Assessment of Antibiotic Resistance Among Isolates of Klebsiella spp. and Raoultella spp. in Wildlife and Their Environment from Portugal: A Positive Epidemiologic Outcome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Selection
2.2. Sampling Techniques
2.2.1. Wildlife Feces Sampling
2.2.2. River and Stream Water Sampling
2.2.3. Soil Sampling
2.3. Laboratory Methods for Isolation and Identification
2.3.1. Bacterial Isolation from Wildlife
2.3.2. Bacterial Isolation from Rivers and Streams
2.3.3. Bacterial Isolation from Soils
2.4. Antibiotic Susceptibility Testing
2.5. Detection of Resistance Genes by PCR
2.6. Whole-Genome Sequencing
2.7. Biofilm Formation and Quantification Assays
3. Results
3.1. Isolation and Identification of Klebsiella spp. and Raoultella spp.
3.1.1. Wild Animals
3.1.2. Rivers and Streams
3.1.3. Soils
3.2. Antibiotic Resistance Profiles
3.3. Genomic Characterization by PCR and Whole Genome Sequencing of ESBL-Producing Isolate
3.4. Biofilm Formation Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sahar, A.; Mujtaba Barekzai, A.; Sayedi, H.; Barekzai, A.M. The Diagnosis of Escherichia coli (E-coli) and Proteus vulgaris Among Urinary Tract Infections. Biomed. J. Sci. Tech. Res. 2022, 42, 34130–34132. [Google Scholar]
- Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules 2020, 25, 1340. [Google Scholar] [CrossRef] [PubMed]
- Majumder, M.A.A.; Rahman, S.; Cohall, D.; Bharatha, A.; Singh, K.; Haque, M.; Gittens-St Hilaire, M. Antimicrobial stewardship: Fighting antimicrobial resistance and protecting global public health. Infect. Drug Resist. 2020, 13, 4713–4738. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef] [PubMed]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. In Antimicrobial Resistance in Bacteria from Livestock and Companion Animals; Schwarz, S., Cavaco, L.M., Shen, J., Eds.; American Society for Microbiology: Washington, DC, USA, 2018; pp. 521–547. [Google Scholar]
- Abbassi, M.S.; Badi, S.; Lengliz, S.; Mansouri, R.; Salah, H.; Hynds, P. Hiding in plain sight-wildlife as a neglected reservoir and pathway for the spread of antimicrobial resistance: A narrative review. FEMS Microbiol. Ecol. 2022, 98, fiac045. [Google Scholar] [CrossRef]
- Guerra, M.E.S.; Destro, G.; Vieira, B.; Lima, A.S.; Ferraz, L.F.C.; Hakansson, A.P.; Darrieux, M.; Converso, T.R. Klebsiella pneumoniae Biofilms and Their Role in Disease Pathogenesis. Front. Cell. Infect. Microbiol. 2022, 12, 877995. [Google Scholar] [CrossRef]
- Sabino, H.A.C.; Valera, F.C.P.; Santos, D.V.; Fantucci, M.Z.; Titoneli, C.C.; Martinez, R.; Anselmo-Lima, W.T.; Tamashiro, E. Biofilm and Planktonic Antibiotic Resistance in Patients With Acute Exacerbation of Chronic Rhinosinusitis. Front. Cell. Infect. Microbiol. 2022, 11, 813076. [Google Scholar] [CrossRef]
- Liu, X.; Yao, H.; Zhao, X.; Ge, C. Biofilm Formation and Control of Foodborne Pathogenic Bacteria. Molecules 2023, 28, 2432. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.L.S.d.; Galdino, A.C.M.; Mello, T.P.d.; Ramos, L.d.S.; Branquinha, M.H.; Bolognese, A.M.; Columbano Neto, J.; Roudbary, M. What are the advantages of living in a community? A microbial biofilm perspective! Mem. Inst. Oswaldo Cruz 2018, 113, e180212. [Google Scholar] [CrossRef]
- Hernando-Amado, S.; Coque, T.M.; Baquero, F.; Martínez, J.L. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 2019, 4, 1432–1442. [Google Scholar] [CrossRef]
- Mulamattathil, S.G.; Bezuidenhout, C.; Mbewe, M.; Ateba, C.N. Isolation of Environmental Bacteria from Surface and Drinking Water in Mafikeng, South Africa, and Characterization Using Their Antibiotic Resistance Profiles. J. Pathog. 2014, 2014, 371208. [Google Scholar] [CrossRef] [PubMed]
- Echeverria-Palencia, C.M.; Thulsiraj, V.; Tran, N.; Ericksen, C.A.; Melendez, I.; Sanchez, M.G.; Walpert, D.; Yuan, T.; Ficara, E.; Senthilkumar, N.; et al. Disparate Antibiotic Resistance Gene Quantities Revealed across 4 Major Cities in California: A Survey in Drinking Water, Air, and Soil at 24 Public Parks. ACS Omega 2017, 2, 2255–2263. [Google Scholar] [CrossRef] [PubMed]
- Armalytė, J.; Skerniškytė, J.; Bakienė, E.; Krasauskas, R.; Šiugždinienė, R.; Kareivienė, V.; Kerzienė, S.; Klimienė, I.; Sužiedėlienė, E.; Ružauskas, M. Microbial diversity and antimicrobial resistance profile in microbiota from soils of conventional and organic farming systems. Front. Microbiol. 2019, 10, 892. [Google Scholar] [CrossRef]
- Sabença, C.; Romero-Rivera, M.; Barbero-Herranz, R.; Sargo, R.; Sousa, L.; Silva, F.; Lopes, F.; Abrantes, A.C.; Vieira-Pinto, M.; Torres, C.; et al. Molecular Characterization of Multidrug-Resistant Escherichia coli from Fecal Samples of Wild Animals. Vet. Sci. 2024, 11, 469. [Google Scholar] [CrossRef] [PubMed]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters; Version 12.0; EUCAST: Copenhagen, Denmark, 2022. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 31st ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021; ISBN 9781684401048. [Google Scholar]
- Martínez-álvarez, S.; Sanz, S.; Olarte, C.; Hidalgo-Sanz, R.; Carvalho, I.; Fernández-Fernández, R.; Campaña-Burguet, A.; Latorre-Fernández, J.; Zarazaga, M.; Torres, C. Antimicrobial Resistance in Escherichia coli from the Broiler Farm Environment, with Detection of SHV-12-Producing Isolates. Antibiotics 2022, 11, 444. [Google Scholar] [CrossRef] [PubMed]
- Sáenz, Y.; Briñas, L.; Domínguez, E.; Ruiz, J.; Zarazaga, M.; Vila, J.; Torres, C. Mechanisms of resistance in multiple-antibiotic-resistant Escherichia coli strains of human, animal, and food origins. Antimicrob. Agents Chemother. 2004, 48, 3996–4001. [Google Scholar] [CrossRef]
- Martínez-Álvarez, S.; Châtre, P.; François, P.; Abdullahi, I.N.; Simón, C.; Zarazaga, M.; Madec, J.Y.; Haenni, M.; Torres, C. Unexpected role of pig nostrils in the clonal and plasmidic dissemination of extended-spectrum beta-lactamase-producing Escherichia coli at farm level. Ecotoxicol. Environ. Saf. 2024, 273, 116145. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Jain, C.; Rodriguez-R, L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef]
- Sherry, N.L.; Horan, K.A.; Ballard, S.A.; Gonçalves da Silva, A.; Gorrie, C.L.; Schultz, M.B.; Stevens, K.; Valcanis, M.; Sait, M.L.; Stinear, T.P.; et al. An ISO-certified genomics workflow for identification and surveillance of antimicrobial resistance. Nat. Commun. 2023, 14, 60. [Google Scholar] [CrossRef] [PubMed]
- Sabença, C.; Costa, E.; Sousa, S.; Barros, L.; Oliveira, A.; Ramos, S.; Igrejas, G.; Torres, C.; Poeta, P. Evaluation of the Ability to Form Biofilms in KPC-Producing and ESBL-Producing Klebsiella pneumoniae Isolated from Clinical Samples. Antibiotics 2023, 12, 1143. [Google Scholar] [CrossRef]
- Nguema, P.P.M.; Onanga, R.; Atome, G.R.N.; Tewa, J.J.; Mabika, A.M.; Nzambe, J.U.M.; Mbeang, J.C.O.; Essono, P.Y.B.; Bretagnolle, F.; Godreuil, S. High level of intrinsic phenotypic antimicrobial resistance in enterobacteria from terrestrial wildlife in Gabonese national parks. PLoS ONE 2021, 16, e0257994. [Google Scholar]
- Li, Y.; Sun, Y.; Sun, S.W.; Liang, B.; Jiang, B.W.; Feng, N.; Liu, J.; Ji, X. Prevalence of antimicrobial resistance and virulence genes in Klebsiella pneumoniae and Congenetic Raoultella Isolates from captive giant pandas. PLoS ONE 2023, 18, e0283738. [Google Scholar] [CrossRef] [PubMed]
- Abbas, F.M. Prevalence of Waterborne blaNDM-1 Gene Producing Carbapenem-resistant Klebsiella pneumoniae from Al-Hillah River Water, Babylon Province, iraq. J. Pure Appl. Microbiol. 2022, 16, 1873–1877. [Google Scholar] [CrossRef]
- Karnmongkol, C.; Wiriyaampaiwong, P.; Teerakul, M.; Treeinthong, J.; Srisamoot, N.; Tankrathok, A. Emergence of NDM-1-producing Raoultella ornithinolytica from reservoir water in Northeast Thailand. Vet. World 2023, 16, 2321–2328. [Google Scholar] [CrossRef] [PubMed]
- Glushakova, A.; Kachalkin, A.V.; Prokof’eva, T.V.; Lysak, L.V. Enterobacteriaceae in soils and atmospheric dust aerosol accumulations of Moscow city. Curr. Res. Microb. Sci. 2022, 3, 100124. [Google Scholar] [CrossRef] [PubMed]
- Joseph, O.J.; Ogunleye, G.E.; Oyinlola, K.A.; Balogun, A.I.; Olumeko, D.T. Co-occurrence of heavy metals and antibiotics resistance in bacteria isolated from metal-polluted soil. Environ. Anal. Health Toxicol. 2023, 38, e2023024. [Google Scholar] [CrossRef] [PubMed]
- Koutsoumanis, K.; Allende, A.; Álvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F.; et al. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J. 2021, 19, e06651. [Google Scholar] [PubMed]
- Dolejska, M. Antibiotic-Resistant Bacteria in Wildlife. In Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2020; Volume 91, pp. 19–70. ISBN 978-3-030-55065-3. [Google Scholar]
- Malik, Y.S.; Arun Prince Milton, A.; Ghatak, S.; Ghosh, S. Role of Birds in Transmitting Zoonotic Pathogens; Livestock Diseases and Management; Springer: Singapore, 2021; ISBN 978-981-16-4553-2. [Google Scholar]
- Martínez-Álvarez, S.; Höfle, U.; Châtre, P.; Alonso, C.A.; Asencio-Egea, M.Á.; François, P.; Cardona-Cabrera, T.; Zarazaga, M.; Madec, J.-Y.; Haenni, M.; et al. One Health bottom-up analysis of the dissemination pathways concerning critical priority carbapenemase- and ESBL-producing Enterobacterales from storks and beyond. J. Antimicrob. Chemother. 2025, 80, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Furness, L.E.; Campbell, A.; Zhang, L.; Gaze, W.H.; McDonald, R.A. Wild small mammals as sentinels for the environmental transmission of antimicrobial resistance. Environ. Res. 2017, 154, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Veloo, Y.; Thahir, S.S.A.; Rajendiran, S.; Hock, L.K.; Ahmad, N.; Muthu, V.; Shaharudin, R. Multidrug-Resistant Gram-Negative Bacteria and Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae from the Poultry Farm Environment. Microbiol. Spectr. 2022, 10, e02694-21. [Google Scholar] [CrossRef] [PubMed]
- Furlan, J.P.R.; Stehling, E.G. Presence of Β-Lactamases Encoding Genes in Soil Samples from Different Origins. Water. Air. Soil Pollut. 2017, 228, 125. [Google Scholar] [CrossRef]
- Wang, C.; Hu, R.; Strong, P.J.; Zhuang, W.; Huang, W.; Luo, Z.; Yan, Q.; He, Z.; Shu, L. Prevalence of antibiotic resistance genes and bacterial pathogens along the soil–mangrove root continuum. J. Hazard. Mater. 2021, 408, 124985. [Google Scholar] [CrossRef] [PubMed]
- Piddock, L.J.V. Assess drug-resistance phenotypes, not just genotypes. Nat. Microbiol. 2016, 1, 16120. [Google Scholar] [CrossRef] [PubMed]
- Bhat, B.A.; Mir, R.A.; Qadri, H.; Dhiman, R.; Almilaibary, A.; Alkhanani, M.; Mir, M.A. Integrons in the development of antimicrobial resistance: Critical review and perspectives. Front. Microbiol. 2023, 14, 1231938. [Google Scholar] [CrossRef] [PubMed]
- Håkonsholm, F.; Hetland, M.A.K.; Svanevik, C.S.; Sundsfjord, A.; Lunestad, B.T.; Marathe, N.P. Antibiotic sensitivity screening of Klebsiella spp. and Raoultella spp. isolated from marine bivalve molluscs reveal presence of CTX-M-producing K. pneumoniae. Microorganisms 2020, 8, 1909. [Google Scholar] [CrossRef]
- Erika, E.; Scarpellini, R.; Celli, G.; Marliani, G.; Zaghini, A.; Mondo, E.; Rossi, G.; Piva, S. Wild birds as potential bioindicators of environmental antimicrobial resistance: A preliminary investigation. Res. Vet. Sci. 2024, 180, 105424. [Google Scholar]
- Wang, F.; Fu, Y.-H.; Sheng, H.-J.; Topp, E.; Jiang, X.; Zhu, Y.-G.; Tiedje, J.M. Antibiotic resistance in the soil ecosystem: A One Health perspective. Curr. Opin. Environ. Sci. Health 2021, 20, 100230. [Google Scholar] [CrossRef]
- Mirghani, R.; Saba, T.; Khaliq, H.; Mitchell, J.; Do, L.; Chambi, L.; Diaz, K.; Kennedy, T.; Alkassab, K.; Huynh, T.; et al. Biofilms: Formation, drug resistance and alternatives to conventional approaches. AIMS Microbiol. 2022, 8, 239. [Google Scholar] [CrossRef]
- Uruén, C.; Chopo-Escuin, G.; Tommassen, J.; Mainar-Jaime, R.C.; Arenas, J. Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics 2021, 10, 3. [Google Scholar] [CrossRef]
- Jouini, A.; Vinue, L.; Slama, K.B.; Saenz, Y.; Klibi, N.; Hammami, S.; Boudabous, A.; Torres, C. Characterization of CTX-M and SHV extended-spectrum -lactamases and associated resistance genes in Escherichia coli strains of food samples in Tunisia. J. Antimicrob. Chemother. 2007, 60, 1137–1141. [Google Scholar] [CrossRef]
- Cattoir, V.; Poirel, L.; Rotimi, V.; Soussy, C.-J.; Nordmann, P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J. Antimicrob. Chemother. 2007, 60, 394–397. [Google Scholar] [CrossRef]
Klebsiella pneumoniae (n = 22) | Klebsiella oxytoca (n = 9) | Klebsiella variicola (n = 5) | Total Klebsiella spp. | Raoultella planticola (n = 8) | Raoultella ornithinolytica (n = 2) | Total Raoultella spp. | |
---|---|---|---|---|---|---|---|
Wild Animals | 11 | 7 | 5 | 23 | 1 | 2 | 3 |
Rivers and streams | 8 | 1 | 0 | 9 | 4 | 0 | 4 |
Soils | 3 | 1 | 0 | 4 | 3 | 0 | 3 |
Isolate | Animal (ID) | Species | Resistance Profile | Genes Detected by PCR | ESBL Producer | Biofilm Type | |
---|---|---|---|---|---|---|---|
Wild Animals | NL1 | Nyctalus leisleri (nº10) | Klebsiella oxytoca | Susceptible to all antibiotics | - | N | Weak |
TT1 | Tadaria teniotis (nº34) | Raoultella planticola | Susceptible to all antibiotics | - | N | Weak | |
PP9 | Pipistrellus pipistrellus (nº41) | Raoultella ornithinolytica | Susceptible to all antibiotics | - | N | Moderate | |
RM2 | Rhinolophus mehelyi (nº53) | Klebsiella pneumoniae | Susceptible to all antibiotics | - | N | Moderate | |
PA1 | Plecotus auritus (nº77) | Klebsiella oxytoca | Susceptible to all antibiotics | - | N | Weak | |
PAus2 | Plecotus austriacus (nº71) | Klebsiella oxytoca | Susceptible to all antibiotics | - | N | Weak | |
PAus5 | Plecotus austriacus (nº73) | Klebsiella oxytoca | Susceptible to all antibiotics | - | N | Strong | |
PAus9 | Plecotus austriacus (nº78) | Klebsiella oxytoca | Susceptible to all antibiotics | - | N | Moderate | |
PAus14 | Plecotus austriacus (nº79) | Klebsiella oxytoca | Susceptible to all antibiotics | - | N | Moderate | |
NL8 | Nyctalus leisleri (nº4) | Klebsiella oxytoca | Susceptible to all antibiotics | - | N | Weak | |
TA5 | Tyto alba (5120/N904) | Klebsiella pneumoniae | Susceptible to all antibiotics | - | N | Moderate | |
OC7 | Erinaceus europaeus (5049/M521) | Klebsiella pneumoniae | Susceptible to all antibiotics | - | N | Moderate | |
OC16 | Erinaceus europaeus (4927/M511) | Klebsiella pneumoniae | Susceptible to all antibiotics | - | N | Moderate | |
OC24 | Erinaceus europaeus (4906/M508) | Klebsiella pneumoniae | Susceptible to all antibiotics | - | N | Weak | |
OC37 | Erinaceus europaeus (4908/M509) | Klebsiella pneumoniae | Susceptible to all antibiotics | - | N | Weak | |
J1 | Sus scrofa (3 S. Seb) | Klebsiella pneumoniae | Susceptible to all antibiotics | - | N | Moderate | |
J45 | Sus scrofa (HVE86) | Klebsiella pneumoniae | Susceptible to all antibiotics | - | N | Strong | |
J53 | Sus scrofa (HVE80) | Klebsiella pneumoniae | Susceptible to all antibiotics | - | N | Strong | |
J90 | Sus scrofa (HVE 39) | Klebsiella variicola | Susceptible to all antibiotics | - | N | Weak | |
J93 | Sus scrofa (HVE 2) | Klebsiella variicola | Susceptible to all antibiotics | - | N | Weak | |
J99 | Sus scrofa (HVE 20) | Klebsiella variicola | Susceptible to all antibiotics | - | N | - | |
J100 | Sus scrofa (HVE 48) | Klebsiella pneumoniae | Susceptible to all antibiotics | - | N | Weak | |
J105 | Sus scrofa (HVE 4) | Klebsiella pneumoniae | Susceptible to all antibiotics | - | N | Moderate | |
J115 | Sus scrofa (HVE 29) | Klebsiella variicola | Susceptible to all antibiotics | - | N | Weak | |
J123 | Sus scrofa (HVE 22) | Klebsiella variicola | Susceptible to all antibiotics | - | N | Weak | |
J142 | Sus scrofa (HEV 105) | Raoultella ornithinolytica | Susceptible to all antibiotics | - | N | Weak | |
River and Streams Waters | W4 | NA | Klebsiella oxytoca | Susceptible to all antibiotics | - | N | Weak |
W8 | NA | Raoultella planticola | Susceptible to all antibiotics | - | N | Moderate | |
W9 | NA | Raoultella ornithinolytica | Susceptible to all antibiotics | - | N | Weak | |
W19 | NA | Klebsiella pneumoniae | Susceptible to all antibiotics | - | N | Moderate | |
W25 | NA | Klebsiella oxytoca | Susceptible to all antibiotics | - | N | Moderate | |
W37 | NA | Klebsiella oxytoca | Susceptible to all antibiotics | - | N | Strong | |
W41 | NA | Klebsiella oxytoca | Susceptible to all antibiotics | - | N | Moderate | |
W45 | NA | Klebsiella oxytoca | Susceptible to all antibiotics | - | N | Strong | |
W57 | NA | Klebsiella oxytoca | Susceptible to all antibiotics | - | N | Strong | |
W60 | NA | Klebsiella oxytoca | Susceptible to all antibiotics | - | N | Strong | |
W65 | NA | Klebsiella pneumoniae | Susceptible to all antibiotics | - | N | Moderate | |
W84 | NA | Klebsiella pneumoniae | Susceptible to all antibiotics | - | N | Moderate | |
W95 | NA | Klebsiella pneumoniae | Susceptible to all antibiotics | - | N | Weak | |
Soils | S7 | NA | Klebsiella pneumoniae | AUG CAZ CTX CIP SXT TET | blaCTX-M-group 1; tetA; intI1; sul2; qnrB | P | Moderate |
S17K | NA | Klebsiella pneumoniae | Susceptible to all antibiotics | - | N | Weak | |
S27 | NA | Klebsiella pneumoniae | Susceptible to all antibiotics | - | N | Weak | |
S33 | NA | Klebsiella pneumoniae | Susceptible to all antibiotics | - | N | Weak | |
S45 | NA | Klebsiella pneumoniae | Susceptible to all antibiotics | - | N | Weak | |
S51 | NA | Klebsiella variicola | Susceptible to all antibiotics | - | N | Weak | |
S78 | NA | Klebsiella variicola | Susceptible to all antibiotics | - | N | Moderate |
Isolate | MLST | β-lactamase Genes | Other Resistance Genes | Plasmids | Virulence Genes | Heavy Metal Resistance Genes |
---|---|---|---|---|---|---|
S7 | ST307 | blaCTX-M-15, blaTEM-1, blaSHV-28, blaOXA-1 | qnrB1, oqxA, oqxB19, aac(6′)-Ib-cr, aph(6)-Id, aph(3″)-Ib, acrD, tetA, sul2, dfrA14, catB3 | IncFIB(K), IncFII, ColRNAI | ybtQ, ybtP | silE, silS, silR, silC, silF, silB, silA, silP, pcoA, pcoB, pcoC, pcoD, pcoR, pcoS, pcoE, arsC, arsB, arsA, arsD, arsR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabença, C.; de la Rivière, R.; Barros, P.; Cabral, J.A.; Sargo, R.; Sousa, L.; Dapkevicius, M.d.L.E.; Silva, F.; Lopes, F.; Abrantes, A.C.; et al. Assessment of Antibiotic Resistance Among Isolates of Klebsiella spp. and Raoultella spp. in Wildlife and Their Environment from Portugal: A Positive Epidemiologic Outcome. Pathogens 2025, 14, 99. https://doi.org/10.3390/pathogens14010099
Sabença C, de la Rivière R, Barros P, Cabral JA, Sargo R, Sousa L, Dapkevicius MdLE, Silva F, Lopes F, Abrantes AC, et al. Assessment of Antibiotic Resistance Among Isolates of Klebsiella spp. and Raoultella spp. in Wildlife and Their Environment from Portugal: A Positive Epidemiologic Outcome. Pathogens. 2025; 14(1):99. https://doi.org/10.3390/pathogens14010099
Chicago/Turabian StyleSabença, Carolina, Rani de la Rivière, Paulo Barros, João Alexandre Cabral, Roberto Sargo, Luís Sousa, Maria de Lurdes Enes Dapkevicius, Filipe Silva, Filipa Lopes, Ana Carolina Abrantes, and et al. 2025. "Assessment of Antibiotic Resistance Among Isolates of Klebsiella spp. and Raoultella spp. in Wildlife and Their Environment from Portugal: A Positive Epidemiologic Outcome" Pathogens 14, no. 1: 99. https://doi.org/10.3390/pathogens14010099
APA StyleSabença, C., de la Rivière, R., Barros, P., Cabral, J. A., Sargo, R., Sousa, L., Dapkevicius, M. d. L. E., Silva, F., Lopes, F., Abrantes, A. C., Vieira-Pinto, M., Caniça, M., Igrejas, G., Torres, C., & Poeta, P. (2025). Assessment of Antibiotic Resistance Among Isolates of Klebsiella spp. and Raoultella spp. in Wildlife and Their Environment from Portugal: A Positive Epidemiologic Outcome. Pathogens, 14(1), 99. https://doi.org/10.3390/pathogens14010099