Metagenomic Analysis of Infectious F-Specific RNA Bacteriophage Strains in Wastewater Treatment and Disinfection Processes
Abstract
:1. Introduction
2. Results
2.1. Metagenomic and Taxonomic Analyses
2.2. Detection of Infectious FRNAPH Strains in Wastewater Treatment and Disinfection Processes
2.3. Comparison of IC–RT-PCR–MPN and IC–NGS Data
3. Discussion
4. Materials and Methods
4.1. Wastewater Samples
4.2. Samples Disinfected Using Chlorine or Ultraviolet Light
4.3. IC–NGS Analysis of Infectious FRNAPH Strains
4.4. IC–RT-PCR–MPN Analysis of Infectious FRNAPH Genotypes
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- IAWPRC Study Group on Health Related Water Microbiology. Bacteriophages as model viruses in water quality control. Water Res. 1991, 25, 529–545. [Google Scholar] [CrossRef]
- Grabow, W.O.K. Bacteriophages: Update on application as models for viruses in water. Water SA 2001, 27, 251–268. [Google Scholar] [CrossRef]
- Bartsch, S.M.; Lopman, B.A.; Ozawa, S.; Hall, A.J.; Lee, B.Y. Global economic burden of norovirus gastroenteritis. PLoS ONE. 2016, 11, e0151219. [Google Scholar] [CrossRef] [PubMed]
- Havelaar, A.; Van Olphen, M.; Drost, Y. F-specific RNA bacteriophages are adequate model organisms for enteric viruses in fresh water. Appl. Environ. Microbiol. 1993, 59, 2956–2962. [Google Scholar] [PubMed]
- Hartard, C.; Leclerc, M.; Rivet, R.; Maul, A.; Loutreul, J.; Banas, S.; Boudaud, N.; Gantzer, C. F-specific RNA bacteriophages, especially members of subgroup II, should be reconsidered as good indicators of viral pollution of oysters. Appl. Environ. Microbiol. 2018, 84. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Suwa, M.; Shigemura, H. Occurrence and reduction of F-specific RNA bacteriophage genotypes as indicators of human norovirus at a wastewater treatment plant. J. Water Health 2019, 17, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Haramoto, E.; Otagiri, M.; Morita, H.; Kitajima, M. Genogroup distribution of F-specific coliphages in wastewater and river water in the Kofu basin in Japan. Lett. Appl. Microbiol. 2012, 54, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Haramoto, E.; Fujino, S.; Otagiri, M. Distinct behaviors of infectious F-specific RNA coliphage genogroups at a wastewater treatment plant. Sci. Total Environ. 2015, 520, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Hata, A.; Kitajima, M.; Katayama, H. Occurrence and reduction of human viruses, F-specific RNA coliphage genogroups and microbial indicators at a full-scale wastewater treatment plant in Japan. J. Appl. Microbiol. 2013, 114, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Muniesa, M.; Payan, A.; Moce-Llivina, L.; Blanch, A.R.; Jofre, J. Differential persistence of F-specific RNA phage subgroups hinders their use as single tracers for faecal source tracking in surface water. Water Res. 2009, 43, 1559–1564. [Google Scholar] [CrossRef] [PubMed]
- Schaper, M.; Durán, A.E.; Jofre, J. Comparative resistance of phage isolates of four genotypes of F-specific RNA bacteriophages to various inactivation processes. Appl. Environ. Microbiol. 2002, 68, 3702–3707. [Google Scholar] [CrossRef] [PubMed]
- Blatchley, E.R., III; Shen, C.; Scheible, O.K.; Robinson, J.P.; Ragheb, K.; Bergstrom, D.E.; Rokjer, D. Validation of large-scale, monochromatic UV disinfection systems for drinking water using dyed microspheres. Water Res. 2008, 42, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Hijnen, W.A.M.; Beerendonk, E.F.; Medema, G.J. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review. Water Res. 2006, 40, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.D.; Cooper, E.M.; Casanova, L.; Sobsey, M.D.; Genthner, F.J. A reverse transcription-PCR assay to distinguish the four genogroups of male-specific (F+) RNA coliphages. J. Virol. Methods 2009, 159, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.D.; Cooper, E.M.; Calci, K.R.; Genthner, F.J. Design and assessment of a real time reverse transcription-PCR method to genotype single-stranded RNA male-specific coliphages (Family Leviviridae). J. Virol. Methods 2011, 173, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.D.; Snellgrove, W.C.; Genthner, F.J.; Division, G.E.; Breeze, G. Genomic sequences of two novel Levivirus single-stranded RNA coliphages (Family Leviviridae): Evidence for recombination in environmental strains. Viruses 2012, 1548–1568. [Google Scholar] [CrossRef] [PubMed]
- Furuse, K.; Sakurai, T.; Hirashima, A.; Katsuki, M.; Ando, A.; Watanabe, I. Distribution of ribonucleic acid coliphages in South and East Asia. Appl. Environ. Microbiol. 1978, 35, 995–1002. [Google Scholar] [PubMed]
- Miyake, T.; Shiba, T.; Sakurai, T.; Watanabe, I. Isolation and properties of two new RNA phages SP and FI. Jpn. J. Microbiol. 1969, 13, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Hartard, C.; Rivet, R.; Banas, S.; Gantzer, C. Occurrence of and sequence variation among F-specific RNA bacteriophage subgroups in feces and wastewater of urban and animal origins. Appl. Environ. Microbiol. 2015, 81, 6505–6515. [Google Scholar] [CrossRef] [PubMed]
- Langlet, J.; Gaboriaud, F.; Duval, J.F.L.; Gantzer, C. Aggregation and surface properties of F-specific RNA phages: Implication for membrane filtration processes. Water Res. 2008, 42, 2769–2777. [Google Scholar] [CrossRef] [PubMed]
- Boudaud, N.; Machinal, C.; David, F.; Fréval-Le Bourdonnec, A.; Jossent, J.; Bakanga, F.; Arnal, C.; Jaffrezic, M.P.; Oberti, S.; Gantzer, C. Removal of MS2, Qβ and GA bacteriophages during drinking water treatment at pilot scale. Water Res. 2012, 46, 2651–2664. [Google Scholar] [CrossRef] [PubMed]
- Dika, C.; Ly-Chatain, M.H.; Francius, G.; Duval, J.F.L.; Gantzer, C. Non-DLVO adhesion of F-specific RNA bacteriophages to abiotic surfaces: Importance of surface roughness, hydrophobic and electrostatic interactions. Colloids Surf. A Physicochem. Eng. Asp. 2013, 435, 178–187. [Google Scholar] [CrossRef]
- Schaper, M.; Jofre, J.; Uys, M.; Grabow, W.O.K. Distribution of genotypes of F-specific RNA bacteriophages in human and non-human sources of faecal pollution in South Africa and Spain. J. Appl. Microbiol. 2002, 92, 657–667. [Google Scholar] [CrossRef] [PubMed]
- Cole, D.; Long, S.C.; Sobsey, M.D. Evaluation of F+ RNA and DNA coliphages as source-specific indicators of fecal contamination in surface waters. Appl. Environ. Microbiol. 2003, 73, 22–23. [Google Scholar] [CrossRef] [PubMed]
- Ogorzaly, L.; Tissier, A.; Bertrand, I.; Maul, A.; Gantzer, C. Relationship between F-specific RNA phage genogroups, faecal pollution indicators and human adenoviruses in river water. Water Res. 2009, 43, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
- Wolf, S.; Hewitt, J.; Rivera-Aban, M.; Greening, G.E. Detection and characterization of F+ RNA bacteriophages in water and shellfish: Application of a multiplex real-time reverse transcription PCR. J. Virol. Methods 2008, 149, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Haramoto, E.; Kitajima, M.; Katayama, H.; Asami, M.; Akiba, M.; Kunikane, S. Application of real-time PCR assays to genotyping of F-specific phages in river water and sediments in Japan. Water Res. 2009, 43, 3759–3764. [Google Scholar] [CrossRef] [PubMed]
- Gourmelon, M.; Caprais, M.P.; Mieszkin, S.; Marti, R.; Wéry, N.; Jardé, E.; Derrien, M.; Jadas-Hécart, A.; Communal, P.Y.; Jaffrezic, A.; et al. Development of microbial and chemical MST tools to identify the origin of the faecal pollution in bathing and shellfish harvesting waters in France. Water Res. 2010, 44, 4812–4824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mieszkin, S.; Caprais, M.P.; Le Mennec, C.; Le Goff, M.; Edge, T.A.; Gourmelon, M. Identification of the origin of faecal contamination in estuarine oysters using Bacteroidales and F-specific RNA bacteriophage markers. J. Appl. Microbiol. 2013, 115, 897–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantalupo, P.G.; Calgua, B.; Zhao, G.; Hundesa, A.; Wier, A.D.; Katz, J.P.; Grabe, M.; Hendrix, R.W.; Girones, R.; Wang, D.; et al. Raw sewage harbors diverse viral populations. MBio 2011, 2. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, H.; Zhang, R.; Angly, F.E.; Nakamura, S.; Hong, P.Y.; Yasunaga, T.; Kamagata, Y.; Liu, W.T. Metagenomic analysis of DNA viruses in a wastewater treatment plant in tropical climate. Environ. Microbiol. 2012, 14, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Bibby, K.; Peccia, J. Identification of viral pathogen diversity in sewage sludge by metagenome analysis. Environ. Sci. Technol. 2013, 47, 1945–1951. [Google Scholar] [CrossRef] [PubMed]
- Aw, T.G.; Howe, A.; Rose, J.B. Metagenomic approaches for direct and cell culture evaluation of the virological quality of wastewater. J. Virol. Methods 2014, 210, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Hata, A.; Hanamoto, S.; Shirasaka, Y.; Yamashita, N.; Tanaka, H. Quantitative distribution of infectious F-specific RNA phage genotypes in surface waters. Appl. Environ. Microbiol. 2016, 82, 4244–4252. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Tasaki, S.; Hata, A.; Yamashita, N.; Tanaka, H. Evaluation of virus reduction at a large-scale wastewater reclamation plant by detection of indigenous F-specific RNA bacteriophage genotypes. Environ. Technol. 2019, 40, 2527–2537. [Google Scholar] [CrossRef] [PubMed]
- Bömer, M.; Rathnayake, A.I.; Visendi, P.; Sewe, S.O.; Paolo, J.; Sicat, A.; Silva, G.; Kumar, P.L.; Seal, S.E. Tissue culture and next-generation sequencing: A combined approach for detecting yam (Dioscorea spp.) viruses. Physiol. Mol. Plant Pathol. 2019, 105, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Haft, D.H.; Tovchigrechko, A. High-speed microbial community profiling. Nat. Methods 2012, 9, 793–794. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.F.; Ng, C.; Nshimyimana, J.P.; Loh, L.L.; Gin, K.Y.H.; Thompson, J.R. Next-generation sequencing (NGS) for assessment of microbial water quality: Current progress, challenges, and future opportunities. Front. Microbiol. 2015, 6, 1027. [Google Scholar] [CrossRef] [PubMed]
- Rahn, R.O. Potassium iodide as a chemical actinometer for 254 nm radiation: Use of iodate as an electron scavenger. Photochem. Photobiol. 1997, 66, 450–455. [Google Scholar] [CrossRef]
- Rahn, R.O.; Stefan, M.I.; Bolton, J.R.; Goren, E.; Shaw, P.S.; Lykke, K.R. Quantum yield of the iodide-iodate chemical actinometer: Dependence on wavelength and concentrations. Photochem. Photobiol. 2003, 78, 146–152. [Google Scholar] [CrossRef]
FRNAPH Genotype | FRNAPH Strain | Source | Reference |
---|---|---|---|
GI | MS2 | Sewage | [14,15,16] |
M12 | Sewage | [14,15,16] | |
DL1 | River water | [14,15,16] | |
DL2 | Bay water | [14,15,16] | |
DL13 | Oyster | [14,15,16] | |
DL16 | Bay water | [14,15,16] | |
J20 | Chicken litter | [14,15,16] | |
ST4 | Unknown | [14,15,16] | |
R17 | Sewage | [14,15,16] | |
Fr | Dung hill | [14,16] | |
JP501 | Sewage | [17] | |
GI-JS | DL52 | Bay water | [16] |
DL54 | Bay water | [16] | |
GII | GA | Sewage | [14,15,16,17] |
KU1 | Sewage | [14,15,16,17] | |
DL10 | Mussel | [14,15,16] | |
DL20 | Clam | [14,15,16] | |
T72 | Bird | [14,15,16] | |
BZ13 | Sewage | [17] | |
TL2 | Sewage | [17] | |
JP34 | Sewage | [17] | |
TH1 | Sewage | [17] | |
GIII | Qβ | Human feces | [14,15,17] |
BR12 | Creek water | [14,15] | |
BZ1 | Sewage | [14,15] | |
VK | Sewage | [14,15,17] | |
TW18 | Sewage | [14,15,17] | |
HL4-9 | Hog lagoon | [14,15] | |
M11 | Unknown | [14,15] | |
MX1 | Sewage | [14,15,17] | |
GIV | SP | Siamang gibbon | [14,15,17,18] |
FI | Infant | [14,15,17,18] | |
BR1 | Creek water | [14,15] | |
BR8 | Creek water | [14,15] | |
HB-P22 | Bird | [14,15] | |
HB-P24 | Bird | [14,15] | |
NL95 | Calf | [14,15] |
Date (Month/Day) | Sample 2 | No. of Total Reads | No. of Contigs | No. of Hits for FRNAPHs (Ratio) | No. of Hits for Bacteria (Ratio), [No. of Hits for Salmonella enterica (ratio)] 3 | No. of not Hit Contigs (Ratio) 4 |
---|---|---|---|---|---|---|
11/13 | IN | 1,135,519 | 1218 | 317 (26%) | 584 (48%), [380 (65%)] | 200 (16%) |
SE | 1,080,326 | 537 | 87 (16%) | 343 (64%), [261 (76%)] | 66 (12%) | |
Cl | 887,593 | 611 | 73 (12%) | 476 (78%), [414 (87%)] | 30 (5%) | |
UV | 1,278,120 | 732 | 66 (9%) | 608 (83%), [548 (90%)] | 41 (6%) | |
11/20 | IN | 1,070,341 | 1299 | 468 (36%) | 570 (44%), [459 (81%)] | 196 (15%) |
SE | 1,019,493 | 614 | 160 (26%) | 310 (50%), [220 (71%)] | 95 (15%) | |
Cl | 1,033,979 | 776 | 91 (12%) | 591 (76%), [532 (90%)] | 52 (7%) | |
UV | 1,025,377 | 821 | 162 (20%) | 577 (70%), [505 (88%)] | 36 (4%) | |
11/27 | IN | 4,092,357 | 18,941 | 551 (3%) | 10,471 (55%), [2521 (24%)] | 6859 (36%) |
SE | 4,900,897 | 4344 | 247 (6%) | 2537 (58%), [1825 (72%)] | 1151 (26%) | |
Cl | 5,035,503 | 4370 | 161 (4%) | 3484 (80%), [3217 (92%)] | 497 (11%) | |
UV | 4,102,143 | 2319 | 106 (5%) | 1655 (71%), [1416 (86%)] | 497 (21%) |
Parameter 1 | Units | Range | |
---|---|---|---|
IN 2 | SE 2 | ||
pH | - | 7.1–7.3 | 6.8–6.9 |
CODcr | mg/L | 120–140 | 11–14 |
SS | mg/L | 47–78 | 4.7–6.7 |
Turbidity | NTU | 37–44 | 1.2–2.8 |
T-N | mg/L | 31–34 | 15–17 |
T-P | mg/L | 9.4–9.6 | 4.8–5.2 |
NH4+-N | mg/L | 20–24 | 0.12–0.27 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Suwa, M.; Shigemura, H. Metagenomic Analysis of Infectious F-Specific RNA Bacteriophage Strains in Wastewater Treatment and Disinfection Processes. Pathogens 2019, 8, 217. https://doi.org/10.3390/pathogens8040217
Lee S, Suwa M, Shigemura H. Metagenomic Analysis of Infectious F-Specific RNA Bacteriophage Strains in Wastewater Treatment and Disinfection Processes. Pathogens. 2019; 8(4):217. https://doi.org/10.3390/pathogens8040217
Chicago/Turabian StyleLee, Suntae, Mamoru Suwa, and Hiroyuki Shigemura. 2019. "Metagenomic Analysis of Infectious F-Specific RNA Bacteriophage Strains in Wastewater Treatment and Disinfection Processes" Pathogens 8, no. 4: 217. https://doi.org/10.3390/pathogens8040217
APA StyleLee, S., Suwa, M., & Shigemura, H. (2019). Metagenomic Analysis of Infectious F-Specific RNA Bacteriophage Strains in Wastewater Treatment and Disinfection Processes. Pathogens, 8(4), 217. https://doi.org/10.3390/pathogens8040217