Sustainable Elimination (Zero Cases) of Sleeping Sickness: How Far Are We from Achieving This Goal?
Abstract
:1. Introduction
2. Human Infectivity
3. Parasite Life Cycle
4. Transmission of HAT
5. Epidemiology
6. Diagnostic Tools
7. Vaccine Prospect
8. Chemotherapy
9. Prospects for New Drugs
10. Vector Control
11. Challenges Facing HAT Elimination
12. Insights for the Future
13. Conclusions
Author Contributions
Conflicts of Interest
References
- Desquesnes, M.; Holzmuller, P.; Lai, D.; Dargantes, A.; Lun, Z.; Jittaplapong, S. Trypanosoma evansi and Surra: A Review and Perspectives on Origin, History, Distribution, Taxonomy, Morphology, Hosts, and Pathogenic Effects. BioMed Res. Int. 2013, 2013, 194176. [Google Scholar] [CrossRef] [PubMed]
- Suganuma, K.; Narantsatsral, S.; Battur, B.; Yamasaki, S.; Otgonsuren, D.; Musinguzi, S.P.; Davaasuren, B.; Battsetseg, B.; Inoue, N. Isolation, cultivation and molecular characterization of a new Trypanosoma equiperdum strain in Mongolia. Parasites Vectors 2016, 9, 481. [Google Scholar] [CrossRef] [PubMed]
- Pays, E.; Vanhollebeke, B.; Vanhamme, L.; Paturiaux-Hanocq, F.; Nolan, D.P.; Perez-Morga, D. The trypanolytic factor of human serum. Nat. Rev. Microbiol. 2006, 4, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Stephens, N.A.; Hajduk, S.L. Endosomal localization of the serum resistance-associated protein in African trypanosomes confers human infectivity. Eukaryot. Cell 2011, 10, 1023–1033. [Google Scholar] [CrossRef] [PubMed]
- Uzureau, P.; Uzureau, S.; Lecordier, L.; Fontaine, F.; Tebabi, P.; Homblé, F.; Grélard, A.; Zhendre, V.; Nolan, D.P.; Lins, L.; et al. Mechanism of Trypanosoma brucei gambiense resistance to human serum. Nature 2013, 501, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Capewell, P.; Clucas, C.; DeJesus, E.; Kieft, R.; Hajduk, S.; Veitch, N.; Steketee, P.C.; Cooper, A.; Weir, W.; MacLeod, A. The TgsGP gene is essential for resistance to human serum in Trypanosoma brucei gambiense. PLoS Pathog. 2013, 9, e1003686. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, J.; Hattori, M.; Berriman, M.; Lehane, M.J. Genome sequence of the tsetse fly (Glossina morsitans): Vector of African trypanosomiasis. Science 2014, 344, 380–386. [Google Scholar]
- Davis, J.; Chaubey, V.; Warren, R.; Parkins, M.; Louie, M.; Gregson, D.; Sabuda, D.; Kuhn, S. Fever, headache, fatigue and chancre in a traveller returning from Tanzania. Can. J. Infect. Dis. Med. Microbiol. 2012, 23, 108–109. [Google Scholar] [CrossRef]
- Malvy, D.; Djossou, F.; Weill, F.X.; Chapuis, P.; Longy-Boursier, M.; Le Bras, M. Guess what! Human West African trypanosomiasis with chancre presentation. Eur. J. Dermatol. 2000, 10, 561–562. [Google Scholar]
- Matthews, K.R. The developmental cell biology of Trypanosoma brucei. J. Cell Sci. 2005, 118, 283–290. [Google Scholar] [CrossRef]
- Barry, J.D.; McCulloch, R. Antigenic variation in trypanosomes: Enhanced phenotypic variation in a eukaryotic parasite. Adv. Parasitol. 2001, 49, 1–70. [Google Scholar] [PubMed]
- Pays, E.; Vanhamme, L.; Perez-Morga, D. Antigenic variation in Trypanosoma brucei: Facts, challenges and mysteries. Curr. Opin. Microbiol. 2004, 7, 369–374. [Google Scholar] [CrossRef] [PubMed]
- McCulloch, R. Antigenic variation in African trypanosomes: Monitoring progress. Trends Parasitol. 2004, 20, 117–121. [Google Scholar] [CrossRef]
- Matthews, K.R.; Ellis, J.R.; Paterou, A. Molecular regulation of the life cycle of African trypanosomes. Trends Parasitol. 2004, 20, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Vickerman, K. Developmental cycles and biology of pathogenic trypanosomes. Br. Med. Bull. 1985, 41, 105–114. [Google Scholar] [CrossRef]
- Roditi, I.; Liniger, M. Dressed for success: The surface coats of insect-borne protozoan parasites. Trends Microbiol. 2002, 10, 128–134. [Google Scholar] [CrossRef]
- Van Den Abbeele, J.; Claes, Y.; van Bockstaele, D.; Le Ray, D.; Coosemans, M. Trypanosoma brucei spp. development in the tsetse fly: Characterization of the post-mesocyclic stages in the foregut and proboscis. Parasitology 1999, 118, 469–478. [Google Scholar] [CrossRef]
- Urwyler, S.; Vassella, E.; Van Den Abbeele, J.; Renggli, C.K.; Blundell, P.; Barry, J.D.; Roditi, I. Expression of procyclin mRNAs during cyclical transmission of Trypanosoma brucei. PLoS Pathog. 2005, 1, e22. [Google Scholar] [CrossRef]
- Gibson, W.; Peacock, L.; Ferris, V.; Williams, K.; Bailey, M. Analysis of a cross between green and red fluorescent trypanosomes. Biochem. Soc. Trans. 2006, 34, 557–559. [Google Scholar] [CrossRef]
- Tetley, L.; Turner, C.M.; Barry, J.D.; Crowe, J.S.; Vickerman, K. Onset of expression of the variant surface glycoproteins of Trypanosoma brucei in the tsetse fly studied using immunoelectron microscopy. J. Cell Sci. 1987, 87, 363–372. [Google Scholar]
- Welburn, S.C.; Molyneux, D.H.; Maudlin, I. Beyond Tsetse—Implications for Research and Control of Human African Trypanosomiasis Epidemics. Trends Parasitol. 2016, 32, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Maudlin, I.; Dukes, P.; Luckins, A.G.; Hudson, K.M. Extrachromosomal inheritance of susceptibility to trypanosome infection in tsetse flies. Ann. Trop. Med. Parasitol. 1986, 80, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Janelle, J.; Koffi, M.; Jamonneau, V.; Patrel, D.; Cuny, G.; Ravel, S. Monitoring the pleomorphism of Trypanosoma brucei gambiense isolates in mouse: Impact on its transmissibility to Glossina palpalis gambiensis. Infect. Genet. Evol. 2009, 9, 1260–1264. [Google Scholar] [CrossRef] [PubMed]
- Ravel, S.; Patrel, D.; Koffi, M.; Jamonneau, V.; Cuny, G. Cyclical transmission of Trypanosoma brucei gambiense in Glossina palpalis gambiensis displays great differences among field isolates. Acta Trop. 2006, 100, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Hide, G.; Welburn, S.C.; Tait, A.; Maudlin, I. Epidemiological relationships of Trypanosoma brucei stocks from South East Uganda: Evidence for different population structures in human infective and non-human infective isolates. Parasitology 1994, 109, 95. [Google Scholar] [CrossRef]
- Sina, G.; Testa, G.; Triolo, N.; Trova, P.; Cramet, B. Some new cases of congenital human African trypanosomiasis (T. gambiense). Med. Trop. 1979, 39, 57–63. [Google Scholar]
- Pepin, J.; Guern, C.; Milord, F.; Ethier, L.; Bokelo, M.; Schechter, P.J. The use of difluoromethylornithine in congenital trypanosomiasis due to Trypanosoma brucei-gambiense. Med. Trop. 1989, 49, 83–85. [Google Scholar]
- Triolo, N.; Trova, P.; Fusco, C.; Le Bras, J. Report on 17 years of studies of human African trypanosomiasis caused by T. gambiense in children 0-6 years of age. Med. Trop. 1985, 45, 251–257. [Google Scholar]
- Gaillot, K.; Lauvin, M.A.; Cottier, J.P. Vertical transmission of human African trypanosomiasis: Clinical evolution and brain MRI of a mother and her son. PLoS Negl. Trop. Dis. 2017, 11, e0005642. [Google Scholar] [CrossRef]
- Kalanda, K. A case of twin delivery of a mother suffering from trypanosomiasis in Kasongo (Zaire). Ann. Soc. Belg. Med. Trop. 1991, 71, 67–68. [Google Scholar]
- Rocha, G.; Martins, A.; Gama, G.; Brandão, F.; Atouguia, J. Possible cases of sexual and congenital transmission of sleeping sickness. Lancet 2004, 363, 247. [Google Scholar] [CrossRef]
- Lindner, A.K.; Priotto, G. The Unknown Risk of Vertical Transmission in Sleeping Sickness—A Literature Review. PLoS Negl. Trop. Dis. 2010, 4, e783. [Google Scholar] [CrossRef] [PubMed]
- Steverding, D. The history of African trypanosomiasis. Parasites Vectors 2008, 1, 3. [Google Scholar] [CrossRef] [PubMed]
- WHO. Trypanosomiasis, Human African (Sleeping Sickness). WHO Fact Sheet, No. 259. 2019. Available online: http://www.who.int/mediacentre/factsheets/fs259/en/index.html (accessed on 6 October 2019).
- Odiit, M.; Coleman, P.G.; Liu, W.C.; McDermott, J.J.; Févre, E.M.; Welburn, S.C.; Woolhouse, M.E.J. Quantifying the level of under-detection of Trypanosoma brucei rhodesiense sleeping sickness cases. Trop. Med. Int. Health 2005, 10, 840–849. [Google Scholar] [CrossRef] [PubMed]
- WHO. Accelerating Work to Overcome Neglected Tropical Diseases: A Roadmap for Implementation; World Health Organization: Geneva, Switzerland, 2012; Available online: https://www.who.int/neglected_diseases/NTD_RoadMap_2012_Fullversion.pdf (accessed on 6 December 2019).
- WHO. Control and surveillance of human African trypanosomiasis. World Health Organ. Tech. Rep. Ser. 2013, 984, 1–237. Available online: https://apps.who.int/iris/bitstream/handle/10665/95732/9789241209847_eng.pdf?sequence=1&isAllowed=y (accessed on 6 December 2019).
- Franco, J.R.; Cecchi, G.; Priotto, G.; Paone, M.; Diarra, A.; Grout, L.; Simarro, P.P.; Zhao, W.; Argaw, D. Monitoring the elimination of human African trypanosomiasis: Update to 2016. PLoS Negl. Trop. Dis. 2018, 12, e0006890. [Google Scholar] [CrossRef]
- Chappuis, F.; Stivanello, E.; Adams, K.; Kidane, S.; Pittet, A.; Bovier, P.A. Card agglutination test for trypanosomiasis (CATT) end-dilution titer and cerebrospinal fluid cell count as predictors of Human African Trypanosomiasis (Trypanosoma brucei gambiense) among serologically suspected individuals in southern sudan. Am. J. Trop. Med. Hyg. 2004, 7, 313–317. [Google Scholar] [CrossRef]
- Bonnet, J.; Boudot, C.; Courtioux, B. Overview of the Diagnostic Methods Used in the Field for Human African Trypanosomiasis: What Could Change in the Next Years? BioMed Res. Int. 2015. [Google Scholar] [CrossRef]
- Barrett, M.P. The elimination of human African trypanosomiasis is in sight: Report from the third WHO stakeholders meeting on elimination of gambiense human African trypanosomiasis. PLoS Negl. Trop. Dis. 2018, 12, e0006925. [Google Scholar] [CrossRef]
- Biéler, S.; Waltenberger, H.; Barrett, M.P.; McCulloch, R.; Mottram, J.C.; Carrington, M.; Schwaeble, W.; McKerrow, J.; Phillips, M.A.; Michels, P.A.; et al. Evaluation of Antigens for Development of a Serological Test for Human African Trypanosomiasis. PLoS ONE 2016, 11, 0168074. [Google Scholar] [CrossRef]
- Weerakoon, K.G.; McManus, D.P. Cell-Free DNA as a Diagnostic Tool for Human Parasitic Infections. Trends Parasitol. 2016, 32, 378–391. [Google Scholar] [CrossRef]
- FIND. Developing New Diagnostic Tests for Human African Trypanosomiasis. Current Status and Future Plans; Foundation for Innovative New Diagnostics: Geneva, Switzerland, 2013; pp. 1–20. [Google Scholar]
- Rasooly, R.; Balaban, N. Trypanosome microtubule-associated protein p15 as a vaccine for the prevention of African sleeping sickness. Vaccine 2004, 22, 1007–1015. [Google Scholar] [CrossRef]
- Magez, S.; Caljon, G.; Tran, T.; Stijlemans, B.; Radwanska, M. Current status of vaccination against African trypanosomiasis. Parasitology 2010, 137, 2017–2027. [Google Scholar] [CrossRef] [Green Version]
- Stijlemans, B.; Radwanska, M.; De Trez, C.; Magez, S. African Trypanosomes Undermine Humoral Responses and Vaccine Development: Link with Inflammatory Responses? Front. Immunol. 2017. [Google Scholar] [CrossRef]
- Tabel, H.; Wei, G.; Bull, H.J. Immunosuppression: Cause for failures of vaccines against African Trypanosomiases. PLoS Negl. Trop. Dis. 2013, 7, e2090. [Google Scholar] [CrossRef]
- Kato, C.D.; Nanteza, A.; Mugasa, C.; Edyelu, A.; Matovu, E.; Alibu, V.P. Clinical Profiles, Disease Outcome and Co-Morbidities among T. b. rhodesiense Sleeping Sickness Patients in Uganda. PLoS ONE 2015, 10, e0118370. [Google Scholar] [CrossRef]
- Baker, C.H.; Welburn, S.C. The Long Wait for a New Drug for Human African Trypanosomiasis. Trends Parasitol. 2018, 34, 818–827. [Google Scholar] [CrossRef]
- De Koning, H.P.; Jarvis, S.M. Uptake of pentamidine in Trypanosoma brucei brucei is mediated by the P2 adenosine transporter and at least one novel, unrelated transporter. Acta Trop. 2001, 80, 245–250. [Google Scholar] [CrossRef]
- Munday, J.C.; Eze, A.A.; Baker, N.; Glover, L.; Clucas, C.; Aguinaga Andrés, D.; Natto, M.J.; Teka, I.A.; McDonald, J.; Lee, R.S.; et al. Trypanosoma brucei aquaglyceroporin 2 is a high-affinity transporter for pentamidine and melaminophenyl arsenic drugs and the main genetic determinant of resistance to these drugs. J. Antimicrob. Chemother. 2014, 69, 651–663. [Google Scholar] [CrossRef]
- Thomas, J.A.; Baker, N.; Hutchinson, S.; Dominicus, C.; Trenaman, A.; Glover, L.; Alsford, S.; Horn, D. Insights into antitrypanosomal drug mode-of-action from cytology-based profiling. PLoS Negl. Trop. Dis. 2018, 12, e0006980. [Google Scholar] [CrossRef]
- Song, J.; Baker, N.; Rothert, M.; Henke, B.; Jeacock, L.; Horn, D.; Beitz, E. Pentamidine Is Not a Permeant but a Nanomolar Inhibitor of the Trypanosoma brucei Aquaglyceroporin-2. PLoS Pathog. 2016, 12, e1005436. [Google Scholar] [CrossRef]
- Fairlamb, A.H.; Henderson, G.B.; Cerami, A. Trypanothione is the primary target for arsenical drugs against African trypanosomes. Proc. Natl. Acad. Sci. USA 1989, 86, 2607–2611. [Google Scholar] [CrossRef]
- Bacchi, C.J.; Garofalo, J.; Mockenhaupt, D.; McCann, P.P.; Diekema, K.A.; Pegg, A.E.; Nathan, H.C.; Mullaney, E.A.; Chunosoff, L.; Sjoerdsma, A.; et al. In vivo effects of alpha-DL-difluoromethylornithine on the metabolism and morphology of Trypanosoma brucei brucei. Mol. Biochem. Parasitol. 1983, 7, 209–225. [Google Scholar] [CrossRef]
- Alsford, S.; Eckert, S.; Baker, N.; Glover, L.; Sanchez-Flores, A.; Leung, K.F.; Turner, D.J.; Field, M.C.; Berriman, M.; Horn, D. High-throughput decoding of antitrypanosomal drug efficacy and resistance. Nature 2012, 482, 232–236. [Google Scholar] [CrossRef] [Green Version]
- Wiedemar, N.; Graf, F.E.; Zwyer, M.; Ndomba, E.; Renggli, C.K.; Cal, M.; Schmidt, R.S.; Wenzler, T.; Maser, P. Beyond immune escape: A variant surface glycoprotein causes suramin resistance in Trypanosoma brucei. Mol. Microbiol. 2017, 107, 57–67. [Google Scholar] [CrossRef]
- Macedo, J.P.; Currier, R.B.; Wirdnam, C.; Horn, D.; Alsford, S.; Rentsch, D. Ornithine uptake and the modulation of drug sensitivity in Trypanosoma brucei. FASEB J. 2017, 31, 4649–4660. [Google Scholar] [CrossRef]
- Wilkinson, S.R.; Taylor, M.C.; Horn, D.; Kelly, J.M.; Cheeseman, I. A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc. Natl. Acad. Sci. USA 2008, 105, 5022–5027. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, M.; Bray, M.A.; Cal, M.; Bourdin Trunz, B.; Torreele, E.; Brun, R. Antitrypanosomal activity of fexinidazole, a new oral nitroimidazole drug candidate for treatment of sleeping sickness. Antimicrob. Agents Chemother. 2011, 55, 5602–5608. [Google Scholar] [CrossRef]
- Priotto, G.; Kasparian, S.; Mutombo, W.; Ngouama, D.; Ghorashian, S.; Arnold, U.; Ghabri, S.; Baudin, E.; Buard, V.; Kazadi-Kyanza, S.; et al. Nifurtimox-eflornithine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: A multicentre, randomised, phase III, non-inferiority trial. Lancet 2009, 374, 56–64. [Google Scholar] [CrossRef]
- Graf, F.E.; Ludin, P.; Wenzler, T.; Kaiser, M.; Brun, R.; Pyana, P.P.; Büscher, P.; de Koning, H.P.; Horn, D.; Mäser, P. Aquaporin 2 Mutations in Trypanosoma brucei gambiense Field Isolates Correlate with Decreased Susceptibility to Pentamidine and Melarsoprol. PLoS Negl. Trop. Dis. 2013, 7, e2475. [Google Scholar] [CrossRef]
- Vincent, I.M.; Creek, D.; Watson, D.G.; Kamleh, M.A.; Woods, D.J.; Wong, P.E.; Burchmore, R.J.S.; Barrett, M.P. A Molecular Mechanism for Eflornithine Resistance in African Trypanosomes. PLoS Pathog. 2010, 6, e1001204. [Google Scholar] [CrossRef]
- Mathieu, C.; González Salgado, A.; Wirdnam, C.; Meier, S.; Grotemeyer, M.S.; Inbar, E.; Mäser, P.; Zilberstein, D.; Sigel, E.; Bütikofer, P.; et al. Trypanosoma brucei eflornithine transporter AAT6 is a low-affinity low-selective transporter for neutral amino acids. Biochem. J. 2014, 463, 9–18. [Google Scholar] [CrossRef]
- Sokolova, A.Y.; Wyllie, S.; Patterson, S.; Oza, S.L.; Read, K.D.; Fairlamb, A.H. Cross-resistance to nitro drugs and implications for treatment of human African trypanosomiasis. Antimicrob. Agents Chemother. 2010, 54, 2893–2900. [Google Scholar] [CrossRef]
- Sutherland, C.S.; Stone, C.M.; Steinmann, P.; Tanner, M.; Tediosi, F. Seeing beyond 2020: An economic evaluation of contemporary and emerging strategies for elimination of Trypanosoma brucei gambiense. Lancet Glob. Health 2017, 5, e69–e79. [Google Scholar] [CrossRef]
- De-Koning, H.P. Drug resistance in protozoan parasites. Emerg. Top. Life Sci. 2017, 1, 627–632. [Google Scholar] [CrossRef] [Green Version]
- Field, M.C.; Horn, D.; Fairlamb, A.H.; Ferguson, M.A.; Gray, D.W.; Read, K.D.; De Rycker, M.; Torrie, L.S.; Wyatt, P.G.; Wyllie, S.; et al. Anti-trypanosomatid drug discovery: An ongoing challenge and a continuing need. Nat. Rev. Microbiol. 2017, 15, 217–231. [Google Scholar] [CrossRef]
- Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro “proof-of-concept”. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M.; Kingston, D.G.I. Natural Products as Pharmaceuticals and Sources for Lead Structures. In The Practice of Medicinal Chemistry, 4th ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 101–139. [Google Scholar]
- Hoet, S.; Opperdoes, F.; Brun, R.; Quetin-Leclercq, J. Natural products active against African trypanosomes: A step towards new drugs. Nat. Prod. Rep. 2004, 21, 353. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Mohammed, A.; Isah, M.B.; Aliyu, A.B. Anti-trypanosomal activity of African medicinal plants: A review update. J. Ethnopharmacol. 2014, 154, 26–54. [Google Scholar] [CrossRef]
- Lim, K.T.; Amanah, A.; Chear, N.J.Y.; Zahari, Z.; Zainuddin, Z.; Adenan, M.I. Inhibitory effects of (+)-spectaline and iso-6-spectaline from Senna spectabilis on the growth and ultrastructure of human-infective species Trypanosoma brucei rhodesiense bloodstream form. Exp. Parasitol. 2017, 184, 57–66. [Google Scholar] [CrossRef]
- Petrelli, R.; Ranjbarian, F.; Dall’Acqua, S.; Papa, F.; Iannarelli, R.; Kamte, S.L.; Vittori, S.; Benelli, G.; Maggi, F.; Hofer, A.; et al. An overlooked horticultural crop, Smyrnium olusatrum, as a potential source of compounds effective against African trypanosomiasis. Parasitol. Int. 2017, 66, 146–151. [Google Scholar] [CrossRef]
- Ebiloma, G.U.; Igoli, J.O.; Katsoulis, E.; Donachie, A.M.; Eze, A.A.; Gray, A.I.; De Koning, H.P. Bioassay-guided isolation of active principles from Nigerian medicinal plants identifies new trypanocides with low toxicity and no cross-resistance to diamidines and arsenicals. J. Ethnopharmacol. 2017, 202, 256–264. [Google Scholar] [CrossRef] [Green Version]
- Zahari, Z.; Jani, N.A.; Amanah, A.; Latif, M.N.A.; Majid, M.I.A.; Adenan, M.I. Bioassay-guided isolation of a sesquiterpene lactone of deoxyelephantopin from Elephantopus scaber Linn. active on Trypanosome brucei rhodesience. Phytomedicine 2014, 21, 282–285. [Google Scholar] [CrossRef]
- Kimani, N.M.; Matasyoh, J.C.; Kaiser, M.; Brun, R.; Schmidt, T.J. Sesquiterpene Lactones from Vernonia cinerascens Sch. Bip. and Their in Vitro Antitrypanosomal Activity. Molecules 2018, 23, 248. [Google Scholar] [CrossRef]
- Gachet, M.S.; Kunert, O.; Kaiser, M.; Brun, R.; Zehl, M.; Keller, W.; Munoz, R.A.; Bauer, R.; Schuehly, W. Antiparasitic Compounds from Cupania cinerea with Activities against Plasmodium falciparum and Trypanosoma brucei rhodesiense. J. Nat. Prod. 2011, 74, 559–566. [Google Scholar] [CrossRef]
- Bero, J.; Hannaert, V.; Chataigné, G.; Hérent, M.F.; Quetin-Leclercq, J. In vitro antitrypanosomal and antileishmanial activity of plants used in Benin in traditional medicine and bio-guided fractionation of the most active extract. J. Ethnopharmacol. 2011, 137, 998–1002. [Google Scholar] [CrossRef]
- Zimmermann, S.; Adams, M.; Julianti, T.; Hata-Uribe, Y.; Brun, R.; Hamburger, M. HPLC-based activity profiling for new antiparasitic leads: In vitro and in vivo antitrypanosomal activity of cynaropicrin. Planta Med. 2010, 76, WSII_7. [Google Scholar] [CrossRef]
- Mohamed, S.M.; Elokely, K.M.; Bachkeet, E.Y.; Bayoumi, S.A.; Carnevale, V.; Klein, M.L.; Cutler, S.J.; Ross, S.A. New Glycosides and Trypanocidal Metabolites from Vangueria edulis. Nat. Prod. Comm. 2015, 10, 1897–1900. [Google Scholar] [CrossRef]
- Scala, F.; Fattorusso, E.; Menna, M.; Taglialatela-Scafati, O.; Tierney, M.; Kaiser, M.; Tasdemir, D. Bromopyrrole alkaloids as lead compounds against protozoan parasites. Mar. Drugs 2010, 8, 2162–2174. [Google Scholar] [CrossRef]
- Nibret, E.; Youns, M.; Krauth-Siegel, R.L.; Wink, M. Biological activities of xanthatin from Xanthium strumarium leaves. Phytother. Res. 2011, 25, 1883–1890. [Google Scholar] [CrossRef]
- Moridi Farimani, M.; Bahadori, M.B.; Taheri, S.; Ebrahimi, S.N.; Zimmermann, S.; Brun, R.; Amin, G.; Hamburger, M. Triterpenoids with rare carbon skeletons from Salvia hydrangea: Antiprotozoal activity and absolute configurations. J. Nat. Prod. 2011, 74, 2200–2205. [Google Scholar] [CrossRef]
- Hata, Y.; Ebrahimi, S.N.; De Mieri, M.; Zimmermann, S.; Mokoka, T.; Naidoo, D.; Fouche, G.; Maharaj, V.; Kaiser, M.; Brun, R.; et al. Antitrypanosomal isoflavan quinones from Abrus precatorius. Fitoterapia 2014, 93, 81–87. [Google Scholar] [CrossRef]
- Umeyama, A.; Takahashi, K.; Grudniewska, A.; Shimizu, M.; Hayashi, S.; Kato, M.; Okamoto, Y.; Suenaga, M.; Ban, S.; Kumada, T.; et al. In vitro antitrypanosomal activity of the cyclodepsipeptides, cardinalisamides A-C, from the insect pathogenic fungus Cordyceps cardinalis NBRC 103832. J. Antibiot. 2014, 67, 163–166. [Google Scholar] [CrossRef]
- Van den Bossche, P.; de La Rocque, S.; Hendrickx, G.; Bouyer, J. A changing environment and the epidemiology of tsetse-transmitted livestock trypanosomiasis. Trends Parasitol. 2010, 26, 236–243. [Google Scholar] [CrossRef]
- Franco, J.R.; Simarro, P.P.; Diarra, A.; Jannin, J.G. Epidemiology of human African trypanosomiasis. Clin. Epidemiol. 2014, 6, 257–275. [Google Scholar]
- Bouyer, J.; Carter, N.H.; Batavia, C.; Nelson, M.P. The Ethics of Eliminating Harmful Species: The Case of the Tsetse Fly. Bioscience 2019, 69, 125–135. [Google Scholar] [CrossRef]
- Diall, O.; Cecchi, G.; Wanda, G.; Argilés-Herrero, R.; Vreysen, M.J.B.; Cattoli, G.; Viljoen, G.J.; Mattioli, R.; Bouyer, J. Developing a Progressive Control Pathway for African Animal Trypanosomosis. Trends Parasitol. 2017, 33, 499–509. [Google Scholar] [CrossRef] [Green Version]
- Torr, S.J.; Maudlin, I.; Vale, G.A. Less is more: Restricted application of insecticide to cattle to improve the cost and efficacy of tsetse control. Med. Vet. Entomol. 2007, 21, 53–64. [Google Scholar] [CrossRef]
- Bouyer, J.; Stachurski, F.; Gouro, A.S.; Lancelot, R. Control of bovine trypanosomosis by restricted application of insecticides to cattle using footbaths. Vet. Parasitol. 2009, 161, 187–193. [Google Scholar] [CrossRef]
- Hargrove, J.W. Tsetse Eradication: Sufficiency, Necessity and Desirability; DFID Animal Health Programme, Centre for Tropical Veterinary Medicine, University of Edinburgh: Edinburgh, Scotland, 2003. [Google Scholar]
- Kgori, P.M.; Modo, S.; Torr, S.J. The use of aerial spraying to eliminate tsetse from the Okavango Delta of Botswana. Acta Trop. 2006, 99, 184–199. [Google Scholar] [CrossRef]
- Vreysen, M.J.; Saleh, K.; Mramba, F.; Parker, A.; Feldmann, U.; Dyck, V.A.; Msangi, A.; Bouyer, J. Sterile Insects to Enhance Agricultural Development: The Case of Sustainable Tsetse Eradication on Unguja Island, Zanzibar, Using an Area-Wide Integrated Pest Management Approach. PLoS Negl. Trop. Dis. 2014, 8, e2857. [Google Scholar] [CrossRef]
- De Vooght, L.; Van Keer, S.; Van Den Abbeele, J. Towards improving tsetse fly paratransgenesis: Stable colonization of Glossina morsitans morsitans with genetically modified Sodalis. BMC Microbiol. 2018, 18, 165. [Google Scholar] [CrossRef]
- Mbewe, N.J.; Saini, R.K.; Irungu, J.; Yusuf, A.A.; Pirk, C.W.W.; Torto, B. Responses of Glossina fuscipes fuscipes to visually attractive stationary devices baited with 4-methylguaiacol and certain repellent compounds in waterbuck odour. PLoS Negl. Trop. Dis. 2019, 13, e0007510. [Google Scholar] [CrossRef]
- Olaide, O.Y.; Tchouassi, D.P.; Yusuf, A.A.; Pirk, C.W.W.; Masiga, D.K.; Saini, R.K.; Torto, B. Zebra skin odor repels the savannah tsetse fly, Glossina pallidipes (Diptera: Glossinidae). PLoS Negl. Trop. Dis. 2019, 13, e0007460. [Google Scholar] [CrossRef]
- Wyllie, S.; Foth, B.J.; Kelner, A.; Sokolova, A.Y.; Berriman, M.; Fairlamb, A.H. Nitroheterocyclic drug resistance mechanisms in Trypanosoma brucei. J. Antimicrob. Chemother. 2016, 71, 625–634. [Google Scholar] [CrossRef]
- Jamonneau, V.; Ilboudo, H.; Kaboré, J.; Kaba, D.; Koffi, M.; Solano, P.; Garcia, A.; Courtin, D.; Laveissière, C.; Lingue, K.; et al. Untreated human infections by Trypanosoma brucei gambiense are not 100% fatal. PLoS Negl. Trop. Dis. 2012, 6, e1691. [Google Scholar] [CrossRef]
- Kabore, J.; Koffi, M.; Bucheton, B.; MacLeod, A.; Duffy, C.; Ilboudo, H.; Camara, M.; De Meeûs, T.; Belem, A.M.; Jamonneau, V. First evidence that parasite infecting apparent aparasitemic serological suspects in human African trypanosomiasis are Trypanosoma brucei gambiense and are similar to those found in patients. Infect. Genet. Evol. 2011, 11, 1250–1255. [Google Scholar] [CrossRef]
- Simo, G.; Rayaisse, J.B. Challenges facing the elimination of sleeping sickness in west and central Africa: Sustainable control of animal trypanosomiasis as an indispensable approach to achieve the goal. Parasites Vectors 2015, 8, 640. [Google Scholar] [CrossRef]
- Caljon, G.; Van Reet, N.; De Trez, C.; Vermeersch, M.; Pérez-Morga, D.; Van Den Abbeele, J. The dermis as a delivery site of Trypanosoma brucei for tsetse flies. PLoS Pathog. 2016, 12, e1005744. [Google Scholar] [CrossRef]
- Capewell, P.; Cren-Travaillé, C.; Marchesi, F.; Johnston, P.; Clucas, C.; Benson, R.A.; Gorman, T.A.; Calvo-Alvarez, E.; Crouzols, A.; Jouvion, G.; et al. The skin is a significant but overlooked anatomical reservoir for vector-borne African trypanosomes. Elife 2016, 5, e17716. [Google Scholar] [CrossRef]
- Trindade, S.; Rijo-Ferreira, F.; Carvalho, T.; Pinto-Neves, D.; Guegan, F.; Aresta-Branco, F.; Bento, F.; Young, S.A.; Pinto, A.; Van Den Abbeele, J.; et al. Trypanosoma brucei parasites occupy and functionally adapt to the adipose tissue in mice. Cell Host Microbe 2016, 19, 837–848. [Google Scholar] [CrossRef]
- Wombou Toukam, C.M.; Solano, P.; Bengaly, Z.; Jamonneau, V.; Bucheton, B. Experimental evaluation of xenodiagnosis to detect trypanosomes at low parasitaemia levels in infected hosts. Parasite 2011, 18, 295–302. [Google Scholar] [CrossRef]
- Camara, M.; Ouattara, E.; Duvignaud, A.; Migliani, R.; Camara, O.; Leno, M.; Solano, P.; Bucheton, B.; Camara, M.; Malvy, D. Impact of the Ebola outbreak on Trypanosoma brucei gambiense infection medical activities in coastal Guinea, 2014–2015: A retrospective analysis from the Guinean national Human African Trypanosomiasis control program. PLoS Negl. Trop. Dis. 2017, 11, e0006060. [Google Scholar] [CrossRef]
- Kambire, R.; Lingue, K.; Courtin, F.; Sidibe, I.; Kiendrebeogo, D.; N’gouan, K.E.; Blé, L.; Kaba, D.; Koffi, M.; Solano, P.; et al. Human African trypanosomiasis in Cote d’Ivoire and Burkina Faso: Optimization of epidemiologic surveillance strategies. Parasite 2012, 19, 389–396. [Google Scholar] [CrossRef]
- Simarro, P.P.; Franco, J.R.; Diarra, A.; Ruiz Postigo, J.A.; Jannin, J. Diversity of human African trypanosomiasis epidemiological settings requires fine-tuning control strategies to facilitate disease elimination. Res. Rep. Trop. Med. 2013, 4, 1–6. [Google Scholar] [Green Version]
- Simarro, P.P.; Cecchi, G.; Franco, J.R.; Paone, M.; Diarra, A.; Priotto, G.; Mattioli, R.C.; Jannin, J.G. Monitoring the Progress towards the Elimination of Gambiense Human African Trypanosomiasis. PLoS Negl. Trop. Dis. 2015, 9, e0003785. [Google Scholar] [CrossRef]
- Koffi, M.; N’Djetchi, M.; Ilboudo, H.; Kaba, D.; Coulibaly, B.; N’Gouan, E.; Kouakou, L.; Bucheton, B.; Solano, P.; Courtin, F.; et al. A targeted door-to-door strategy for sleeping sickness detection in low-prevalence settings in Cote d’Ivoire. Parasite 2016, 23, 51. [Google Scholar] [CrossRef]
- Ravel, S.; De Meeûs, T.; Dujardin, J.P.; Zeze, D.G.; Gooding, R.H.; Dusfour, I.; Sané, B.; Cuny, G.; Solano, P. The tsetse fly Glossina palpalis palpalis is composed of several genetically differentiated small populations in the sleeping sickness focus of Bonon, Cote d’Ivoire. Infect. Genet. Evol. 2007, 7, 116–125. [Google Scholar] [CrossRef]
- Ruiz, J.P.; Nyingilili, H.S.; Mbata, G.H.; Malele, I.I. The role of domestic animals in the epidemiology of Human African Trypanosomiasis in Ngorongoro conservation area, Tanzania. Parasites Vectors 2015, 8, 510. [Google Scholar] [CrossRef]
- Büscher, P.; Bart, J.M.; Boelaert, M.; Bucheton, B.; Cecchi, G.; Chitnis, N.; Courtin, D.; Figueiredo, L.M.; Franco, J.R.; Grébaut, P.; et al. Do cryptic reservoirs threaten gambiense-sleeping sickness elimination? Trends Parasitol. 2018, 34, 197–207. [Google Scholar] [CrossRef]
- Welburn, S.C.; Coleman, P.G.; Maudlin, I.; Fèvre, E.M.; Odiit, M.; Eisler, M.C. Crisis, what crisis? Control of Rhodesian sleeping sickness. Trends Parasitol. 2006, 22, 123–128. [Google Scholar] [CrossRef]
- N’Djetchi, M.K.; Ilboudo, H.; Koffi, M.; Kaboré, J.; Kaboré, J.W.; Kaba, D.; Courtin, F.; Coulibaly, B.; Fauret, P.; Kouakou, L.; et al. The study of trypanosome species circulating in domestic animals in two human African trypanosomiasis foci of Cote d’Ivoire identifies pigs and cattle as potential reservoirs of Trypanosoma brucei gambiense. PLoS Negl. Trop. Dis. 2017, 11, e0005993. [Google Scholar] [CrossRef]
- Steinmann, P.; Stone, C.M.; Sutherland, C.S.; Tanner, M.; Tediosi, F. Contemporary and emerging strategies for eliminating human African trypanosomiasis due to Trypanosoma brucei gambiense: Review. Trop. Med. Int. Health 2015, 20, 707–718. [Google Scholar] [CrossRef]
- Koffi, M.; Solano, P.; Denizot, M.; Courtin, D.; Garcia, A.; Lejon, V.; Büscher, P.; Cuny, G.; Jamonneau, V. Aparasitemic serological suspects in Trypanosoma brucei gambiense human African trypanosomiasis: A potential human reservoir of parasites? Acta Trop. 2006, 98, 183–188. [Google Scholar] [CrossRef]
- Sudarshi, D.; Lawrence, S.; Pickrell, W.O.; Eligar, V.; Walters, R.; Quaderi, S.; Walker, A.; Capewell, P.; Clucas, C.; Vincent, A.; et al. Human African trypanosomiasis presenting at least 29 years after infection—What can this teach us about the pathogenesis and control of this neglected tropical disease? PLoS Negl. Trop. Dis. 2014, 8, e3349. [Google Scholar] [CrossRef]
- Mehlitz, D.; Zillmann, U.; Scott, C.M.; Godfrey, D.G. Epidemiological studies on the animal reservoir of Gambiense sleeping sickness. Part III. Characterization of trypanozoon stocks by isoenzymes and sensitivity to human serum. Trop. Parasitol. 1982, 33, 113–118. [Google Scholar]
- Njiokou, F.; Laveissière, C.; Simo, G.; Nkinin, S.; Grébaut, P.; Cuny, G.; Herder, S. Wild fauna as a probable animal reservoir for Trypanosoma brucei gambiense in Cameroon. Infect. Genet. Evol. 2006, 6, 147–153. [Google Scholar] [CrossRef]
S/No | Class of Compound | Name of Compound | Source | IC50 (µM) | Active against | Selectivity Index | Proposed Mechanism of Action | Ref |
---|---|---|---|---|---|---|---|---|
1 | Piperidine Alkaloids | (+)-Spectaline | Senna spectabilis leaves | 0.410±0.010 | Trypanosoma brucei rhodesiense | 135 | Autophagic cell death resulting from mitochondrial damage due to interference of the sterol synthetic pathway in Trypanosoma brucei rhodesiense. | [74] |
2 | Piperidine Alkaloids | Iso-6-spectaline | Senna spectabilis leaves | 0.710±0.010 | Trypanosoma brucei rhodesiense | 124 | Autophagic cell death resulting from mitochondrial damage due to interference of the sterol synthetic pathway in Trypanosoma brucei rhodesiense. | [74] |
3 | Sesquiterpene | Isofuranodiene | Smyrnium olusatium parts (fruits, flowers, leaves and roots) | 3.000±0.800 | Trypanosoma brucei brucei | 30 | Apoptosis resulting from altered mitochondrial membrane permeability, inhibition of key enzymes involved in metabolism such as dihydrofolate reductase, reactivity with functional groups of biological molecules due to electron delocalization of the furan moiety. | [75] |
4 | Diterpene | 16α-hydroxycleroda-3,13 (14)-Z-dien-15,16-olide | Polyalthia longifolia leaves | 0.380±0.050 µg/mL | Trypanosoma brucei brucei | >526 | Disruption of biological membranes in the parasite – leading to decreased fluidity, inhibition of membrane proteins hence signaling and transport. | [76] |
5 | Sesquiterpene lactone | Deoxyelephantopin | Elephantopus scaber leaves | 0.070±0.015 | Trypanosoma brucei rhodesiense | 65 | Inactivation of the immune system, due to bond formation with panthione, thereby exposing parasites to oxidative damage. | [77] |
6 | Sesquiterpene lactone | Vernodalin | Vernonia cinerascens leaves | 0.160±0.040 | Trypanosoma brucei rhodesiense | 35 | - | [78] |
7 | Sesquiterpene lactone | Vernolide | Vernonia cinerascens leaves | 0.500±0.010 | Trypanosoma brucei rhodesiense | 13 | - | [78] |
8 | Diterpene glycoside | Cupacinoside | Cupania cinereal | <10 | Trypanosoma brucei rhodesiense | - | [79] | |
9 | Pentacyclic triterpenoid | Taraxerol | Cupania cinereal | <10 | Trypanosoma brucei rhodesiense | - | - | [79] |
10 | Triterpenic acid | Ursolic acid | Keetia leucantha | 2.190±0.438 | Trypanosoma brucei brucei | - | - Not stated. Similar compounds had previously been identified in other plants. | [80] |
11 | Triterpenic acid | Oleanolic acid | Keetia leucantha | 6.131±1.095 | Trypanosoma brucei brucei | - | - Not stated. Similar compounds had previously been identified in other plants. | [80] |
12 | Sesquiterpene lactone | Cynaropicrin | Centaurea salmantica L. aerial parts/Cynara scolymus | 0.280±0.01 | Trypanosoma brucei rhodesiense | 8 | Affected cell proliferation in bloodstream forms. | [81] |
13 | Monoterpene glycosides | (3S, 6R) cis-linalool 3,6 oxide, O-β-D-xylopyranosyl-(1″→6′)-β-D-glucopyranoside | Vangueria edulis | 8.180 µg/mL | Trypanosoma brucei brucei | - | - | [82] |
14 | Monoterpene glycosides | Quercetin-7-o-ɑ-L-rhamnopyranoside | Vangueria edulis | 9.020 µg/mL | Trypanosoma brucei brucei | - | - | [82] |
15 | Bromopyrrole alkaloids | Dibromopalau’amine | Axinella verrucose | 0.460 μg/mL | Trypanosoma brucei rhodesiense | ~10 | Identified structural motifs in the compound associated with trypanocidal activity. | [83] |
16 | Bromopyrrole alkaloids | Longamide | Agelas dispar | 4.936 | Trypanosoma brucei rhodesiense | - | Identified structural motifs in the compound associated with trypanocidal activity. | [83] |
17 | Bromopyrrole alkaloids | Sceptrin | Four different Agelas sponges (A. conifera, A. clathrodes, A. longissima, A. dispar) | 15.654 | Trypanosoma brucei rhodesiense | - | Identified structural motifs in the compound associated with trypanocidal activity. | [83] |
18 | Bromopyrrole alkaloids | Spongiacidin B | Axinella verrucose | 13.580 μg/mL | Trypanosoma brucei rhodesiense | - | Identified structural motifs in the compound associated with trypanocidal activity. | [83] |
19 | Sesquiterpene lactone | Xanthatin | Xanthium strumarium leaves | 10.881 | Trypanosoma brucei brucei | 20 | Weak irreversible inhibition of trypanothione reductase, inhibition of Prostaglandin E synthesis and 5-lipoxygenase activity thereby inducing apoptosis. Reduction in mitochondrial membrane potential. | [84] |
20 | Triterpenoid saponins | Heinsiagenin A 3-O-[α-L-rhamnopyranosyl-(1→2)-β-Dglucopyranosyl-(1→2)]-β-D-glucopyranoside | Mussaenda luteola aerial parts | 8.800±0.640 | Trypanosoma brucei brucei | >10 | - | [82] |
21 | Triterpenoid saponins | Heinsiagenin A 3-O-[α-L-rhamnopyranosyl(1→2)-β-D-glucopyranosyl-(1→2)]-[β-D-glucopyranosyl-(1→4)]-β-D-glucopyranoside | Mussaenda luteola aerial parts | 2.570±0.640 | Trypanosoma brucei brucei | >10 | - | [82] |
22 | Triterpenoid saponins | 2α-hydroxyheinsiagenin A 3-O-[α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranosyl-(1→2)]-β-Dglucopyranoside | Mussaenda luteola aerial parts | 2.610±0.090 | Trypanosoma brucei brucei | >10 | - | [82] |
23 | Triterpenoid saponins | 2α-hydroxyheinsiagenin A 3-O-[β-D-glucopyranosyl-(1→2)]-[β-Dglucopyranosyl-(1→4)]-β-D-glucopyranoside | Mussaenda luteola aerial parts | 2.840±0.390 | Trypanosoma brucei brucei | >10 | - | [82] |
24 | Triterpenoid | Salvadione C | Salvia hydrangea aerial parts | 4.330±0.240 | Trypanosoma brucei rhodesiense | 43 | - | [85] |
25 | Triterpenoid | Perovskone B | Salvia hydrangea aerial parts | 15.920±0.720 | Trypanosoma brucei rhodesiense | 1 | - | [85] |
26 | Isoflavonoids | Abruquinones K | Abrus precatorius | 0.110±0.053 | Trypanosoma brucei rhodesiense | 509 | - | [86] |
27 | Isoflavonoids | Abruquinones L | Abrus precatorius | 0.020±0.003 | Trypanosoma brucei rhodesiense | 374 | - | [86] |
28 | Isoflavonoids | Abruquinones A | Abrus precatorius | 0.020±0.003 | Trypanosoma brucei rhodesiense | 1379 | - | [86] |
29 | Isoflavonoids | Abruquinones D | Abrus precatorius | 0.010±0.001 | Trypanosoma brucei rhodesiense | 668 | - | [86] |
30 | Lanosane triterpenoids | Hexatenuins A | Hexagonia tenuis (Fungi) | 0.570 μg/mL | Trypanosoma brucei brucei | - | - | [87] |
31 | Lanosane triterpenoids | Hexatenuins B | Hexagonia tenuis (Fungi) | 8.600 μg/mL | Trypanosoma brucei brucei | - | - | [87] |
32 | Lanosane triterpenoids | Hexatenuins C | Hexagonia tenuis (Fungi) | 5.620 μg/mL | Trypanosoma brucei brucei | - | - | [87] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akazue, P.I.; Ebiloma, G.U.; Ajibola, O.; Isaac, C.; Onyekwelu, K.; Ezeh, C.O.; Eze, A.A. Sustainable Elimination (Zero Cases) of Sleeping Sickness: How Far Are We from Achieving This Goal? Pathogens 2019, 8, 135. https://doi.org/10.3390/pathogens8030135
Akazue PI, Ebiloma GU, Ajibola O, Isaac C, Onyekwelu K, Ezeh CO, Eze AA. Sustainable Elimination (Zero Cases) of Sleeping Sickness: How Far Are We from Achieving This Goal? Pathogens. 2019; 8(3):135. https://doi.org/10.3390/pathogens8030135
Chicago/Turabian StyleAkazue, Pearl Ihuoma, Godwin U. Ebiloma, Olumide Ajibola, Clement Isaac, Kenechukwu Onyekwelu, Charles O. Ezeh, and Anthonius Anayochukwu Eze. 2019. "Sustainable Elimination (Zero Cases) of Sleeping Sickness: How Far Are We from Achieving This Goal?" Pathogens 8, no. 3: 135. https://doi.org/10.3390/pathogens8030135
APA StyleAkazue, P. I., Ebiloma, G. U., Ajibola, O., Isaac, C., Onyekwelu, K., Ezeh, C. O., & Eze, A. A. (2019). Sustainable Elimination (Zero Cases) of Sleeping Sickness: How Far Are We from Achieving This Goal? Pathogens, 8(3), 135. https://doi.org/10.3390/pathogens8030135