Optimization of Enterovirus-like Particle Production and Purification Using Design of Experiments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of Recombinant Baculoviruses
2.2. Viral Protein Production & Purification
2.3. SDS PAGE & Western Blot
2.3.1. SDS PAGE
2.3.2. Western Blot
2.4. Enzyme-Linked Immunoassay
2.5. Design of Experiments
2.6. Electron Microscopy
2.7. Bicinchoninic Acid (BCA) Total Protein Assay
3. Results
3.1. Primary Iteration of DoE for CVA6
3.2. Secondary Iteration of DoE
- R2 = 0.98, a value greater than 0.5, showing statistical significance.
- Q2 = 0.77, a value greater than 0.5, indicating a good model. Additionally, the difference between R2 and Q2 was not larger than 0.3, further indicating a good model.
- Model validity (MV) = 0.65, indicating an absence in Lack of Fit, outliers, and transformation problems.
- Reproducibility = 0.97, indicating minimal biological variance.
- Overall, it could be concluded that the model developed for CVA6 was able to accurately predict viral protein production based on the input factors.
3.3. Optimizing the Purification Process
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sabanathan, S.; Van Tan, L.; Thwaites, L.; Wills, B.; Qui, P.T.; Van Doorn, H.R. Enterovirus 71 related severe hand, foot and mouth disease outbreaks in South-East Asia: Current situation and ongoing challenges. J. Epidemiol. Community Health 2014, 68, 500–502. [Google Scholar] [CrossRef] [PubMed]
- Ventarola, D.; Bordone, L.; Silverberg, N. Update on hand-foot-and-mouth disease. Clin. Dermatol. 2015, 33, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Chen, X.; Wang, W.; Li, Q.; Xie, Z. Genetic characteristics of Coxsackievirus A6 from children with hand, foot and mouth disease in Beijing, China, 2017–2019. Infect. Genet. Evol. 2022, 106, 105378. [Google Scholar] [CrossRef]
- Gopalkrishna, V.; Ganorkar, N. Epidemiological and molecular characteristics of circulating CVA16, CVA6 strains and genotype distribution in hand, foot and mouth disease cases in 2017 to 2018 from Western India. J. Med. Virol. 2021, 93, 3572–3580. [Google Scholar] [CrossRef]
- Zeng, H.; Lu, J.; Zheng, H.; Yi, L.; Guo, X.; Liu, L.; Rutherford, S.; Sun, L.; Tan, X.; Li, H.; et al. The epidemiological study of Coxsackievirus A6 revealing hand, foot and mouth disease epidemic patterns in Guangdong, China. Sci. Rep. 2015, 5, 10550. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Chiu, C.H.; Lin, C.Y.; Chiu, N.C.; Chen, P.Y.; Le, T.T.V.; Le, D.N.; Duong, A.H.; Nguyen, V.L.; Huynh, T.N.; et al. Efficacy, safety, and immunogenicity of an inactivated, adjuvanted enterovirus 71 vaccine in infants and children: A multiregion, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet 2022, 399, 1708–1717. [Google Scholar] [CrossRef]
- Elveborg, S.; Monteil, V.M.; Mirazimi, A. Methods of Inactivation of Highly Pathogenic Viruses for Molecular, Serology or Vaccine Development Purposes. Pathogens 2022, 11, 271. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Liu, X.; Xu, Q.; Wang, Z.; Chen, J.; Li, T.; Zheng, Q.; Yu, H.; Gu, Y.; Li, S.; et al. Recent progress on the versatility of virus-like particles. Vaccines 2020, 8, 139. [Google Scholar] [CrossRef] [PubMed]
- Tariq, H.; Batool, S.; Asif, S.; Ali, M.; Abbasi, B.H. Virus-Like Particles: Revolutionary Platforms for Developing Vaccines Against Emerging Infectious Diseases. Front. Microbiol. 2022, 12, 790121. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Tan, X.; Sun, X.; Lu, G.; Chen, C.-C.; Yan, J.; Liu, J.; Xu, W.; Gao, G.F. VP2 Dominated CD4+ T Cell Responses against Enterovirus 71 and Cross-Reactivity against Coxsackievirus A16 and Polioviruses in a Healthy Population. J. Immunol. 2013, 191, 1637–1647. [Google Scholar] [CrossRef]
- Zhao, S.; Ke, J.; Yang, B.; Tan, F.; Yang, J.; Lin, C.P.; Wang, H.; Zhong, G. A protective AAV vaccine for SARS-CoV-2. Signal Transduct. Target. Ther. 2022, 7, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zheng, Q.; Li, S.; He, M.; Wu, Y.; Li, Y.; Zhu, R.; Yu, H.; Hong, Q.; Jiang, J.; et al. Atomic structures of Coxsackievirus A6 and its complex with a neutralizing antibody. Nat. Commun. 2017, 8, 505. [Google Scholar] [CrossRef] [PubMed]
- Büttner, C.R.; Spurný, R.; Füzik, T.; Plevka, P. Cryo-electron microscopy and image classification reveal the existence and structure of the coxsackievirus A6 virion. Commun. Biol. 2022, 5, 898. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Shen, C.; Zhang, C.; Zhang, W.; Wang, L.; Lan, K.; Liu, Q.; Huang, Z. Yeast-produced recombinant virus-like particles of coxsackievirus A6 elicited protective antibodies in mice. Antivir. Res. 2016, 132, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Ku, Z.; Zhou, Y.; Li, D.; Wang, L.; Lan, K.; Liu, Q.; Huang, Z. Virus-like particle-based vaccine against coxsackievirus A6 protects mice against lethal infections. Vaccine 2016, 34, 4025–4031. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Son, H.S.; Lee, S.W.; Yoon, Y.; Hyeon, J.Y.; Chung, G.T.; Lee, J.W.; Yoo, J.S. Efficient expression of enterovirus 71 based on virus-like particles vaccine. PLoS ONE 2019, 14, e0210477. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.Y.; Sung, L.Y.; Yeh, C.T.; Yu, C.P.; Yang, J.Y.; Hu, Y.C. Production and purification of virus-like particles of different enterovirus subtypes as vaccines. J. Taiwan Inst. Chem. Eng. 2018, 82, 1–9. [Google Scholar] [CrossRef]
- Fuenmayor, J.; Gòdia, F.; Cervera, L. Production of virus-like particles for vaccines. New Biotechnol. 2017, 39, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Zhang, C.; Zhang, X.; Xiong, P.; Liu, Q.; Gong, S.; Geng, L.; Zhou, D.; Huang, Z. A virus-like particle vaccine confers protection against enterovirus D68 lethal challenge in mice. Vaccine 2018, 36, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.Y.; Chen, C.Y.; Lin, S.Y.; Chung, Y.C.; Chiu, H.Y.; Chi, W.K.; Lin, Y.L.; Chiang, B.L.; Chen, W.J.; Hu, Y.C. Enterovirus 71 virus-like particle vaccine: Improved production conditions for enhanced yield. Vaccine 2010, 28, 6951–6957. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.Y.; Yeh, C.T.; Li, W.H.; Yu, C.P.; Lin, W.C.; Yang, J.Y.; Wu, H.L.; Hu, Y.C. Enhanced enterovirus 71 virus-like particle yield from a new baculovirus design. Biotechnol. Bioeng. 2015, 112, 2005–2015. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.; Huang, J.; Lai, C.; Sheng, H.; Shih, S.; Ho, M.; Hu, Y. Expression, purification and characterization of entervirus-71 virus-like particles. World J. Gastroenterol. 2006, 12, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M. Design of experiments. Ind. Phys. 1997, 3, 30653549. [Google Scholar] [CrossRef]
- Lin, S.Y.; Chiu, H.Y.; Chiang, B.L.; Hu, Y.C. Development of EV71 virus-like particle purification processes. Vaccine 2015, 33, 5966–5973. [Google Scholar] [CrossRef]
- Chang, G.J.J.; Hunt, A.R.; Holmes, D.A.; Springfield, T.; Chiueh, T.S.; Roehrig, J.T.; Gubler, D.J. Enhancing biosynthesis and secretion of premembrane and envelope proteins by the chimeric plasmid of dengue virus type 2 and Japanese encephalitis virus. Virology 2003, 306, 170–180. [Google Scholar] [CrossRef]
- Ng, J.; Koechlin, O.; Ramalho, M.; Raman, D.; Krauzewicz, N. Extracellular self-assembly of virus-like particles from secreted recombinant polyoma virus major coat protein. Protein Eng. Des. Sel. 2007, 20, 591–598. [Google Scholar] [CrossRef]
- Zhang, W.; Dai, W.; Zhang, C.; Zhou, Y.; Xiong, P.; Wang, S.; Ye, X.; Liu, Q.; Zhou, D.; Huang, Z. A virus-like particle-based tetravalent vaccine for hand, foot, and mouth disease elicits broad and balanced protective immunity article. Emerg. Microbes Infect. 2018, 7, 1–12. [Google Scholar] [CrossRef]
- Gong, M.; Zhu, H.; Zhou, J.; Yang, C.; Feng, J.; Huang, X.; Ji, G.; Xu, H.; Zhu, P. Cryo-Electron Microscopy Study of Insect Cell-Expressed Enterovirus 71 and Coxsackievirus A16 Virus-Like Particles Provides a Structural Basis for Vaccine Development. J. Virol. 2014, 88, 6444–6452. [Google Scholar] [CrossRef] [PubMed]
- Lazar, I. GelAnalyzer [Internet]. 2010. Available online: http://www.gelanalyzer.com/ (accessed on 1 October 2023).
- MODDE, 2017; Sartorius: Göttingen, Germany, 2017.
- Hausjell, C.S.; Ernst, W.; Grünwald-Gruber, C.; Arcalis, E.; Grabherr, R. Quantitative proteomic analysis of extracellular vesicles in response to baculovirus infection of a Trichoplusia ni cell line. PLoS ONE 2023, 18, e0281060. [Google Scholar] [CrossRef] [PubMed]
- Rueda, P.; Fominaya, J.; Langeveld, J.P.M.; Bruschke, C.; Vela, C.; Casal, J.I. Effect of different baculovirus inactivation procedures on the integrity and immunogenicity of porcine parvovirus-like particles. Vaccine 2000, 19, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Maranga, L.; Rueda, P.; Antonis, A.; Vela, C.; Langeveld, J.; Casal, J.; Carrondo, M. Large scale production and downstream processing of a recombinant porcine parvovirus vaccine. Appl. Microbiol. Biotechnol. 2002, 59, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.Y.; Chung, Y.C.; Chiu, H.Y.; Chi, W.K.; Chiang, B.L.; Hu, Y.C. Evaluation of the stability of enterovirus 71 virus-like particle. J. Biosci. Bioeng. 2014, 117, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.L.; Yu, C.I.; Hu, Y.C.; Tsai, T.J.; Kuo, Y.C.; Chi, W.K.; Lin, A.N.; Chiang, B.L. Enterovirus type 71 neutralizing antibodies in the serum of macaque monkeys immunized with EV71 virus-like particles. Vaccine 2012, 30, 1305–1312. [Google Scholar] [CrossRef]
- Hankaniemi, M.M.; Stone, V.M.; Andrejeff, T.; Heinimäki, S.; Sioofy-Khojine, A.B.; Marjomäki, V.; Hyöty, H.; Blazevic, V.; Flodström-Tullberg, M.; Hytönen, V.P.; et al. Formalin treatment increases the stability and immunogenicity of coxsackievirus B1 VLP vaccine. Antivir. Res. 2019, 171, 104595. [Google Scholar] [CrossRef] [PubMed]
- Hankaniemi, M.M.; Baikoghli, M.A.; Stone, V.M.; Xing, L.; Väätäinen, O.; Soppela, S.; Sioofy-Khojine, A.; Saarinen, N.V.V.; Ou, T.; Anson, B.; et al. Structural insight into CVB3-VLP non-adjuvanted vaccine. Microorganisms 2020, 8, 1287. [Google Scholar] [CrossRef]
- Lampinen, V.; Gröhn, S.; Lehmler, N.; Jartti, M.; Hytönen, V.P.; Schubert, M.; Hankaniemi, M.M. Production of norovirus-, rotavirus-, and enterovirus-like particles in insect cells is simplified by plasmid-based expression. Sci. Rep. 2024, 14, 14874. [Google Scholar] [CrossRef] [PubMed]
Exp No. | Multiplicity of Infection | Infection Period (d) | Cell Density (Cells/mL) | Design Matrix | ||
---|---|---|---|---|---|---|
MOI | Infection Period | Cell Density | ||||
1 | 0.01 | 2 | 5 × 105 | −1 | −1 | −1 |
2 | 5 | 2 | 5 × 105 | 1 | −1 | −1 |
3 | 0.01 | 7 | 5 × 105 | −1 | 1 | −1 |
4 | 5 | 7 | 5 × 105 | 1 | 1 | −1 |
5 | 0.01 | 2 | 2 × 106 | −1 | −1 | 1 |
6 | 5 | 2 | 2 × 106 | 1 | −1 | 1 |
7 | 0.01 | 7 | 2 × 106 | −1 | 1 | 1 |
8 | 5 | 7 | 2 × 106 | 1 | 1 | 1 |
9 | 2.505 | 4.5 | 1.25 × 106 | 0 | 0 | 0 |
10 | 2.505 | 4.5 | 1.25 × 106 | 0 | 0 | 0 |
11 | 2.505 | 4.5 | 1.25 × 106 | 0 | 0 | 0 |
12 | n/a | 7 | 1.25 × 106 | NC | NC | NC |
Exp No. | Multiplicity of Infection | Infection Period (d) | Cell Density (Cells/mL) | Design Matrix | ||
---|---|---|---|---|---|---|
MOI | Infection Period | Cell Density | ||||
1 | 0.1 | 5 | 1 × 105 | −1 | −1 | −1 |
2 | 0.1 | 5 | 1 × 106 | −1 | −1 | 1 |
3 | 0.1 | 7 | 1 × 105 | −1 | 1 | −1 |
4 | 0.1 | 7 | 1 × 106 | −1 | 1 | 1 |
5 | 5 | 5 | 1 × 105 | 1 | −1 | −1 |
6 | 5 | 5 | 1 × 106 | 1 | −1 | 1 |
7 | 5 | 7 | 1 × 105 | 1 | 1 | −1 |
8 | 5 | 7 | 1 × 106 | 1 | 1 | 1 |
9 | 2.55 | 6 | 5.5 × 105 | 0 | 0 | 0 |
10 | 2.55 | 6 | 5.5 × 105 | 0 | 0 | 0 |
11 | 2.55 | 6 | 5.5 × 105 | 0 | 0 | 0 |
12 | n/a | 7 | 5.5 × 105 | NC | NC | NC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuijpers, L.; van den Braak, W.J.P.; Freydoonian, A.; Dekker, N.H.; van der Pol, L.A. Optimization of Enterovirus-like Particle Production and Purification Using Design of Experiments. Pathogens 2025, 14, 118. https://doi.org/10.3390/pathogens14020118
Kuijpers L, van den Braak WJP, Freydoonian A, Dekker NH, van der Pol LA. Optimization of Enterovirus-like Particle Production and Purification Using Design of Experiments. Pathogens. 2025; 14(2):118. https://doi.org/10.3390/pathogens14020118
Chicago/Turabian StyleKuijpers, Louis, Wouter J. P. van den Braak, Abbas Freydoonian, Nynke H. Dekker, and Leo A. van der Pol. 2025. "Optimization of Enterovirus-like Particle Production and Purification Using Design of Experiments" Pathogens 14, no. 2: 118. https://doi.org/10.3390/pathogens14020118
APA StyleKuijpers, L., van den Braak, W. J. P., Freydoonian, A., Dekker, N. H., & van der Pol, L. A. (2025). Optimization of Enterovirus-like Particle Production and Purification Using Design of Experiments. Pathogens, 14(2), 118. https://doi.org/10.3390/pathogens14020118