Maternal Infections, Antibiotics, Steroid Use, and Diabetes Mellitus Increase Risk of Early-Onset Sepsis in Preterm Neonates: A Nationwide Population-Based Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Ethical Statements
2.3. Study Subjects
2.4. Risk Factors
2.5. Statistical Analysis
3. Results
3.1. Epidemiology of Diagnosed Sepsis Among First 90 Days After Birth
3.2. Selecting Clinical Early-Onset Sepsis Cases for Case–Control Study
3.3. Baseline Characteristics of the Study Participants
3.4. Risk Factors of Preterm Infants Acquiring Sepsis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ko, M.H.; Chang, H.Y.; Li, S.T.; Jim, W.T.; Chi, H.; Hsu, C.H.; Peng, C.C.; Lin, C.Y.; Chen, C.H.; Chang, J.H. An 18-year retrospective study on the epidemiology of early-onset neonatal sepsis—Emergence of uncommon pathogens. Pediatr. Neonatol. 2021, 62, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Stoll, B.J.; Puopolo, K.M.; Hansen, N.I.; Sánchez, P.J.; Bell, E.F.; Carlo, W.A.; Cotten, C.M.; D’Angio, C.T.; Kazzi, S.N.J.; Poindexter, B.B.; et al. Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Early-Onset Neonatal Sepsis 2015 to 2017, the Rise of Escherichia coli, and the Need for Novel Prevention Strategies. JAMA Pediatr. 2020, 174, e200593. [Google Scholar] [CrossRef]
- Dyck, B.; Unterberg, M.; Adamzik, M.; Koos, B. The Impact of Pathogens on Sepsis Prevalence and Outcome. Pathogens 2024, 13, 89. [Google Scholar] [CrossRef]
- Garvey, M. Hospital Acquired Sepsis, Disease Prevalence, and Recent Advances in Sepsis Mitigation. Pathogens 2024, 13, 461. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Chen, C.L.; Wu, S.R.; Huang, C.W.; Chiu, C.H. Risk factors and outcome analysis of Acinetobacter baumannii complex bacteremia in critical patients. Crit. Care Med. 2014, 42, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Simonsen, K.A.; Anderson-Berry, A.L.; Delair, S.F.; Davies, H.D. Early-onset neonatal sepsis . Clin. Microbiol. Rev. 2014, 27, 21–47. [Google Scholar] [CrossRef]
- Briggs-Steinberg, C.; Roth, P. Early-Onset Sepsis in Newborns. Pediatr. Rev. 2023, 44, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Puopolo, K.M.; Benitz, W.E.; Zaoutis, T.E.; Committee on Fetus and Newborn; Committee on Infectious Diseases. Management of Neonates Born at ≤34 6/7 Weeks’ Gestation with Suspected or Proven Early-Onset Bacterial Sepsis. Pediatrics 2018, 142, e20182896. [Google Scholar] [CrossRef] [PubMed]
- Coggins, S.A.; Mukhopadhyay, S.; Triebwasser, J.; Downes, K.J.; Christie, J.D.; Puopolo, K.M. Association of delivery risk phenotype with early-onset sepsis in preterm infants. J. Perinatol. 2023, 43, 1166–1172. [Google Scholar] [CrossRef]
- Shane, A.L.; Sánchez, P.J.; Stoll, B.J. Neonatal sepsis. Lancet 2017, 390, 1770–1780. [Google Scholar] [CrossRef]
- Oliver, E.A.; Reagan, P.B.; Slaughter, J.L.; Buhimschi, C.S.; Buhimschi, I.A. Patterns of empiric antibiotic administration for presumed early-onset neonatal sepsis in neonatal intensive care units in the United States. Am. J. Perinatol. 2017, 34, 640–647. [Google Scholar] [PubMed]
- Puopolo, K.M.; Mukhopadhyay, S.; Hansen, N.I.; Cotten, C.M.; Stoll, B.J.; Sanchez, P.J.; Bell, E.F.; Das, A.; Hensman, A.M.; Van Meurs, K.P.; et al. Identification of extremely premature infants at low risk for early-onset sepsis. Pediatrics 2017, 140, e20170925. [Google Scholar] [CrossRef]
- Puopolo, K.M.; Mukhopadhay, S.; Frymoyer, A.; Benitz, W.E. The Term Newborn: Early-Onset Sepsis. Clin. Perinatol. 2021, 48, 471–484. [Google Scholar] [CrossRef] [PubMed]
- Polin, R.A.; Committee on Fetus and Newborn. Management of neonates with suspected or proven early-onset bacterial sepsis. Pediatrics 2012, 129, 1006–1015. [Google Scholar] [CrossRef]
- WHO Recommendations for Prevention and Treatment of Maternal Peripartum Infections; World Health Organization: Geneva, Switzerland, 2015. [PubMed]
- Tita, A.T.N.; Carlo, W.A.; McClure, E.M.; Mwenechanya, M.; Chomba, E.; Hemingway-Foday, J.J.; Kavi, A.; Metgud, M.C.; Goudar, S.S.; A-PLUS Trial Group. Azithromycin to Prevent Sepsis or Death in Women Planning a Vaginal Birth. N. Engl. J. Med. 2023, 388, 1161–1170. [Google Scholar] [CrossRef]
- Lee, A.C.; Quaiyum, M.A.; Mullany, L.C.; Mitra, D.K.; Labrique, A.; Ahmed, P.; Uddin, J.; Rafiqullah, I.; DasGupta, S.; Mahmud, A.; et al. Screening and treatment of maternal genitourinary tract infections in early pregnancy to prevent preterm birth in rural Sylhet, Bangladesh: A cluster randomized trial. BMC Pregnancy Childbirth 2015, 15, 326. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Bhattacharya, P.; Kaur, S.; Ray, P.; Chattopadhyay, N. Risk factors and etiology of early-onset neonatal sepsis in Northeastern part of India: Case-control study. J. Family Med. Prim. Care 2024, 13, 54–58. [Google Scholar] [CrossRef]
- Moftian, N.; Samad Soltani, T.; Mirnia, K.; Esfandiari, A.; Tabib, M.S.; Rezaei Hachesu, P. Clinical Risk Factors for Early-Onset Sepsis in Neonates: An International Delphi Study. Iran. J. Med. Sci. 2023, 48, 57–69. [Google Scholar] [PubMed]
- Higgins, R.; Silver, R. Maternal fever, prematurity and early-onset sepsis. BJOG 2017, 124, 784. [Google Scholar] [CrossRef] [PubMed]
- Wortham, J.M.; Hansen, N.I.; Schrag, S.J.; Hale, E.; Van Meurs, K.; Sánchez, P.J.; Cantey, J.B.; Faix, R.; Poindexter, B.; Goldberg, R.; et al. Chorioamnionitis and culture-confirmed, early-onset neonatal infections. Pediatrics 2016, 137, e20152323. [Google Scholar] [CrossRef] [PubMed]
- Ashby, T.; Staiano, P.; Najjar, N.; Louis, M. Bacterial pneumonia infection in pregnancy. Best. Pract. Res. Clin. Obstet. Gynaecol. 2022, 85, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Chan, G.J.; Lee, A.C.; Baqui, A.H.; Tan, J.; Black, R.E. Risk of early-onset neonatal infection with maternal infection or colonization: A global systematic review and meta-analysis. PLoS Med. 2013, 10, e1001502. [Google Scholar] [CrossRef]
- Mercer, B.M. Preterm premature rupture of the membranes. Obstet. Gynecol. 2003, 101, 178–193. [Google Scholar]
- Menon, R.; Richardson, L.S. Preterm prelabor rupture of the membranes: A disease of the fetal membranes. Semin. Perinatol. 2017, 41, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Mercer, B.M.; Crouse, D.T.; Goldenberg, R.L.; Miodovnik, M.; Mapp, D.C.; Meis, P.J.; Dombrowski, M.P.; Eunice Kennedy Shriver National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. The antibiotic treatment of PPROM study: Systemic maternal and fetal markers and perinatal outcomes. Am. J. Obstet. Gynecol. 2012, 206, 145.e1–145.e1459. [Google Scholar] [CrossRef]
- Morris, J.M.; Roberts, C.L.; Bowen, J.R.; Patterson, J.A.; Bond, D.M.; Algert, C.S.; Thornton, J.G.; Crowther, C.A.; PPROMT Collaboration. Immediate delivery compared with expectant management after preterm pre-labour rupture of the membranes close to term (PPROMT trial): A randomized controlled trial. Lancet 2016, 387, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Eleje, G.U.; Ukah, C.O.; Onyiaorah, I.V.; Ezugwu, E.C.; Ugwu, E.O.; Ohayi, S.R.; Eleje, L.I.; Egeonu, R.O.; Ezebialu, I.U.; Obiora, C.C.; et al. Diagnostic value of Chorioquick for detecting chorioamnionitis in women with premature rupture of membranes. Int. J. Gynaecol. Obstet. 2020, 149, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Gebremedhin, D.; Berhe, H.; Gebrekirstos, K. Risk factors for neonatal sepsis in public hospitals of Mekelle City, North Ethiopia, 2015: Unmatched case control study. PLoS ONE 2016, 11, e0154798. [Google Scholar] [CrossRef] [PubMed]
- Thomson, A.J.; on behalf of the Royal College of Obstetricians and Gynaecologists. Care of women presenting with suspected preterm prelabour rupture of membranes from 24+0 weeks of gestation. BJOG 2019, 126, e152–e166. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Zhou, Y.; Liu, B.; Jin, Z.; Zhuang, X.; Dai, W.; Yang, Z.; Feng, X.; Zhou, Q.; Liu, Y.; et al. Perinatal antibiotic exposure affects the transmission between maternal and neonatal microbiota and is associated with early-onset sepsis. mSphere 2020, 5, e00984-19. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.C.; Chang, S.M.; Wu, C.S.; Tsai, Y.F.; Sheen, K.H.; Hong, X.; Chen, H.Y.; Wu, A.C.; Tsai, H.J. Association between antenatal corticosteroids and risk of serious infection in children: Nationwide cohort study. BMJ 2023, 382, e075835. [Google Scholar] [CrossRef]
- Wang, J.; Ji, X.; Liu, T.; Zhao, N. Maternal and neonatal outcomes with the use of long acting, compared to intermediate acting basal insulin (NPH) for managing diabetes during pregnancy: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2022, 14, 154. [Google Scholar] [CrossRef]
- Bender Ignacio, R.A.; Madison, A.T.; Moshiri, A.; Weiss, N.S.; Mueller, B.A. A population-based study of perinatal infection risk in women with and without systemic lupus erythematosus and their infants. Paediatr. Perinat. Epidemiol. 2018, 32, 81–89. [Google Scholar] [CrossRef]
- Kim, J.K.; Chang, Y.S.; Hwang, J.H.; Lee, M.H.; Park, W.S. Cesarean section was not associated with mortality or morbidities advantage in very low birth weight infants: A nationwide cohort study. Sci. Rep. 2021, 11, 20264. [Google Scholar] [CrossRef] [PubMed]
- Giovannini, E.; Bonasoni, M.P.; Pascali, J.P.; Giorgetti, A.; Pelletti, G.; Gargano, G.; Pelotti, S.; Fais, P. Infection induced fetal inflammatory response syndrome (firs): State-of- the-art and medico-legal implications-a narrative review. Microorganisms 2023, 11, 1010. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Han, W.; Su, Y.; Wang, N.; Chen, X.; Ma, J.; Liang, J.; Hao, L.; Ren, C. Perinatal risk factors for neonatal early-onset sepsis: A meta-analysis of observational studies. J. Matern. Fetal Neonatal. Med. 2023, 36, 2259049. [Google Scholar] [CrossRef] [PubMed]
- Adatara, P.; Afaya, A.; Salia, S.M.; Afaya, R.A.; Kuug, A.K.; Agbinku, E.; Agyabeng-Fandoh, E. Risk factors for neonatal sepsis: A retrospective case-control study among neonates who were delivered by Caesarean Section at the Trauma and Specialist Hospital, Winneba, Ghana. Biomed. Res. Int. 2018, 2018, 6153501. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.C.; Peng, F.S.; Leung, C.; Lu, H.F.; Lin, H.H.; Hsiao, S.M. Comparison of cesarean section rates between obstetricians preferring labor induction at early versus late gestational age. Taiwan. J. Obstet. Gynecol. 2022, 61, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Trahan, M.J.; Czuzoj-Shulman, N.; Abenhaim, H.A. Cesarean delivery on maternal request in the United States from 1999 to 2015. Am. J. Obstet. Gynecol. 2022, 226, 411.e1–411.e8. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.E.; Goldacre, R.; Moore, H.C.; Zeltzer, J.; Knight, M.; Morris, C.; Nowell, S.; Wood, R.; Carter, K.W.; Fathima, P.; et al. Mode of birth and risk of infection-related hospitalisation in childhood: A population cohort study of 7.17 million births from 4 high-income countries. PLoS Med. 2020, 17, e1003429. [Google Scholar] [CrossRef]
- Christensen, N.; Søndergaard, J.; Christesen, H.T.; Fisker, N.; Husby, S. Association between mode of delivery and risk of infection in early childhood: A cohort study. Pediatr. Infect. Dis. J. 2018, 37, 316–323. [Google Scholar] [CrossRef]
- Wampach, L.; Heintz-Buschart, A.; Fritz, J.V.; Ramiro-Garcia, J.; Habier, J.; Herold, M.; Narayanasamy, S.; Kaysen, A.; Hogan, A.H.; Bindl, L.; et al. Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential. Nat. Commun. 2018, 9, 5091. [Google Scholar] [CrossRef] [PubMed]
Sepsis or Risk Factors | ICD-9-CM Codes (Before 2015) | ICD-10-CM Codes (After 2015) |
---|---|---|
Sepsis | 038.xx, 785.52, 998.02, 995.91, 995.92, 003.1, 036.2, 098.89, 771.81 | A40.x, A41.xx, R65.20, R65.21, T81.12XA, T81.12XD, T81.12XS, A02.1, A39.4, A54.86, P36 |
Maternal risk factors | ||
Maternal fever | 780.6, 659.20, 659.21, 659.23 | R50. 9, O75.2 |
Chorioamnionitis | 658.4x, 762.7 | O41.101x, O41.102x, O41.103x, O41.1090, O41.121x, O41.122x, O41.123x, O41.1290, P02.7 |
Genitourinary tract infections | 646.6x, 599.0 | O23.xx, N39.0 |
Pneumonia | 480.x–486 | J12.xx-J18.x |
Premature/prolonged rupture of membranes (PPROM) | 658.1x, 658.2x | O42.xxx |
Delivery by Cesarean section | 669.70, 669.71, V30.01, V31.01, V32.01, V33.01, V34.01, V35.01, V36.01, V37.01, V39.01 | O82, Z38.01, Z38.31, Z38.62, Z38.64, Z38.66, Z38.69, DRG 765, DRG 766 |
Maternal systemic lupus erythematosus (SLE) | 710.0 | M32.xx |
Maternal diabetes mellitus | 250.xx, 648.0x | E08.xxx-E13.xxx, O24.xxx |
Variables | Clinical Sepsis Group (N = 2942) | Non-Clinical Sepsis Group (N = 14,710) | p Value |
---|---|---|---|
Sex | 1.000 | ||
Male | 1555 (52.86) | 7775 (52.86) | |
Female | 1387 (47.14) | 6935 (47.14) | |
Birth Year | 1.000 | ||
2010 | 151 (5.13) | 755 (5.13) | |
2011 | 158 (5.37) | 790 (5.37) | |
2012 | 212 (7.21) | 1060 (7.21) | |
2013 | 251 (8.53) | 1255 (8.53) | |
2014 | 266 (9.04) | 1330 (9.04) | |
2015 | 361 (12.27) | 1805 (12.27) | |
2016 | 117 (3.98) | 585 (3.98) | |
2017 | 563 (19.14) | 2815 (19.14) | |
2018 | 464 (15.77) | 2320 (15.77) | |
2019 | 399 (13.56) | 1995 (13.56) | |
Birth Month | 1.000 | ||
January | 268 (9.11) | 1340 (9.11) | |
February | 193 (6.56) | 965 (6.56) | |
March | 235 (7.99) | 1175 (7.99) | |
April | 247 (8.40) | 1235 (8.40) | |
May | 216 (7.34) | 1080 (7.34) | |
June | 247 (8.40) | 1235 (8.40) | |
July | 214 (7.27) | 1070 (7.27) | |
August | 266 (9.04) | 1330 (9.04) | |
September | 286 (9.72) | 1430 (9.72) | |
October | 279 (9.48) | 1395 (9.48) | |
November | 241 (8.19) | 1205 (8.19) | |
December | 250 (8.50) | 1250 (8.50) |
Risk Factors | Sepsis Group (N = 2942) | Non-Sepsis Group (N = 14,710) | p Value |
---|---|---|---|
Maternal fever | 40 (1.36) | 51 (0.35) | <0.001 |
Chorioamnionitis | 119 (4.04) | 84 (0.57) | <0.001 |
Maternal genitourinary tract infections | 205 (6.97) | 349 (2.37) | <0.001 |
Maternal pneumonia | 33 (1.12) | 53 (0.36) | <0.001 |
Premature/prolonged rupture of membranes (PPROM) | 1129 (38.38) | 2965 (20.16) | <0.001 |
Delivery by Cesarean section | 1928 (65.63) | 8464 (57.54) | <0.001 |
Maternal systemic lupus erythematosus (SLE) | 27 (0.92) | 142 (0.97) | 0.809 |
Maternal diabetes mellitus | 214 (7.27) | 879 (5.98) | 0.008 |
Maternal antibiotics usage | 1426 (48.47) | 4655 (31.65) | <0.001 |
Steroid (rinderon or dexamethasone) usage | 916 (31.14) | 1853 (12.60) | <0.001 |
Birth body weight (g) * | 1685 ± 612 | 2390 ± 539 | <0.001 |
Gestational age (weeks) | <0.001 | ||
>32 | 1505 (51.15) | 13,559 (92.17) | |
28–32 (Very preterm) | 999 (33.96) | 903 (6.14) | |
<28 (Extremely preterm) | 438 (14.89) | 248 (1.69) | |
Mean ± SD | 32 ± 3 | 35 ± 2 |
Unadjusted Model | Adjusted Model (Full Model) | Adjusted Model (Stepwise Model) | |||||||
---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p Value | OR | 95% CI | p Value | OR | 95% CI | p Value | |
Maternal fever | 3.96 | 2.61 to 6.01 | <0.001 | 4.46 | 2.57 to 7.73 | <0.001 | 4.62 | 2.68 to 7.98 | <0.001 |
Chorioamnionitis | 7.34 | 5.54 to 9.73 | <0.001 | 1.60 | 1.00 to 2.56 | 0.049 | 2.13 | 1.47 to 3.07 | <0.001 |
Maternal genitourinary tract infections | 3.08 | 2.58 to 3.68 | <0.001 | 1.35 | 1.00 to 1.83 | 0.054 | |||
Maternal pneumonia | 3.14 | 2.03 to 4.85 | <0.001 | 2.49 | 1.39 to 4.46 | 0.002 | 2.46 | 1.38 to 4.39 | 0.002 |
Premature/prolonged rupture of membranes (PPROM) | 2.47 | 2.27 to 2.68 | <0.001 | 1.85 | 1.66 to 2.06 | <0.001 | 1.85 | 1.66 to 2.05 | <0.001 |
Maternal antibiotics usage | 2.03 | 1.88 to 2.20 | <0.001 | 1.34 | 1.21 to 1.49 | <0.001 | 1.35 | 1.21 to 1.50 | <0.001 |
Steroid (rinderon or dexamethasone) usage | 3.14 | 2.86 to 3.44 | <0.001 | 1.26 | 1.11 to 1.42 | <0.001 | 1.26 | 1.11 to 1.43 | <0.001 |
Maternal diabetes mellitus | 1.23 | 1.06 to 1.44 | 0.008 | 1.44 | 1.19 to 1.75 | <0.001 | 1.44 | 1.19 to 1.75 | <0.001 |
Maternal systemic lupus erythematosus (SLE) | 0.95 | 0.63 to 1.44 | 0.812 | 0.68 | 0.42 to 1.10 | 0.118 | |||
Delivery by Cesarean section | 1.40 | 1.29 to 1.52 | <0.001 | 1.17 | 1.05 to 1.30 | 0.004 | 1.17 | 1.05 to 1.30 | 0.004 |
Birth body weight (g) * | 0.99 | 0.99 to 0.99 | <0.001 | 0.99 | 0.99 | <0.001 | 0.99 | 0.99 to 0.99 | <0.001 |
Very preterm (Gestational age 28–32 weeks compared with >32 weeks) | 9.97 | 8.98–11.07 | <0.001 | 2.66 | 2.30–3.08 | <0.001 | 2.67 | 2.31–3.09 | <0.001 |
Extremely preterm (Gestational age < 28 weeks compared with >32 weeks) | 15.91 | 13.50–18.76 | <0.001 | 0.78 | 0.60–1.02 | 0.066 | 0.79 | 0.61–1.03 | 0.078 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-Y.; Hsu, Y.-L.; Lee, W.-Y.; Huang, K.-H.; Tsai, M.-L.; Chen, C.-L.; Chang, Y.-C.; Lin, H.-C. Maternal Infections, Antibiotics, Steroid Use, and Diabetes Mellitus Increase Risk of Early-Onset Sepsis in Preterm Neonates: A Nationwide Population-Based Study. Pathogens 2025, 14, 89. https://doi.org/10.3390/pathogens14010089
Lee H-Y, Hsu Y-L, Lee W-Y, Huang K-H, Tsai M-L, Chen C-L, Chang Y-C, Lin H-C. Maternal Infections, Antibiotics, Steroid Use, and Diabetes Mellitus Increase Risk of Early-Onset Sepsis in Preterm Neonates: A Nationwide Population-Based Study. Pathogens. 2025; 14(1):89. https://doi.org/10.3390/pathogens14010089
Chicago/Turabian StyleLee, Hao-Yuan, Yu-Lung Hsu, Wen-Yuan Lee, Kuang-Hua Huang, Ming-Luen Tsai, Chyi-Liang Chen, Yu-Chia Chang, and Hung-Chih Lin. 2025. "Maternal Infections, Antibiotics, Steroid Use, and Diabetes Mellitus Increase Risk of Early-Onset Sepsis in Preterm Neonates: A Nationwide Population-Based Study" Pathogens 14, no. 1: 89. https://doi.org/10.3390/pathogens14010089
APA StyleLee, H.-Y., Hsu, Y.-L., Lee, W.-Y., Huang, K.-H., Tsai, M.-L., Chen, C.-L., Chang, Y.-C., & Lin, H.-C. (2025). Maternal Infections, Antibiotics, Steroid Use, and Diabetes Mellitus Increase Risk of Early-Onset Sepsis in Preterm Neonates: A Nationwide Population-Based Study. Pathogens, 14(1), 89. https://doi.org/10.3390/pathogens14010089