Macrocolony of NDM-1 Producing Enterobacter hormaechei subsp. oharae Generates Subpopulations with Different Features Regarding the Response of Antimicrobial Agents and Biofilm Formation
Abstract
:1. Introduction
2. Results
2.1. Bacterial Macrocolonies Generate Subpopulations with Distinct Susceptibility to Meropenem and Ability to Form Biofilm
2.2. Subpopulations of 798 Macrocolony
2.2.1. Type 3 Fimbriae are Important for Biofilm Formation in E. hormachei subsp. oharae
2.2.2. Checkerboard Assay: Triple Combination (meropenem–rifampicin–polymyxin B) is Effective against All Subpopulations
2.2.3. Galleria mellonella Infection Model: Differences in Response to Antimicrobial Treatment between 798-1S and 798-4S Subpopulations
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Growth of Macrocolonies
4.2. Biofilm Formation: Microtiter Plates Assay
4.3. Polymerase Chain Reaction (PCR):Fimbrial Genes Detection
4.4. Minimum Inhibitory Concentration (MIC): Agar Dilution Method
4.5. Checkerboard Assay
4.6. Galleria mellonella Model Studies
4.7. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peleg, A.Y.; Hooper, D.C. Hospital-acquired infections due to gram-negative bacteria. N. Engl. J. Med. 2010, 362, 1804–1813. [Google Scholar] [CrossRef]
- Morgan, D.J.; Lomotan, L.L.; Agnes, K.; McGrail, L.; Roghmann, M.C. Characteristics of healthcare-associated infections contributing to unexpected in-hospital deaths. Infect. Control Hosp. Epidemiol. 2010, 31, 864–866. [Google Scholar] [CrossRef] [PubMed]
- van Duin, D.; Paterson, D.L. Multidrug-Resistant Bacteria in the Community: Trends and Lessons Learned. Infect. Dis. Clin. N. Am. 2016, 30, 377–390. [Google Scholar] [CrossRef]
- Chavda, K.D.; Chen, L.; Fouts, D.E.; Sutton, G.; Brinkac, L.; Jenkins, S.G.; Bonomo, R.A.; Adams, M.D.; Kreiswirth, B.N. Comprehensive Genome Analysis of Carbapenemase-Producing Enterobacter spp.: New Insights into Phylogeny, Population Structure, and Resistance Mechanisms. MBio 2016, 7. [Google Scholar] [CrossRef]
- Moradigaravand, D.; Reuter, S.; Martin, V.; Peacock, S.J.; Parkhill, J. The dissemination of multidrug-resistant Enterobacter cloacae throughout the UK and Ireland. Nat. Microbiol. 2016, 1, 16173. [Google Scholar] [CrossRef] [PubMed]
- Lazarovitch, T.; Amity, K.; Coyle, J.R.; Ackerman, B.; Tal-Jasper, R.; Ofer-Friedman, H.; Hayakawa, K.; Bogan, C.; Lephart, P.R.; Kaplansky, T.; et al. The Complex Epidemiology of Carbapenem-Resistant Enterobacter Infections: A Multicenter Descriptive Analysis. Infect. Control Hosp. Epidemiol. 2015, 36, 1283–1291. [Google Scholar] [CrossRef] [PubMed]
- Jean, S.S.; Hsueh, P.R.; Group, S.A.-P. Distribution of ESBLs, AmpC beta-lactamases and carbapenemases among Enterobacteriaceae isolates causing intra-abdominal and urinary tract infections in the Asia-Pacific region during 2008-14: Results from the Study for Monitoring Antimicrobial Resistance Trends (SMART). J. Antimicrob. Chemother. 2017, 72, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Kontopidou, F.; Giamarellou, H.; Katerelos, P.; Maragos, A.; Kioumis, I.; Trikka-Graphakos, E.; Valakis, C.; Maltezou, H.C.; Group for the Study of KPC-producing Klebsiella pneumoniae infections in intensive care units. Infections caused by carbapenem-resistant Klebsiella pneumoniae among patients in intensive care units in Greece: A multi-centre study on clinical outcome and therapeutic options. Clin. Microbiol. Infect. 2014, 20, O117–O123. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, S.M.; McKinnell, J.A.; Mueller, L.E.; Miller, L.G.; Gohil, S.K.; Huang, S.S.; Lee, B.Y. Potential economic burden of carbapenem-resistant Enterobacteriaceae (CRE) in the United States. Clin. Microbiol. Infect. 2017, 23, 48.e9–48.e16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thabit, A.K.; Crandon, J.L.; Nicolau, D.P. Antimicrobial resistance: Impact on clinical and economic outcomes and the need for new antimicrobials. Expert Opin. Pharmacother. 2015, 16, 159–177. [Google Scholar] [CrossRef] [PubMed]
- Dortet, L.; Poirel, L.; Nordmann, P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed. Res. Int. 2014, 2014, 249856. [Google Scholar] [CrossRef]
- Yong, D.; Toleman, M.A.; Giske, C.G.; Cho, H.S.; Sundman, K.; Lee, K.; Walsh, T.R. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother. 2009, 53, 5046–5054. [Google Scholar] [CrossRef] [PubMed]
- Morrill, H.J.; Pogue, J.M.; Kaye, K.S.; LaPlante, K.L. Treatment Options for Carbapenem-Resistant Enterobacteriaceae Infections. Open Forum Infect. Dis. 2015, 2, ofv050. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Lourida, P.; Poulikakos, P.; Rafailidis, P.I.; Tansarli, G.S. Antibiotic treatment of infections due to carbapenem-resistant Enterobacteriaceae: Systematic evaluation of the available evidence. Antimicrob. Agents Chemother. 2014, 58, 654–663. [Google Scholar] [CrossRef]
- Trecarichi, E.M.; Tumbarello, M. Therapeutic options for carbapenem-resistant Enterobacteriaceae infections. Virulence 2017, 8, 470–484. [Google Scholar] [CrossRef] [Green Version]
- Chung, P.Y. The emerging problems of Klebsiella pneumoniae infections: Carbapenem resistance and biofilm formation. FEMS Microbiol. Lett. 2016, 363. [Google Scholar] [CrossRef]
- Perez, F.; El Chakhtoura, N.G.; Papp-Wallace, K.M.; Wilson, B.M.; Bonomo, R.A. Treatment options for infections caused by carbapenem-resistant Enterobacteriaceae: Can we apply “precision medicine” to antimicrobial chemotherapy? Expert Opin. Pharmacother. 2016, 17, 761–781. [Google Scholar] [CrossRef] [PubMed]
- Desbois, A.P.; Coote, P.J. Utility of Greater Wax Moth Larva (Galleria mellonella) for Evaluating the Toxicity and Efficacy of New Antimicrobial Agents. Adv. Appl. Microbiol. 2012, 78, 25–53. [Google Scholar] [CrossRef] [PubMed]
- Gruber, T.M.; Gottig, S.; Mark, L.; Christ, S.; Kempf, V.A.; Wichelhaus, T.A.; Hamprecht, A. Pathogenicity of pan-drug-resistant Serratia marcescens harbouring blaNDM-1. J. Antimicrob. Chemother. 2015, 70, 1026–1030. [Google Scholar] [CrossRef]
- Hoffmann, H.; Roggenkamp, A. Population genetics of the nomenspecies Enterobacter cloacae. Appl. Environ. Microbiol. 2003, 69, 5306–5318. [Google Scholar] [CrossRef] [PubMed]
- Ohad, S.; Block, C.; Kravitz, V.; Farber, A.; Pilo, S.; Breuer, R.; Rorman, E. Rapid identification of Enterobacter hormaechei and Enterobacter cloacae genetic cluster III. J. Appl. Microbiol. 2014, 116, 1315–1321. [Google Scholar] [CrossRef]
- Morand, P.C.; Billoet, A.; Rottman, M.; Sivadon-Tardy, V.; Eyrolle, L.; Jeanne, L.; Tazi, A.; Anract, P.; Courpied, J.P.; Poyart, C.; et al. Specific distribution within the Enterobacter cloacae complex of strains isolated from infected orthopedic implants. J. Clin. Microbiol. 2009, 47, 2489–2495. [Google Scholar] [CrossRef]
- Davin-Regli, A.; Pages, J.M. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front. Microbiol. 2015, 6, 392. [Google Scholar] [CrossRef]
- Beyrouthy, R.; Barets, M.; Marion, E.; Dananche, C.; Dauwalder, O.; Robin, F.; Gauthier, L.; Jousset, A.; Dortet, L.; Guerin, F.; et al. Novel Enterobacter Lineage as Leading Cause of Nosocomial Outbreak Involving Carbapenemase-Producing Strains. Emerg. Infect. Dis. 2018, 24, 1505–1515. [Google Scholar] [CrossRef]
- Paauw, A.; Caspers, M.P.; Leverstein-van Hall, M.A.; Schuren, F.H.; Montijn, R.C.; Verhoef, J.; Fluit, A.C. Identification of resistance and virulence factors in an epidemic Enterobacter hormaechei outbreak strain. Microbiology 2009, 155, 1478–1488. [Google Scholar] [CrossRef]
- Monahan, L.G.; DeMaere, M.Z.; Cummins, M.L.; Djordjevic, S.P.; Roy Chowdhury, P.; Darling, A.E. High contiguity genome sequence of a multidrug-resistant hospital isolate of Enterobacter hormaechei. Gut Pathog. 2019, 11, 3. [Google Scholar] [CrossRef]
- Mezzatesta, M.L.; Gona, F.; Stefani, S. Enterobacter cloacae complex: Clinical impact and emerging antibiotic resistance. Future Microbiol. 2012, 7, 887–902. [Google Scholar] [CrossRef]
- Haussler, S.; Fuqua, C. Biofilms 2012: New discoveries and significant wrinkles in a dynamic field. J. Bacteriol. 2013, 195, 2947–2958. [Google Scholar] [CrossRef]
- Serra, D.O.; Hengge, R. Stress responses go three dimensional—The spatial order of physiological differentiation in bacterial macrocolony biofilms. Environ. Microbiol. 2014, 16, 1455–1471. [Google Scholar] [CrossRef]
- Stalder, T.; Top, E. Plasmid transfer in biofilms: A perspective on limitations and opportunities. NPJ Biofilms Microbiomes 2016, 2. [Google Scholar] [CrossRef]
- Ferreira, M.L.; Araujo, B.F.; Goncalves, I.R.; Royer, S.; Campos, P.A.; Machado, L.G.; Batistao, D.W.F.; Brito, C.S.; Gontijo-Filho, P.P.; Ribas, R.M. Association of Colistin-Resistant KPC Clonal Strains with Subsequent Infections and Colonization and Biofilm Production. Microb. Drug Resist. 2018. [Google Scholar] [CrossRef] [PubMed]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters Version 7.1; European Committee on Antimicrobial Susceptibility Testing: Basel, Switzerland, 2017. [Google Scholar]
- Allen, B.L.; Gerlach, G.F.; Clegg, S. Nucleotide sequence and functions of mrk determinants necessary for expression of type 3 fimbriae in Klebsiella pneumoniae. J. Bacteriol. 1991, 173, 916–920. [Google Scholar] [CrossRef]
- Duguid, J.P. Fimbriae and adhesive properties in Klebsiella strains. J. Gen. Microbiol. 1959, 21, 271–286. [Google Scholar] [CrossRef] [PubMed]
- Adegbola, R.A.; Old, D.C. Fimbrial haemagglutinins in Enterobacter species. J. Gen. Microbiol. 1983, 129, 2175–2180. [Google Scholar] [CrossRef]
- Hornick, D.B.; Allen, B.L.; Horn, M.A.; Clegg, S. Fimbrial types among respiratory isolates belonging to the family Enterobacteriaceae. J. Clin. Microbiol. 1991, 29, 1795–1800. [Google Scholar] [PubMed]
- Burmolle, M.; Bahl, M.I.; Jensen, L.B.; Sorensen, S.J.; Hansen, L.H. Type 3 fimbriae, encoded by the conjugative plasmid pOLA52, enhance biofilm formation and transfer frequencies in Enterobacteriaceae strains. Microbiology 2008, 154, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Hornick, D.B.; Thommandru, J.; Smits, W.; Clegg, S. Adherence properties of an mrkD-negative mutant of Klebsiella pneumoniae. Infect. Immun. 1995, 63, 2026–2032. [Google Scholar]
- Boll, E.J.; Marti, R.; Hasman, H.; Overballe-Petersen, S.; Stegger, M.; Ng, K.; Knochel, S.; Krogfelt, K.A.; Hummerjohann, J.; Struve, C. Turn Up the Heat-Food and Clinical Escherichia coli Isolates Feature Two Transferrable Loci of Heat Resistance. Front. Microbiol. 2017, 8, 579. [Google Scholar] [CrossRef]
- Jagnow, J.; Clegg, S. Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix- and collagen-coated surfaces. Microbiology 2003, 149, 2397–2405. [Google Scholar] [CrossRef]
- Di Martino, P.; Cafferini, N.; Joly, B.; Darfeuille-Michaud, A. Klebsiella pneumoniae type 3 pili facilitate adherence and biofilm formation on abiotic surfaces. Res. Microbiol. 2003, 154, 9–16. [Google Scholar] [CrossRef]
- Azevedo, P.A.A.; Furlan, J.P.R.; Oliveira-Silva, M.; Nakamura-Silva, R.; Gomes, C.N.; Costa, K.R.C.; Stehling, E.G.; Pitondo-Silva, A. Detection of virulence and beta-lactamase encoding genes in Enterobacter aerogenes and Enterobacter cloacae clinical isolates from Brazil. Braz. J. Microbiol. 2018, 49 (Suppl. 1), 224–228. [Google Scholar] [CrossRef]
- Serra, D.O.; Richter, A.M.; Klauck, G.; Mika, F.; Hengge, R. Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. MBio 2013, 4, e00103-13. [Google Scholar] [CrossRef]
- Schaufler, K.; Semmler, T.; Pickard, D.J.; de Toro, M.; de la Cruz, F.; Wieler, L.H.; Ewers, C.; Guenther, S. Carriage of Extended-Spectrum Beta-Lactamase-Plasmids Does Not Reduce Fitness but Enhances Virulence in Some Strains of Pandemic E. coli Lineages. Front. Microbiol 2016, 7, 336. [Google Scholar] [CrossRef] [PubMed]
- Bokranz, W.; Wang, X.; Tschape, H.; Romling, U. Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract. J. Med. Microbiol. 2005, 54, 1171–1182. [Google Scholar] [CrossRef] [PubMed]
- Cabeen, M.T.; Leiman, S.A.; Losick, R. Colony-morphology screening uncovers a role for the Pseudomonas aeruginosa nitrogen-related phosphotransferase system in biofilm formation. Mol. Microbiol. 2016, 99, 557–570. [Google Scholar] [CrossRef]
- Zogaj, X.; Bokranz, W.; Nimtz, M.; Romling, U. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect. Immun. 2003, 71, 4151–4158. [Google Scholar] [CrossRef]
- Richter, A.M.; Povolotsky, T.L.; Wieler, L.H.; Hengge, R. Cyclic-di-GMP signalling and biofilm-related properties of the Shiga toxin-producing 2011 German outbreak Escherichia coli O104:H4. EMBO Mol. Med. 2014, 6, 1622–1637. [Google Scholar] [CrossRef] [Green Version]
- Freese, P.D.; Korolev, K.S.; Jimenez, J.I.; Chen, I.A. Genetic drift suppresses bacterial conjugation in spatially structured populations. Biophys. J. 2014, 106, 944–954. [Google Scholar] [CrossRef] [PubMed]
- Krone, S.M.; Lu, R.; Fox, R.; Suzuki, H.; Top, E.M. Modelling the spatial dynamics of plasmid transfer and persistence. Microbiology 2007, 153, 2803–2816. [Google Scholar] [CrossRef]
- Tangden, T.; Hickman, R.A.; Forsberg, P.; Lagerback, P.; Giske, C.G.; Cars, O. Evaluation of double- and triple-antibiotic combinations for VIM- and NDM-producing Klebsiella pneumoniae by in vitro time-kill experiments. Antimicrob. Agents Chemother. 2014, 58, 1757–1762. [Google Scholar] [CrossRef]
- Urban, C.; Mariano, N.; Rahal, J.J. In vitro double and triple bactericidal activities of doripenem, polymyxin B, and rifampin against multidrug-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli. Antimicrob. Agents Chemother. 2010, 54, 2732–2734. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Doi, Y. Therapy of Infections due to Carbapenem-Resistant Gram-Negative Pathogens. Infect. Chemother. 2014, 46, 149–164. [Google Scholar] [CrossRef] [Green Version]
- Tascini, C.; Tagliaferri, E.; Giani, T.; Leonildi, A.; Flammini, S.; Casini, B.; Lewis, R.; Ferranti, S.; Rossolini, G.M.; Menichetti, F. Synergistic activity of colistin plus rifampin against colistin-resistant KPC-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2013, 57, 3990–3993. [Google Scholar] [CrossRef]
- Elemam, A.; Rahimian, J.; Doymaz, M. In vitro evaluation of antibiotic synergy for polymyxin B-resistant carbapenemase-producing Klebsiella pneumoniae. J. Clin. Microbiol 2010, 48, 3558–3562. [Google Scholar] [CrossRef]
- Yang, H.; Lv, N.; Hu, L.; Liu, Y.; Cheng, J.; Ye, Y.; Li, J. In vivo activity of vancomycin combined with colistin against multidrug-resistant strains of Acinetobacter baumannii in a Galleria mellonella model. Infect. Dis. (Lond.) 2016, 48, 189–194. [Google Scholar] [CrossRef]
- Yang, H.; Chen, G.; Hu, L.; Liu, Y.; Cheng, J.; Ye, Y.; Li, J. Enhanced efficacy of imipenem-colistin combination therapy against multiple-drug-resistant Enterobacter cloacae: In vitro activity and a Galleria mellonella model. J. Microbiol. Immunol. Infect. 2018, 51, 70–75. [Google Scholar] [CrossRef]
- Benthall, G.; Touzel, R.E.; Hind, C.K.; Titball, R.W.; Sutton, J.M.; Thomas, R.J.; Wand, M.E. Evaluation of antibiotic efficacy against infections caused by planktonic or biofilm cultures of Pseudomonas aeruginosa and Klebsiella pneumoniae in Galleria mellonella. Int. J. Antimicrob. Agents 2015, 46, 538–545. [Google Scholar] [CrossRef]
- Rozales, F.P.; Ribeiro, V.B.; Magagnin, C.M.; Pagano, M.; Lutz, L.; Falci, D.R.; Machado, A.; Barth, A.L.; Zavascki, A.P. Emergence of NDM-1-producing Enterobacteriaceae in Porto Alegre, Brazil. Int. J. Infect. Dis. 2014, 25, 79–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trentin, D.S.; Giordani, R.B.; Zimmer, K.R.; da Silva, A.G.; da Silva, M.V.; Correia, M.T.; Baumvol, I.J.; Macedo, A.J. Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and biofilm lifestyles. J. Ethnopharmacol. 2011, 137, 327–335. [Google Scholar] [CrossRef]
- Wang, Y.; Bao, W.; Guo, N.; Chen, H.; Cheng, W.; Jin, K.; Shen, F.; Xu, J.; Zhang, Q.; Wang, C.; et al. Antimicrobial activity of the imipenem/rifampicin combination against clinical isolates of Acinetobacter baumannii grown in planktonic and biofilm cultures. World J. Microbiol. Biotechnol. 2014, 30, 3015–3025. [Google Scholar] [CrossRef]
- White, R.L.; Burgess, D.S.; Manduru, M.; Bosso, J.A. Comparison of three different in vitro methods of detecting synergy: Time-kill, checkerboard, and E test. Antimicrob. Agents Chemother. 1996, 40, 1914–1918. [Google Scholar] [CrossRef] [PubMed]
Subpopulations | CAZ | CIP | GEN | MER |
---|---|---|---|---|
7-1 S | >256 | 8 | ≤2 | 32 |
7-2 S | >256 | 8 | ≤2 | 64 |
7-3 S | 32 | 8 | ≤2 | ≤2 |
7-4 S | >256 | 8 | ≤2 | 32 |
67-1 S | >256 | >256 | 256 | 64 |
67-2 S | >256 | >256 | 256 | 256 |
104-1 S | 32 | 128 | 32 | ≤2 |
104-2 S | 32 | 128 | 16 | ≤2 |
104-3 S | 32 | 128 | 16 | ≤2 |
245-1 S | 128 | 64 | >256 | ≤2 |
245-2 S | 64 | 64 | >256 | ≤2 |
245-3 S | 64 | 64 | >256 | ≤2 |
798-1 S | >256 | 16 | 256 | 32 |
798-2 S | >256 | 32 | >256 | 32 |
798-3 S | >256 | 32 | 256 | 16 |
798-4 S | >256 | 8 | 128 | 16 |
821-1 S | 64 | >256 | >256 | ≤2 |
821-2 S | >256 | 256 | >256 | 32 |
821-3 S | >256 | 128 | 32 | 64 |
821-4 S | >256 | 256 | >256 | 32 |
977-1 S | 256 | 8 | 256 | ≤2 |
977-2 S | >256 | 8 | 256 | ≤2 |
997-1 S | >256 | 8 | ≤2 | ≤2 |
997-2 S | >256 | 8 | ≤2 | ≤2 |
1105-1 S | >256 | 64 | >256 | 32 |
1105-2 S | >256 | 64 | 256 | 64 |
1105-3 S | 128 | 64 | 256 | ≤2 |
Subpopulation | MIC (µg/mL) | Checkerboard (interpretation) | |||||
---|---|---|---|---|---|---|---|
MER | POL | RIF * | MER/POL | MER/RIF | POL/RIF | MER/POL/RIF | |
798-1S | 32 (R) | 2 (S) | 128 | 4/0.5 (SE) | 2/8 (SE) | 1/64 (NI) | 2/0.25/4(SE) |
798-2S | 32 (R) | 1 (S) | 128 | 8/0.5 (NI) | 0.5/64 (NI) | 1/1 (NI) | 1/0.25/4 (SE) |
798-3S | 16 (R) | 1 (S) | 128 | 4/0.5 (NI) | 1/64 (NI) | 0.5/64 (NI) | 1/0.25/4 (SE) |
798-4S | 16 (R) | 1 (S) | 128 | 1/1 (NI) | 2/64 (NI) | 0.5/64 (NI) | 1/0.25/4 (SE) |
E. hormaechei subsp. oharae Strains | Description |
---|---|
1 (245) | Sink isolate |
2 (7) | Rectal swab isolate |
3 (67) | Rectal swab isolate |
4 (104) | Rectal swab isolate |
5 (798) | Urine isolate |
6 (821) | Cerebrospinal fluid isolate |
9 (977) | Rectal swab isolate |
10 (997) | Rectal swab isolate |
11 (1105) | Rectal swab isolate |
Gene | Encoding Protein | Primer Sequence (5’ to 3’) | Size (bp) |
---|---|---|---|
csgA | Major fimbrial subunit | Forward: caacctgatgcacagtcacc | 214 |
Reverse: tggacagggatctgatgaca | |||
csgB | Minor subunit | Forward: agccatttgcgactgtctct | 233 |
Reverse: tgtccgttatttcccaggag | |||
csgD | Transcriptional regulator of the csgBAC operon | Forward: ccttccttacaagcgacagc | 236 |
Reverse: tcgcggaaaggatactcatc | |||
fimA | Major fimbrial subunit | Forward: tgctgtcgaggatctcaatg | 229 |
Reverse: acggttaatctcggccagta | |||
fimH | Fimbrial adhesion | Forward: ccccgtccagatagtcgtta | 210 |
Reverse: acgacctgacggacaaattc | |||
papC | Fimbrial usher | Forward: ccctgaagaccgatgacaat | 148 |
Reverse: cggaacggaggtttgataga | |||
papD | Fimbrial chaperone | Forward: tggatggaagacgagaaagg | 134 |
Reverse: catccagtacagcgtctcg | |||
mrkB | Fimbrial chaperone | Forward: ggtggctgaatctgctggaaatt | 514 |
Reverse: atcacggttttactgttcagggcttt | |||
Reverse: attggcataagtcgcaatcc |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brust, F.R.; Boff, L.; da Silva Trentin, D.; Pedrotti Rozales, F.; Barth, A.L.; Macedo, A.J. Macrocolony of NDM-1 Producing Enterobacter hormaechei subsp. oharae Generates Subpopulations with Different Features Regarding the Response of Antimicrobial Agents and Biofilm Formation. Pathogens 2019, 8, 49. https://doi.org/10.3390/pathogens8020049
Brust FR, Boff L, da Silva Trentin D, Pedrotti Rozales F, Barth AL, Macedo AJ. Macrocolony of NDM-1 Producing Enterobacter hormaechei subsp. oharae Generates Subpopulations with Different Features Regarding the Response of Antimicrobial Agents and Biofilm Formation. Pathogens. 2019; 8(2):49. https://doi.org/10.3390/pathogens8020049
Chicago/Turabian StyleBrust, Flávia Roberta, Luana Boff, Danielle da Silva Trentin, Franciele Pedrotti Rozales, Afonso Luís Barth, and Alexandre José Macedo. 2019. "Macrocolony of NDM-1 Producing Enterobacter hormaechei subsp. oharae Generates Subpopulations with Different Features Regarding the Response of Antimicrobial Agents and Biofilm Formation" Pathogens 8, no. 2: 49. https://doi.org/10.3390/pathogens8020049
APA StyleBrust, F. R., Boff, L., da Silva Trentin, D., Pedrotti Rozales, F., Barth, A. L., & Macedo, A. J. (2019). Macrocolony of NDM-1 Producing Enterobacter hormaechei subsp. oharae Generates Subpopulations with Different Features Regarding the Response of Antimicrobial Agents and Biofilm Formation. Pathogens, 8(2), 49. https://doi.org/10.3390/pathogens8020049