Kumar, N.; Chhokar, R.S.; et al. Pre-and Post-Harvest Management of Wheat for Improving the Productivity, Quality, and Resource Utilization Efficiency. In Wheat Science; CRC Press: Boca Raton, FL, USA, 2023; pp. 57–106. [Google Scholar]
- Asif, M. Effects of Cultivars and Fungicides on Foliar Fungal Diseases and Fusarium Head Blight in Winter Wheat. Ph.D. Thesis, The University of Nebraska-Lincoln, Lincoln, NE, USA, 2024. [Google Scholar]
- Tillmann, M.; von Tiedemann, A.; Winter, M. Crop Rotation Effects on Incidence and Diversity of Fusarium Species Colonizing Stem Bases and Grains of Winter Wheat. J. Plant Dis. Prot. 2017, 124, 121–130. [Google Scholar] [CrossRef]
- Schöneberg, T.; Martin, C.; Wettstein, F.E.; Bucheli, T.D.; Mascher, F.; Bertossa, M.; Musa, T.; Keller, B.; Vogelgsang, S. Fusarium and Mycotoxin Spectra in Swiss Barley Are Affected by Various Cropping Techniques. Food Addit. Contam. Part A 2016, 33, 1608–1619. [Google Scholar] [CrossRef] [PubMed]
- Stack, R.W.; McMullen, M.P. A Visual Scale to Estimate Severity of Fusarium Head Blight in Wheat; North Dakota State University Extension Service: Fargo, ND, USA, 1998; p. 1095. [Google Scholar]
- Scott, J.B.; Chakraborty, S. Multilocus Sequence Analysis of Fusarium pseudograminearum Reveals a Single Phylogenetic Species. Mycol. Res. 2006, 110, 1413–1425. [Google Scholar] [CrossRef]
- Nicholson, P.; Simpson, D.; Weston, G.; Rezanoor, H.; Lees, A.; Parry, D.; Joyce, D. Detection and Quantification of Fusarium culmorum and Fusarium graminearumin Cereals Using PCR Assays. Physiol. Mol. Plant Pathol. 1998, 53, 17–37. [Google Scholar] [CrossRef]
- Mishra, P.K.; Fox, R.T.; Culham, A. Development of a Pcr-Based Assay for Rapid and Reliable Identification of Pathogenic Fusaria. FEMS Microbiol. Lett. 2003, 218, 329–332. [Google Scholar] [CrossRef]
- Niessen, L.; Gräfenhan, T.; Vogel, R.F. ATP Citrate Lyase 1 (acl1) Gene-Based Loop-Mediated Amplification Assay for the Detection of the Fusarium tricinctum Species Complex in Pure Cultures and in Cereal Samples. Int. J. Food Microbiol. 2012, 158, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, Y.; Li, W.; Cai, L.; Meng, J.; Xia, G.; Yin, J.; Liu, X. Morphological and Molecular Identification of Fusarium ipomoeae as the Causative Agent of Leaf Spot Disease in Tobacco from China. Microorganisms 2022, 10, 1890. [Google Scholar] [CrossRef]
- Doohan, F.M.; Parry, D.W.; Jenkinson, P.; Nicholson, P. The Use of Species-Specific Pcr-Based Assays to Analyse Fusarium Ear Blight of Wheat. Plant Pathol. 1998, 47, 197–205. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Alvarenga, A.A.A.; Ouchi, J.C.M.I.; Martínez, C.C.C.; Mendes, J.M.; Colmán, A.A.; Ríos, D.F.; Arrua, P.D.; Guerreño, C.A.B.; Kohli, M.M.; Ramírez, M.L.; et al. Trichothecene Genotype Profiling of Wheat Fusarium graminearum Species Complex in Paraguay. Toxins 2022, 14, 257. [Google Scholar] [CrossRef]
- Neera; Murali, H. Development and Evaluation of Multiplex Pcr for Detection of T-2 and Zearalenone Producing Fusarium spp. Lett. Appl. Microbiol. 2021, 73, 363–371. [Google Scholar] [CrossRef]
- McMullen, M.; Bergstrom, G.; De Wolf, E.; Dill-Macky, R.; Hershman, D.; Shaner, G.; Van Sanford, D. A Unified Effort to Fight an Enemy of Wheat and Barley: Fusarium Head Blight. Plant Dis. 2012, 96, 1712–1728. [Google Scholar] [CrossRef] [PubMed]
- Reynoso, M.M.; Ramirez, M.L.; Torres, A.M.; Chulze, S.N. Trichothecene Genotypes and Chemotypes in Fusarium graminearum Strains Isolated from Wheat in Argentina. Int. J. Food Microbiol. 2011, 145, 444–448. [Google Scholar] [CrossRef]
- Umpiérrez-Failache, M.; Garmendia, G.; Pereyra, S.; Rodríguez-Haralambides, A.; Ward, T.; Vero, S. Regional Differences in Species Composition and Toxigenic Potential among Fusarium Head Blight Isolates from Uruguay Indicate a Risk of Nivalenol Contamination in New Wheat Production Areas. Int. J. Food Microbiol. 2013, 166, 135–140. [Google Scholar] [CrossRef]
- Del Ponte, E.M.; Spolti, P.; Ward, T.J.; Gomes, L.B.; Nicolli, C.P.; Kuhnem, P.R.; Silva, C.N.; Tessmann, D.J. Regional and Field-Specific Factors Affect the Composition of Fusarium Head Blight Pathogens in Subtropical No-Till Wheat Agroecosystem of Brazil. Phytopathology 2015, 105, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Li, Q.; Wang, Y.; Burgess, L.W.; Sun, M.; Cao, K.; Kong, L. Monitoring of Fusarium Species and Trichothecene Genotypes Associated with Fusarium Head Blight on Wheat in Hebei Province, China. Toxins 2019, 11, 243. [Google Scholar] [CrossRef]
- Bilska, K.; Jurczak, S.; Kulik, T.; Ropelewska, E.; Olszewski, J.; Żelechowski, M.; Zapotoczny, P. Species Composition and Trichothecene Genotype Profiling of Fusarium Field Isolates Recovered from Wheat in Poland. Toxins 2018, 10, 325. [Google Scholar] [CrossRef]
- Scott, D.B.; de Jager, J.H.; van Wyk, P.S. Fusarium Blight of Irrigated Wheat in South Africa. Phytophylactica 1988, 20, 317–320. [Google Scholar]
- Spolti, P.; Shah, D.A.; Fernandes, J.M.C.; Bergstrom, G.C.; Del Ponte, E.M. Disease Risk, Spatial Patterns, and Incidence-Severity Relationships of Fusarium Head Blight in No-Till Spring Wheat Following Maize or Soybean. Plant Dis. 2015, 99, 1360–1366. [Google Scholar] [CrossRef]
- Landschoot, S.; Audenaert, K.; Waegeman, W.; De Baets, B.; Haesaert, G. Influence of Maize–Wheat Rotation Systems on Fusarium Head Blight Infection and Deoxynivalenol Content in Wheat under Low Versus High Disease Pressure. Crop Prot. 2013, 52, 14–21. [Google Scholar] [CrossRef]
- Buerstmayr, H.; Lemmens, M. Breeding Healthy Cereals: Genetic Improvement of Fusarium Resistance and Consequences for Mycotoxins. World Mycotoxin J. 2015, 8, 591–602. [Google Scholar] [CrossRef]
- Spolti, P.; Guerra, D.S.; Badiale-Furlong, E.; Del Ponte, E.M. Single and Sequential Applications of Metconazole Alone or in Mixture with Pyraclostrobin to Improve Fusarium Head Blight Control and Wheat Yield in Brazil. Trop. Plant Pathol. 2013, 38, 85–96. [Google Scholar] [CrossRef]
- Feksa, H.; Couto, H.D.; Garozi, R.; De Almeida, J.; Gardiano, C.; Tessmann, D. Pre-and Postinfection Application of Strobilurin-Triazole Premixes and Single Fungicides for Control of Fusarium Head Blight and Deoxynivalenol Mycotoxin in Wheat. Crop Prot. 2019, 117, 128–134. [Google Scholar] [CrossRef]
- Gorczyca, A.; Oleksy, A.; Gala-Czekaj, D.; Urbaniak, M.; Laskowska, M.; Waśkiewicz, A.; Stępień, Ł. Fusarium Head Blight Incidence and Mycotoxin Accumulation in Three Durum Wheat Cultivars in Relation to Sowing Date and Density. Sci. Nat. 2018, 105, 2. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.A.; Molineros, J.E.; Paul, P.A.; Willyerd, K.T.; Madden, L.V.; De Wolf, E.D. Predicting Fusarium Head Blight Epidemics with Weather-Driven Pre-and Post-Anthesis Logistic Regression Models. Phytopathology 2013, 103, 906–919. [Google Scholar] [CrossRef]
- Obanor, F.; Neate, S.; Simpfendorfer, S.; Sabburg, R.; Wilson, P.; Chakraborty, S. Fusarium graminearum and Fusarium pseudograminearum Caused the 2010 Head Blight Epidemics in Australia. Plant Pathol. 2013, 62, 79–91. [Google Scholar] [CrossRef]
- Clear, R.M.; Patrick, S.K.; Gaba, D.; Roscoe, M.; Demeke, T.; Pouleur, S.; Couture, L.; Ward, T.J.; O’Donnell, K.; Turkington, T.K. Trichothecene and Zearalenone Production, in Culture, by Isolates of Fusarium pseudograminearum from Western Canada. Can. J. Plant Pathol. 2006, 28, 131–136. [Google Scholar] [CrossRef]
Fusarium Species | GenBank Accession |
---|---|
Fusarium avenaceum DR-CTS M1-7 | PQ192151 |
Fusarium culmorum KH-CTS M2(4) | OR580986 |
Fusarium equiseti DR-CTS B | OR581616 |
Fusarium graminearum DR-CTS D1 | OR582334 |
Fusarium ipomoeae SW-CTS SW | OR582482 |
Fusarium pseudograminearum SW-CTS S1(1) | OR582866 |
Fusarium tricinctum KH-CTS 16r-a re | PQ192641 |
Fusarium Species | ZEN | 15-ADON | NIV |
---|---|---|---|
F. culmorum KH-CTS M2(4) | + | - | + |
F. graminearum DR-CTS D1 | - | - | - |
F. pseudograminearum SW-CTS S1(1) | + | + | - |
F. equiseti DR-CTS B | - | - | - |
F. ipomoeae SW-CTS SW | - | - | - |
F. tricinctum KH-CTS 16r-a re | - | - | + |
F. avenaceum DR-CTS M1-7 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Hashimi, A.; Daniel, A.I.; Aina, O.; Du Plessis, M.; Keyster, M.; Klein, A. Survey and Identification of Fusarium Head Blight Pathogens of Wheat in the Western Cape Region of South Africa. Pathogens 2025, 14, 80. https://doi.org/10.3390/pathogens14010080
Al-Hashimi A, Daniel AI, Aina O, Du Plessis M, Keyster M, Klein A. Survey and Identification of Fusarium Head Blight Pathogens of Wheat in the Western Cape Region of South Africa. Pathogens. 2025; 14(1):80. https://doi.org/10.3390/pathogens14010080
Chicago/Turabian StyleAl-Hashimi, Ali, Augustine Innalegwu Daniel, Omolola Aina, Morné Du Plessis, Marshall Keyster, and Ashwil Klein. 2025. "Survey and Identification of Fusarium Head Blight Pathogens of Wheat in the Western Cape Region of South Africa" Pathogens 14, no. 1: 80. https://doi.org/10.3390/pathogens14010080
APA StyleAl-Hashimi, A., Daniel, A. I., Aina, O., Du Plessis, M., Keyster, M., & Klein, A. (2025). Survey and Identification of Fusarium Head Blight Pathogens of Wheat in the Western Cape Region of South Africa. Pathogens, 14(1), 80. https://doi.org/10.3390/pathogens14010080