Animal Models of Type III Secretion System-Mediated Pathogenesis
Abstract
:1. Introduction
2. Animal Models
2.1. Survival Assays
Killing Assays
2.2. Bacterial Load Determinations
2.2.1. Organ Homogenization
2.2.2. Whole Animal Homogenization
2.2.3. Sample Collection
2.3. Histopathological Observations
2.3.1. P. aeruginosa
2.3.2. Intestinal Bacteria
2.3.3. Bordetella pertussis
2.4. Competition Assays
2.5. Virulence Expression/Effector Secretion Assays
Imaging
2.6. Vaccines and Immunizations
Maternal Vaccination
2.7. Surgical Interventions
2.7.1. Ligated Intestinal Loops
2.7.2. Xenotransplant Models
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- CDC National Centre for Health Statistics. Available online: https://www.cdc.gov/nchs/fastats/life-expectancy.htm (accessed on 11 October 2019).
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [PubMed]
- Keyser, P.; Elofsson, M.; Rosell, S.; Wolf-Watz, H. Virulence blockers as alternatives to antibiotics: Type III secretion inhibitors against Gram-negative bacteria. J. Int. Med. 2008, 264, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Grado, M.; Abe, A.; Gauthier, A.; Steele-Mortimer, O.; DeVinney, R.; Finlay, B.B. Identification of the intimin-binding domain of Tir of enteropathogenic Escherichia coli. Cell. Microbiol. 1999, 1, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, G.R.; van Gijsegem, F. Assembly and function of type III secretory systems. Annu. Rev. Microbiol. 2000, 54, 735–774. [Google Scholar] [CrossRef]
- Salmond, G.P.C.; Reeves, P.J. Membrane traffic wardens and protein secretion in Gram-negative bacteria. Trends Biochem. Sci. 1993, 18, 7–12. [Google Scholar] [CrossRef]
- Croxen, M.A.; Finlay, B.B. Molecular mechanisms of Escherichia coli pathogenicity. Nat. Rev. Microbiol. 2010, 8, 26–38. [Google Scholar] [CrossRef]
- Franzin, F.M.; Sircili, M.P. Locus of enterocyte effacement: A pathogenicity island involved in the virulence of enteropathogenic and enterohemorrhagic Escherichia coli subjected to a complex network of gene regulation. BioMed Res. Int. 2015, 2015, 534738. [Google Scholar] [CrossRef]
- Jarvis, K.G.; Girón, J.A.; Jerse, A.E.; Mcdaniel, T.K.; Donnenberg, M.S.; Kaper, J.B. Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation. Proc. Nat. Acad. Sci. USA 1995, 92, 7996–8000. [Google Scholar] [CrossRef]
- Fontaine, A.; Arondel, J.; Sansonetti, P. Role of Shiga toxin in the pathogenesis of bacillary dysentery, studied by using a Tox- mutant of Shigella dysenteriae 1. Infect. Immun. 1988, 56, 3099–3109. [Google Scholar]
- Gaillard, M.E.; Bottero, D.; Castuma, C.E.; Basile, L.A.; Hozbor, D. Laboratory adaptation of Bordetella pertussis is associated with the loss of type three secretion system functionality. Infect. Immun. 2011, 79, 3677–3682. [Google Scholar] [CrossRef]
- Alam, A.; Tam, V.; Hamilton, E.; Dziejman, M. vttR A and vttR B encode ToxR family proteins that mediate bile-induced expression of type three secretion system genes in a Non-O1/Non-O139 Vibrio cholerae strain. Infect. Immun. 2010, 78, 2554–2570. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Li, Z. Conserved type III secretion system exerts important roles in Chlamydia trachomatis. Int. J. Exp. Pathol. 2014, 7, 5404–5414. [Google Scholar]
- Marketon, M.M.; DePaolo, R.W.; DeBord, K.L.; Jabri, B.; Schneewind, O. Plague bacteria target immune cells during infection. Science 2005, 309, 1739–1741. [Google Scholar] [CrossRef] [PubMed]
- Bartra, S.S.; Lorica, C.; Qian, L.; Gong, X.; Bahnan, W.; Barreras, H.; Hernandez, R.; Li, Z.; Plano, G.V.; Schesser, K. Chromosomally-encoded Yersinia pestis type III secretion effector proteins promote infection in cells and in mice. Front. Cell. Infect. Microbiol. 2019, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- Gaytán, M.O.; Martínez-Santos, V.I.; Soto, E.; González-Pedrajo, B. Type three secretion system in attaching and effacing pathogens. Front. Cell. Infect. Microbiol. 2016, 6, 129. [Google Scholar] [CrossRef] [PubMed]
- Pendergrass, H.A.; May, A.E. Natural product type III secretion system inhibitors. Antibiotics 2019, 8, 162. [Google Scholar] [CrossRef]
- Hume, P.J.; Singh, V.; Davidson, A.C.; Koronakis, V. Swiss army pathogen: The Salmonella entry toolkit. Front. Cell. Infect. Microbiol. 2017, 7, 384. [Google Scholar] [CrossRef]
- Mattock, E.; Blocker, A.J. How do the virulence factors of Shigella work together to cause disease? Front. Cell. Infect. Microbiol. 2017, 7, 64. [Google Scholar] [CrossRef]
- Zhang, L.; Mei, M.; Yu, C.; Shen, W.; Ma, L.; He, J.; Yi, L. The functions of effector proteins in Yersinia virulence. Polish J. Microbiol. 2016, 65, 5–12. [Google Scholar] [CrossRef]
- Morrow, K.A.; Frank, D.W.; Balczon, R.; Stevens, T. The Pseudomonas aeruginosa exoenzyme Y: A promiscuous nucleotidyl cyclase edema eactor and virulence determinant. Exp. Pharmacol. 2017, 238, 67–85. [Google Scholar]
- Duncan, M.C.; Linington, R.G.; Auerbuch, V. Chemical inhibitors of the type three secretion system: Disarming bacterial pathogens. Antimicrob. Agent. Chemother. 2012, 56, 5433–5441. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, S.C.F.; Moreira, F.C.; Liberatore, A.M.A.; Vieira, M.A.M.; Knobl, T.; Romão, F.T.; Hernandes, R.T.; Ferreira, C.S.A.; Ferreira, A.P.; Felipe-Silva, A.; et al. Analysis of the virulence of an atypical enteropathogenic Escherichia coli strain in vitro and in vivo and the influence of type three secretion system. Biomed. Res. Int. 2014, 2014, 797508. [Google Scholar] [CrossRef]
- Nissim-Eliraz, E.; Nir, E.; Shoval, I.; Marsiano, N.; Nissan, I.; Shemesh, H.; Nagy, N.; Goldstein, A.M.; Gutnick, M.; Rosenshine, I.; et al. Microvascular thrombosis and ischemic enteritis in human gut xenografts infected with enteropathogenic E. coli. Infect. Immun. 2017, 85, e00558. [Google Scholar] [CrossRef] [PubMed]
- Browne, S.H.; Hasegawa, P.; Okamoto, S.; Fierer, J.; Guiney, D.G. Identification of Salmonella SPI-2 secretion system components required for SpvB-mediated cytotoxicity in macrophages and virulence in mice. FEMS 2008, 1, 194–201. [Google Scholar]
- Berube, B.J.; Murphy, K.R.; Torhan, M.C.; Bowlin, N.O.; Williams, J.D.; Bowlin, T.L.; Moir, D.T.; Hauser, A.R. Impact of type III secretion effectors and of phenoxyacetamide inhibitors of type III secretion on abscess formation in a mouse model of Pseudomonas aeruginosa Infection. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef]
- Marteyn, B.; West, N.; Browning, D.; Cole, J.; Shaw, J.; Palm, F.; Mounier, J.; Prévost, M.; Sansonetti, P.; Tang, C. Modulation of Shigella virulence in response to available oxygen in vivo. Nature 2010, 465, 355–358. [Google Scholar] [CrossRef]
- Nakamura, K.; Shinoda, N.; Hiramatsu, Y.; Ohnishi, S.; Kamitani, S.; Ogura, Y.; Hayashi, T.; Horiguchi, Y. BspR/BtrA, an anti-σ factor, regulates the ability of Bordetella bronchiseptica to cause cough in rats. mSphere 2019, 4. [Google Scholar] [CrossRef]
- Stones, D.H.; Fehr, A.G.J.; Thompson, L.; Rocha, J.; Perez-Soto, N.; Madhavan, V.T.P.; Voelz, K.; Krachler, A.M. Zebrafish (Danio rerio) as a vertebrate model host to study colonization, pathogenesis, and transmission of foodborne Escherichia coli O157. mSphere 2017, 2. [Google Scholar] [CrossRef]
- Matsuda, S.; Okada, R.; Tandhavanant, S.; Hiyoshi, H.; Gotoh, K.; Iida, T.; Kodama, T. Export of a Vibrio parahaemolyticus toxin by the Sec and type III secretion machineries in tandem. Nat. Microbiol. 2019, 4, 781–788. [Google Scholar] [CrossRef]
- Matz, C.; Nouri, B.; McCarter, L.; Martinez-Urtaza, J. Acquired type III secretion system determines environmental fitness of epidemic vibrio parahaemolyticus in the interaction with bacterivorous protists. PLoS ONE 2011, 6, e20275. [Google Scholar] [CrossRef]
- Linington, R.G.; Robertson, M.; Gauthier, A.; Finlay, B.B.; van Soest, R.; Andersen, R.J. Caminoside A, an antimicrobial glycolipid isolated from the marine sponge Caminus sphaeroconia. Org. Lett. 2002, 4, 4089–4092. [Google Scholar] [CrossRef] [PubMed]
- May, A.E.; Khosla, C. Discovery and mechanism of type III secretion system inhibitors. Isr. J. Chem. 2013, 53, 577–587. [Google Scholar] [CrossRef]
- Kolár, M.; Urbánek, K.; Látal, T. Antibiotic selective pressure and development of bacterial resistance. Int. J. Antimicrobe. Agents 2001, 17, 357–363. [Google Scholar] [CrossRef]
- Bhinder, G.; Sham, H.P.; Chan, J.M.; Morampudi, V.; Jacobson, K.; Vallance, B.A. The Citrobacter rodentium mouse model: Studying pathogen and host contributions to infectious colitis. J. Vis. Exp. 2013, 72, e50222. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.; Iwatsuki, M.; Nagai, T.; Matsumoto, A.; Takahashi, Y.; Shiomi, K.; Omura, S.; Abe, A. A small-molecule inhibitor of the bacterial type III secretion system protects against in vivo infection with Citrobacter rodentium. J. Antibiot. 2011, 64, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, M.; Rizvi, J.; Hecht, G. Expression of enteropathogenic Escherichia coli map is significantly different than that of other type III secreted effectors in vivo. Infect. Immun. 2015, 83, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Larzábal, M.; Zotta, E.; Ibarra, C.; Rabinovitz, B.C.; Vilte, D.A.; Mercado, E.C.; Cataldi, Á. Effect of coiled-coil peptides on the function of the type III secretion system-dependent activity of enterohemorrhagic Escherichia coli O157:H7 and Citrobacter rodentium. Int. J. Med. Microbiol. 2013, 303, 9–15. [Google Scholar] [CrossRef]
- Lv, Q.; Chu, X.; Yao, X.; Ma, K.; Zhang, Y.; Deng, X. Inhibition of the type III secretion system by syringaldehyde protects mice from Salmonella enterica serovar Typhimurium. J. Cell. Mol. Med. 2019, 23, 4679–4688. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Becerra, F.J.; Middaugh, C.R.; Picking, W.D.; Picking, W.L.; Kumar, P.; Vishwakarma, V.; Arizmendi, O.; Kim, J.H. Characterization and protective efficacy of type III secretion proteins as a broadly protective subunit vaccine against Salmonella enterica serotypes. Infect. Immun. 2018, 86. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, Y.; Qiu, J.; Luo, Z.; Deng, X. The herbal compound thymol protects mice from lethal infection by Salmonella Typhimurium. Front. Microbiol. 2018, 9, 1022. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, J.R.; Petersen, H.E.; Frederick, D.R.; Morici, L.A.; McLachlan, J.B. Vaccination with a single CD4 T cell peptide epitope from a Salmonella type III-secreted effector protein provides protection against lethal infection. Infect. Immun. 2014, 82, 2424–2433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulmer, D.M.; Kharraz, L.; Grant, A.J.; Dean, P.; Morgan, F.J.E.; Michail, H.; Doble, A.C.; Mcghie, E.J.; Koronakis, V.; Daniel, R.A.; et al. The bacterial cytoskeleton modulates motility, type 3 secretion, and colonization in Salmonella. PLoS Pathog. 2012, 8, 13–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacomodonato, M.N.; Sarnacki, H.; Llana, N.; Cerquetti, C. SopB effector protein of Salmonella Typhimurium is translocated in mesenteric lymph nodes during murine salmonellosis. FEMS Microbiol. Lett. 2011, 317, 100–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacomodonato, N.; Llana, N.; Buzzola, F.R.; Sarnacki, H. AvrA effector protein of Salmonella enterica serovar Enteritidis is expressed and translocated in mesenteric lymph nodes at late stages of infection in mice. Microbiology 2014, 160, 1191–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheremet, A.B.; Zigangirova, N.A.; Zayakin, E.S.; Luyksaar, S.I.; Kapotina, L.N.; Nesterenko, L.N.; Kobets, N.V.; Gintsburg, A.L. Small molecule inhibitor of type three secretion system belonging to a class 2,4-disubstituted-4H-[1,3,4]-thiadiazine-5-ones improves survival and decreases bacterial loads in an airway Pseudomonas aeruginosa infection in mice. BioMed Res. Int. 2018, 2018, 5810767. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.-Y.; Lee, S.-N.; Chang, S.-Y.; Ko, H.-J.; Ryu, S.; Kweon, M.-N. A mouse model of shigellosis by intraperitoneal infection. J. Infect. Dis. 2014, 209, 203–215. [Google Scholar] [CrossRef] [Green Version]
- Koroleva, E.A.; Kobets, N.V.; Zayakin, E.S.; Luyksaar, S.I.; Shabalina, L.A.; Zigangirova, N.A. Small molecule inhibitor of type three secretion suppresses acute and chronic Chlamydia trachomatis infection in a novel urogenital Chlamydia model. BioMed Res. Int. 2015, 2015, 484853. [Google Scholar] [CrossRef] [Green Version]
- Heine, S.J.; Franco-Mahecha, O.L.; Khandra, T.; Drachenberg, C.B.; van Roosmalen, M.L.; Leenhouts, K.; Picking, W.L.; Pasetti, M.F.; Sears, K.T.; Drachenberg, C.B.; et al. A combined YopB and LcrV subunit vaccine elicits protective immunity against Yersinia infection in adult and infant mice. J. Immunol. 2019, 202, 2005–2016. [Google Scholar] [CrossRef] [Green Version]
- Swietnicki, W.; Carmany, D.; Retford, M.; Guelta, M.; Dorsey, R.; Bozue, J.; Lee, M.S.; Olson, M.A. Identification of small-molecule inhibitors of Yersinia pestis type III secretion system YscN ATPase. PLoS ONE 2011, 6, e19716. [Google Scholar] [CrossRef]
- Rodenburg, W.; Keijer, J.; Kramer, E.; Roosing, S.; Vink, C.; Katan, M.B.; van der Meer, R.; Bovee-Oudenhoven, I.M.J. Salmonella induces prominent gene expression in the rat colon. BMC Microbiol. 2007, 12, 84. [Google Scholar] [CrossRef] [Green Version]
- Turkay, C.; Saba, R.; Sahin, N.; Altunbas, H.; Ozbudak, O.; Akkaya, B.; Ozbilim, G.; Cölbasi, I.; Turkay, M.; Ogünç, D.; et al. Effect of chronic Pseudomonas aeruginosa infection on the development of atherosclerosis in a rat model. Clin. Microbiol. Infect. 2004, 10, 705–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noubissi, P.A.; Fokam Tagne, M.A.; Fankem, G.O.; Ngakou Mukam, J.; Wambe, H.; Kamgang, R. Effects of Crinum jagus water/ethanol extract on Shigella flexneri-induced diarrhea in rats. Evid. Based Complement. Alternat. Med. 2019, 2019, 9537603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López, Y.; Infante, J.F.; Sifontes, S.; Díaz, D.; Pérez, V.; Año, G.; Hernández, T.; Fernández, S.; Castaño, J.L.; Cedré, B.; et al. Pharmacology and toxicology of an oral tablet whole cells inactivated cholera vaccine in Sprague Dawley rats. Vaccine 2011, 29, 3596–3599. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.-M.; Li, Z.-W.; Tang, L.-M.; Sun, Q.; Lu, Z.-Q.; Liang, H.; Hong, G.-L.; Li, M.-F. Expression of high mobility group protein B1 in the lungs of rats with sepsis. World J. Emerg. Med. 2011, 2, 302–306. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Zhu, L.; Zhang, L.; Jiang, J.; Xie, F.; Huang, Q.; Li, X.; Yi, C. Abnormal expression of TRAIL receptors in decidual tissue of Chlamydia trachomatis-infected rats during early pregnancy loss. Reprod. Sci. 2017, 24, 1041–1052. [Google Scholar] [CrossRef]
- Tao, P.; Mahalingam, M.; Zhu, J.; Moayeri, M.; Kirtley, M.L.; Fitts, E.C.; Andersson, J.A.; Lawrence, W.S.; Leppla, S.H.; Chopra, A.K.; et al. A bivalent anthrax-plague vaccine that can protect against two tier-1 bioterror pathogens, Bacillus anthracis and Yersinia pestis. Front. Immunol. 2017, 8, 687. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; Zhu, Y.; Gamallat, Y.; Ma, S.; Chiwala, G.; Meyiah, A.; Xin, Y. Escherichia coli O124 K72 alters the intestinal barrier and the tight junctions proteins of guinea pig intestine. Biomed. Pharmacother. 2017, 94, 468–473. [Google Scholar] [CrossRef]
- Higginson, E.E.; Simon, R.; Tennant, S.M. Animal models for salmonellosis: Applications in vaccine research. Clin. Vaccine Immunol. 2016, 23, 746–756. [Google Scholar] [CrossRef] [Green Version]
- Pennington, J.E.; Hickey, W.F.; Blackwood, L.L.; Arnaut, M.A. Active immunization with lipopolysaccharide Pseudomonas antigen for chronic Pseudomonas bronchopneunmonia in guinea pigs. J. Clin. Investig. 1981, 68, 1140–1148. [Google Scholar] [CrossRef]
- Shim, D.H.; Suzuki, T.; Chang, S.Y.; Park, S.M.; Sansonetti, P.J.; Sasakawa, C.; Kweon, M.N. New animal model of shigellosis in the guinea pig: Its usefulness for protective efficacy studies. J. Immunol. 2007, 178, 2476–2482. [Google Scholar] [CrossRef] [Green Version]
- Monack, D.M.; Falkow, S. Cloning of Bordetella bronchiseptica urease genes and analysis of colonization by a urease-negative mutant strain in a guinea-pig model. Mol. Microbiol. 1993, 10, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Neuendorf, E.; Gajer, P.; Bowlin, A.K.; Marques, P.X.; Ma, B.; Yang, H.; Fu, L.; Humphrys, M.S.; Forney, L.J.; Myers, G.S.A.; et al. Chlamydia caviae infection alters abundance but not composition of the guinea pig vaginal microbiota. Pathog. Dis. 2015, 73, ftv019. [Google Scholar] [CrossRef] [PubMed]
- Quenee, L.E.; Ciletti, N.A.; Elli, D.; Hermanas, T.M.; Schneewind, O. Prevention of pneumonic plague in mice, rats, guinea pigs and non-human primates with clinical grade rV10, rV10-2 or F1-V vaccines. Vaccine 2011, 29, 6572–6583. [Google Scholar] [PubMed] [Green Version]
- Ritchie, J.M.; Waldor, M.K. The locus of enterocyte effacement-encoded effector proteins all promote enterohemorrhagic Escherichia coli pathogenicity in infant rabbits. Infect. Immun. 2005, 73, 1466–1474. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, J.M.; Thorpe, C.M.; Rogers, A.B.; Waldor, M.K. Critical roles for stx2, eae, and tir in enterohemorrhagic Escherichia coli-induced diarrhea and intestinal inflammation in infant rabbits. Infect. Immun. 2003, 71, 7129–7139. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Li, Z.; Wang, S.; Li, T.; Zhang, L.; Zhang, L.; Tang, P. Negative pressure wound therapy reduces the motility of Pseudomonas aeruginosa and enhances wound healing in a rabbit ear biofilm infection model. Antonie Leeuwenhoek 2018, 111, 1557–1570. [Google Scholar]
- Zhang, H.; Zhang, H.; Xiong, B.; Fan, G.; Cao, Z. Immunogenicity of recombinant outer membrane porin protein and protective efficacy against lethal challenge with Bordetella bronchiseptica in rabbits. J. Appl. Microbiol. 2019. [Google Scholar] [CrossRef]
- Boustanshenas, M.; Bakhshi, B.; Ghorbani, M. Investigation into immunological responses against a native recombinant CTB whole-cell Vibrio cholerae vaccine in a rabbit model. J. Appl. Microbiol. 2012, 114, 509–515. [Google Scholar] [CrossRef]
- Ni, X.; Qin, S.; Lou, Z.; Ning, H.; Sun, X. Seroprevalence and risk factors of Chlamydia infection in domestic rabbits (Oryctolagus cuniculus) in China. BioMed Res. Int. 2015, 2015, 460473. [Google Scholar] [CrossRef] [Green Version]
- Watson, V.E.; Jacob, M.E.; Bruno-Bárcena, J.M.; Amirsultan, S.; Stauffer, S.H.; Píqueras, V.O.; Frias, R.; Gookin, J.L. Influence of the intestinal microbiota on disease susceptibility in kittens with experimentally-induced carriage of atypical enteropathogenic Escherichia coli. Vet. Microbiol. 2019, 231, 197–206. [Google Scholar] [CrossRef]
- Gouveia, E.M.; Silva, I.S.; Nakazato, G.; Onselem, V.J.; Corrêa, R.A.; Araujo, F.R.; Chang, M.R. Action of phosphorylated mannanoligosaccharides on immune and hematological responses and fecal consistency of dogs experimentally infected with enteropathogenic Escherichia coli strains. Braz. J. Microbiol. 2013, 44, 499–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkins, C.; Harper, D.; Burch, D.; Änggård, E.; Soothill, J. Topical treatment of Pseudomonas aeruginosa otitis of dogs with a bacteriophage mixture: A before/after clinical trial. Vet. Microbiol. 2010, 146, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.A.; Gow, S.P.; Waldner, C.L.; Shields, S.; Wappel, S.; Bowers, A.; Lacoste, S.; Xu, Z.; Ball, E. Comparative efficacy of intranasal and oral vaccines against Bordetella bronchiseptica in dogs. Vet. J. 2016, 212, 71–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donnenberg, M.S.; Tzipori, S.; Mckee, M.L.; O’Brien, A.D.; Alroy, J.; Kapert, J.B. The role of the eae gene of enterohemorrhagic Escherichia coli in intimate attachment in vitro and in a porcine model. Clin. Investig. 1993, 92, 1418–1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez, N.C.B.; Carroll, J.A.; Corley, J.R.; Broadway, P.R.; Callaway, T.R. Changes in the hematological variables in pigs supplemented with yeast cell wall in response to a Salmonella challenge in weaned pigs. Front. Vet. Sci. 2019, 6, 246. [Google Scholar] [CrossRef] [PubMed]
- Chaney, S.B.; Ganesh, K.; Mathew-Steiner, S.; Stromberg, P.; Roy, S.; Sen, C.K.; Wozniak, D.J. Histopathological comparisons of Staphylococcus aureus and Pseudomonas aeruginosa experimental infected porcine burn wounds. Wound Repair Regen. 2017, 25, 541–549. [Google Scholar] [CrossRef]
- Jeong, K.-I.; Venkatesan, M.M.; Barnoy, S.; Tzipori, S. Evaluation of virulent and live Shigella sonnei vaccine candidates in a gnotobiotic piglet model. Vaccine 2013, 31, 4039–4046. [Google Scholar] [CrossRef]
- Elahi, S.; Thompson, D.R.; van Kessel, J.; Babiuk, L.A.; Gerdts, V. Protective role of passively transferred maternal cytokines against Bordetella pertussis infection in newborn piglets. Infect. Immun. 2017, 85, e01063. [Google Scholar] [CrossRef] [Green Version]
- Lorenzen, E.; Follmann, F.; Jungersen, G.; Agerholm, J.S. A review of the human vs. porcine female genital tract and associated immune system in the perspective of using minipigs as a model of human genital Chlamydia infection. Vet. Res. 2015, 46, 116. [Google Scholar] [CrossRef]
- Martorelli, L.; Garbaccio, S.; Vilte, D.A.; Albanese, A.A.; Palermo, M.S.; Mercado, E.C.; Ibarra, C.E.; Cataldi, A.A. Immune response in calves vaccinated with type three secretion system antigens and Shiga toxin 2B subunit of Escherichia coli O157:H7. PLoS ONE 2017, 12, e0169422. [Google Scholar] [CrossRef] [Green Version]
- Pullinger, G.D.; Paulin, S.M.; Charleston, B.; Watson, P.R.; Bowen, A.J.; Dziva, F.; Morgan, E.; Villarreal-Ramos, B.; Wallis, T.S.; Stevens, M.P. Systemic translocation of Salmonella enterica serovar Dublin in cattle occurs predominantly via efferent lymphatics in a cell-free niche and requires type III secretion system 1 (T3SS-1) but not T3SS-2. Infect. Immun. 2007, 75, 5191–5199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coombes, B.K.; Coburn, B.A.; Potter, A.A.; Gomis, S.; Mirakhur, K.; Li, Y.; Finlay, B.B. Analysis of the contribution of Salmonella pathogenicity islands 1 and 2 to enteric disease progression using a novel bovine ileal loop model and a murine model of infectious enterocolitis. Infect. Immun. 2005, 73, 7161–7169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kästner, J.; Saluz, H.P.; Hänel, F. Identification of in vivo-induced bacterial protein antigens during calf infection with Chlamydia psittaci. Int. J. Med. Microbiol. 2015, 305, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Keshari, R.S.; Silasi, R.; Popescu, N.I.; Georgescu, C.; Chaaban, H.; Lupu, C.; McCarty, O.J.T.; Esmon, C.T.; Lupu, F. Fondaparinux pentasaccharide reduces sepsis coagulopathy and promotes survival in the baboon model of E. coli sepsis. J. Thromb. Haemost. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapil, P.; Papin, J.F.; Wolf, R.F.; Zimmerman, L.I.; Wagner, L.D.; Merkel, T.J. Maternal vaccination with a monocomponent pertussis toxoid vaccine is sufficient to protect infants in a baboon model of whooping cough. J. Infect. Dis. 2018, 217, 1231–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eastman, A.J.; Bergin, I.L.; Chai, D.; Bassis, C.M.; LeBar, W.; Oluoch, G.O.; Liechty, E.R.; Nyachieo, A.; Young, V.B.; Aronoff, D.M.; et al. Impact of the levonorgestrel-releasing intrauterine system on the progression of Chlamydia trachomatis infection to pelvic inflammatory disease in a baboon model. J. Infect. Dis. 2018, 217, 656–666. [Google Scholar] [CrossRef]
- Mansfield, K.; Lin, K.; Newman, J.; Schauer, D.; MacKey, J.; Lackner, A.; Carville, A. Identification of enteropathogenic Escherichia coli in simian immunodeficiency virus-infected infant and adult rhesus macaques. J. Clin. Microbiol. 2001, 39, 971–976. [Google Scholar] [CrossRef] [Green Version]
- Higginson, E.E.; Ramachandran, G.; Panda, A.; Shipley, S.T.; Kriel, E.H.; DeTolla, L.J.; Lipsky, M.; Perkins, D.J.; Salerno-Goncalves, R.; Sztein, M.B.; et al. Improved tolerability of a Salmonella enterica serovar Typhimurium live-attenuated vaccine strain achieved by balancing inflammatory potential with immunogenicity. Infect. Immun. 2018, 86. [Google Scholar] [CrossRef] [Green Version]
- Cheung, A.T.; Moss, R.B.; Leong, A.B.; Novick, W.J. Chronic Pseudomonas aeruginosa endobronchitis in rhesus monkeys: I. Effects of pentoxifylline on neutrophil influx. J. Med. Primatol. 1992, 21, 357–362. [Google Scholar]
- Collins, T.A.; Barnoy, S.; Baqar, S.; Ranallo, R.T.; Nemelka, K.W.; Venkatesan, M.M. Safety and colonization of two novel virG(icsA)-based live Shigella sonnei vaccine strains in rhesus macaques (Macaca mulatta). Comp. Med. 2008, 58, 88–94. [Google Scholar]
- Henning, T.R.; Morris, M.; Ellis, S.; Kelley, K.; Phillips, C.; Ritter, J.; Jones, T.; Nachamkin, E.; Chen, C.Y.; Hong, J.; et al. Development of a rectal sexually transmitted infection (STI) model in rhesus macaques using Chlamydia trachomatis serovars E and L2. J. Med. Primatol. 2017, 46, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Tian, G.; Qi, Z.; Qiu, Y.; Wu, X.; Zhang, Q.; Yang, X.; Xin, Y.; He, J.; Bi, Y.; Wang, Q.; et al. Comparison of virulence between the Yersinia pestis Microtus 201, an avirulent strain to humans, and the vaccine strain EV in rhesus macaques, Macaca mulatta. Hum. Vaccin. Immunother. 2014, 10, 3552–3560. [Google Scholar] [CrossRef] [PubMed]
- Antão, E.M.; Glodde, S.; Li, G.; Sharifi, R.; Homeier, T.; Laturnus, C.; Diehl, I.; Bethe, A.; Philipp, H.C.; Preisinger, R.; et al. The chicken as a natural model for extraintestinal infections caused by avian pathogenic Escherichia coli (APEC). Microb. Pathog. 2008, 45, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Eade, C.R.; Bogomolnaya, L.; Andrews-Polymenis, H.; Altiera, C.; Hung, C.C.; Betteken, M.I.; Adams, L.G. Salmonella pathogenicity island 1 is expressed in the chicken intestine and promotes bacterial proliferation. Infect. Immun. 2019, 87. [Google Scholar] [CrossRef] [Green Version]
- Shi, R.; Yang, X.; Chen, L.; Chang, H.; Liu, H.; Zhao, J.; Wang, X.; Wang, C. Pathogenicity of Shigella in chickens. PLoS ONE 2014, 9, e100264. [Google Scholar] [CrossRef] [Green Version]
- Lagae, S.; Dumont, A.; Vanrompay, D. Examination of the in vivo immune response elicited by Chlamydia psittaci in chickens. Vet. Immunol. Immunopathol. 2016, 170, 54–64. [Google Scholar] [CrossRef]
- Varas, M.; Ortíz-Severín, J.; Marcoleta, A.E.; Díaz-Pascual, F.; Allende, M.L.; Santiviago, C.A.; Chávez, F.P. Salmonella Typhimurium induces cloacitis-like symptoms in zebrafish larvae. Microb. Pathog. 2017, 107, 317–320. [Google Scholar] [CrossRef]
- Rocker, A.J.; Weiss, A.R.; Lam, J.S.; Van Raay, T.J.; Khursigara, C.M. Visualizing and quantifying Pseudomonas aeruginosa infection in the hindbrain ventricle of zebrafish using confocal laser scanning microscopy. J. Microbiol. Meth. 2015, 117, 85–94. [Google Scholar] [CrossRef]
- Duggan, G.M.; Mostowy, S. Use of zebrafish to study Shigella infection. Dis. Model. Mech. 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Nag, D.; Mitchell, K.; Breen, P.; Withey, J.H. Quantifying Vibrio cholerae colonization and diarrhea in the adult zebrafish model. J. Vis. Exp. 2018, 137, e57767. [Google Scholar] [CrossRef]
- Mellies, J.L.; Barron, A.M.; Haack, K.R.; Korson, A.S.; Oldridge, D.A. The global regulator Ler is necessary for enteropathogenic Escherichia coli colonization of Caenorhabditis elegans. Infect. Immun. 2006, 74, 64–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Choe, J.; Kim, J.; Oh, S.; Park, S.; Kim, S.; Kim, Y. Heat-killed Lactobacillus spp. cells enhance survivals of Caenorhabditis elegans against Salmonella and Yersinia infections. Lett. Appl. Microbiol. 2015, 61, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Harmer, C.; Alnassafi, K.; Hu, H.; Elkins, M.; Bye, P.; Rose, B.; Cordwell, S.; Triccas, J.A.; Harbour, C.; Manos, J. Modulation of gene expression by Pseudomonas aeruginosa during chronic infection in the adult cystic fibrosis lung. Microbiology 2013, 159, 2354–2363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kesika, P.; Prasanth, M.I.; Balamurugan, K. Modulation of Caenorhabditis elegans immune response and modification of Shigella endotoxin upon interaction. J. Basic Microbiol. 2015, 55, 432–450. [Google Scholar] [CrossRef] [PubMed]
- Dinh, J.; Angeloni, J.T.; Pederson, D.B.; Wang, X.; Cao, M.; Dong, Y. Cranberry extract standardized for proanthocyanidins promotes the immune response of Caenorhabditis elegans to Vibrio cholerae through the p38 MAPK pathway and HSF-1. PLoS ONE 2014, 9, e103290. [Google Scholar] [CrossRef] [PubMed]
- Williamson, D.A.; Mills, G.; Johnson, J.R.; Porter, S.; Wiles, S. In vivo correlates of molecularly inferred virulence among extraintestinal pathogenic Escherichia coli (ExPEC) in the wax moth Galleria mellonella model system. Virulence 2014, 5, 388–393. [Google Scholar] [CrossRef] [Green Version]
- Miyata, S.; Casey, M.; Frank, D.W.; Ausubel, F.M.; Drenkard, E. Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in Pseudomonas aeruginosa pathogenesis. Infect. Immun. 2003, 71, 2404–2413. [Google Scholar] [CrossRef] [Green Version]
- Barnoy, S.; Gancz, H.; Zhu, Y.; Honnold, C.L.; Zurawski, D.V.; Venkatesan, M.M. The Galleria mellonella larvae as an in vivo model for evaluation of Shigella virulence. Gut Microbes 2017, 8, 335–350. [Google Scholar] [CrossRef] [Green Version]
- Bokhari, H.; Ali, A.; Noreen, Z.; Thomson, N.; Wren, B.W. Galleria mellonella is low cost and suitable surrogate host for studying virulence of human pathogenic Vibrio Cholerae. Gene 2017, 628, 1–7. [Google Scholar] [CrossRef]
- Alenizi, D.; Ringwood, T.; Redhwan, A.; Bouraha, B.; Wren, B.W.; Prentice, M.; McNally, A. All Yersinia enterocolitica are pathogenic: Virulence of phylogroup 1 Y. enterocolitica in a Galleria mellonella infection model. Microbiology 2016, 162, 1379–1387. [Google Scholar] [CrossRef]
- Lemon, A.; Silva-Rohwer, A.; Sagawa, J. Co-infection assay to determine Yersinia pestis competitive fitness in fleas. In Pathogenic Yersinia: Meth Protocols; Vadydaloo, V., Lawrenz, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 2010, pp. 153–166. [Google Scholar]
- Jacques, B.J.; Bourret, T.J.; Shaffer, J.J. Role of fly cleaning behavior on carriage of Escherichia coli and Pseudomonas aeruginosa. J. Med. Entomol. 2017, 54, 1712–1717. [Google Scholar] [CrossRef] [PubMed]
- Brandt, S.M.; Dionne, M.S.; Khush, R.S.; Pham, L.N.; Vigdal, T.J.; Schneider, D.S. Secreted bacterial effectors and host-produced eiger/TNF drive death in a Salmonella-infected fruit fly. PLoS Biol. 2004, 2, e418. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hang, S.; Purdy, A.E.; Watnick, P.I. Mutations in the IMD pathway and mustard counter Vibrio cholerae suppression of intestinal stem cell division in Drosophila. MBio 2013, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urrutia, Í.M.; Sabag, A.; Valenzuela, C.; Labra, B.; Álvarez, S.A.; Santiviago, C.A. Contribution of the twin-arginine translocation system to the intracellular survival of Salmonella Typhimurium in Dictyostelium discoideum. Front. Microbiol. 2018, 9, 3001. [Google Scholar] [CrossRef]
- Pukatzki, S.; Kessin, R.H.; Mekalanos, J.J. The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum. Proc. Nat. Acad. Sci. USA 2002, 99, 3159–3164. [Google Scholar] [CrossRef] [Green Version]
- Zarei, M.; Ghahfarokhi, M.E.; Fazlara, A.; Bahrami, S. Effect of the bacterial growth phase and coculture conditions on the interaction of Acanthamoeba castellanii with Shigella dysenteriae, Shigella flexneri, and Shigella sonnei. J. Basic Microbiol. 2019, 59, 735–743. [Google Scholar] [CrossRef]
- Lin, Y.-W.; Yu, S.-L.; Shao, H.-Y.; Lin, H.-Y.; Liu, C.-C.; Hsiao, K.-N.; Chitra, E.; Tsou, Y.-L.; Chang, H.-W.; Sia, C.; et al. Human SCARB2 transgenic mice as an infectious animal model for enterovirus 71. PLoS ONE 2013, 8, e57591. [Google Scholar] [CrossRef] [Green Version]
- Cheluvappa, R.; Scowen, P.; Eri, R. Ethics of animal research in human disease remediation, its institutional teaching; and alternatives to animal experimentation. Pharmacol. Res. Perspect. 2017, 5, e00332. [Google Scholar] [CrossRef]
- Bayne, K.A.L. Environmental enrichment of nonhuman primates, dogs and rabbits used in toxicology studies. Toxicol. Pathol. 2003, 31, 132–137. [Google Scholar] [CrossRef]
- Vannice, K.S.; Roehrig, J.T.; Hombach, J. Next generation dengue vaccines: A review of the preclinical development pipeline. Vaccine 2015, 33, 7091–7099. [Google Scholar] [CrossRef] [Green Version]
- Mathews, K. Antimicrobial drug use and veterinary costs in US livestock production. USDA Agric. Inf. Bull. 2001, 766. [Google Scholar] [CrossRef]
- Hiltunen, T.; Virta, M.; Anna-Liisa, L. Antibiotic resistance in the wild: An eco-evolutionary perspective. Phil. Trans. R. Soc. B 2017, 372, 20160039. [Google Scholar] [CrossRef] [PubMed]
- Runft, D.L.; Mitchell, K.C.; Abuaita, B.H.; Allen, J.P.; Bajer, S.; Ginsburg, K.; Neely, M.N.; Withey, J.H. Zebrafish as a natural host model for Vibrio cholerae colonization and transmission. Appl. Env. Microbiol. 2014, 80, 1710–1717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenor, J.L.; Mccormick, B.A.; Ausubel, F.M.; Aballay, A.; Carolina, N. Caenorhabditis elegans-based screen identifies Salmonella virulence factors required for conserved host-pathogen interactions. Curr. Biol. 2004, 14, 1018–1024. [Google Scholar] [CrossRef] [Green Version]
- Leuko, S.; Raivio, T.L. Mutations that impact the enteropathogenic Escherichia coli Cpx envelope stress response attenuate virulence in Galleria mellonella. Infect. Immun. 2012, 80, 3077–3085. [Google Scholar] [CrossRef] [Green Version]
- Brugirard-Ricaud, K.; Duchaud, E.; Givaudan, A.; Girard, P.A.; Kunst, F.; Boemare, N.; Brehélin, M.; Zumbihl, R. Site-specific antiphagocytic function of the Photorhabdus luminescens type III secretion system during insect colonization. Cell. Microbiol. 2005, 7, 363–371. [Google Scholar] [CrossRef]
- Fauvarque, M.O.; Bergeret, E.; Chabert, J.; Dacheux, D.; Satre, M.; Attree, I. Role and activation of type III secretion system genes in Pseudomonas aeruginosa-induced Drosophila killing. Microb. Pathog. 2002, 32, 287–295. [Google Scholar] [CrossRef]
- Kirienko, N.V.; Cezairliyan, B.O.; Ausubel, F.M.; Powell, J.R. Pseudomonas aeruginosa PA14 pathogenesis in Caenorhabditis elegans. Methods Mol. Biol. 2014, 1149, 653–669. [Google Scholar]
- Park, H.H.; Jung, Y.; Lee, S.V. Survival assays using Caenorhabditis elegans. Mol. Cells 2017, 40, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Mulcahy, H.; Sibley, C.D.; Surette, M.G.; Lewenza, S. Drosophila melanogaster as an animal model for the study of Pseudomonas aeruginosa biofilm infections in vivo. PLoS Pathog. 2011, 7, e1002299. [Google Scholar] [CrossRef] [Green Version]
- Clatworthy, A.E.; Lee, J.S.W.; Leibman, M.; Kostun, Z.; Davidson, A.J.; Hung, D.T. Pseudomonas aeruginosa infection of zebrafish involves both host and pathogen determinants. Infect. Immun. 2009, 77, 1293–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, V.E.; Jacob, M.E.; Flowers, J.R.; Strong, S.J.; Debroy, C.; Gookin, J.L. Association of atypical enteropathogenic Escherichia coli with diarrhea and related mortality in kittens. J. Clin. Microbiol. 2017, 55, 2719–2735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Audia, J.P.; Lindsey, A.S.; Housley, N.A.; Ochoa, C.R.; Zhou, C.; Toba, M.; Oka, M.; Annamdevula, N.S.; Fitzgerald, M.S.; Frank, D.W.; et al. In the absence of effector proteins, the Pseudomonas aeruginosa type three secretion system needle tip complex contributes to lung injury and systemic inflammatory responses. PLoS ONE 2013, 8, e81792. [Google Scholar] [CrossRef] [PubMed]
- Brannon, M.K.; Davis, J.M.; Mathias, J.R.; Hall, C.J.; Emerson, J.C.; Crosier, P.S.; Huttenlocher, A.; Ramakrishnan, L.; Moskowitz, S.M. Pseudomonas aeruginosa type III secretion system interacts with phagocytes to modulate systemic infection of zebrafish embryos. Cell. Microbiol. 2009, 11, 755–768. [Google Scholar] [CrossRef] [Green Version]
- Oechslin, F.; Piccardi, P.; Mancini, S.; Gabard, J.; Moreillon, P.; Entenza, J.M.; Resch, G.; Que, Y.A. Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence. J. Infect. Dis. 2017, 215, 703–712. [Google Scholar] [CrossRef] [Green Version]
- Schultz, B.M.; Salazar, G.A.; Paduro, C.A.; Pardo-Roa, C.; Pizarro, D.P.; Salazar-Echegarai, F.J.; Torres, J.; Riedel, C.A.; Kalergis, A.M.; Álvarez-Lobos, M.M.; et al. Persistent Salmonella enterica serovar Typhimurium infection increases the susceptibility of mice to develop intestinal inflammation. Front. Immunol. 2018, 9, 1166. [Google Scholar] [CrossRef] [Green Version]
- Kilcoyne, M.; Gerlach, J.Q.; Farrell, M.P.; Bhavanandan, V.P.; Joshi, L. Periodic acid-Schiff’s reagent assay for carbohydrates in a microtiter plate format. Anal. Biochem. 2011, 416, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Ernst, O.; Zor, T. Linearization of the Bradford protein assay. J. Vis. Exp. 2010, 38, 1918. [Google Scholar] [CrossRef]
- Grenz, J.R.; Chubiz, J.E.C.; Thaprawat, P.; Slaucha, J.M. HilE regulates HilD by blocking DNA binding in Salmonella enterica serovar Typhimurium. J. Bacteriol. 2018, 200. [Google Scholar] [CrossRef] [Green Version]
- Aoyagi, K.L.; Brooks, B.D.; Bearden, S.W.; Montenieri, J.A.; Gage, K.L.; Fisher, M.A. LPS modification promotes maintenance of Yersinia pestis in fleas. Microbiology (UK) 2015, 161, 628–638. [Google Scholar] [CrossRef] [Green Version]
- Bohez, L.; Ducatelle, R.; Pasmans, F.; Botteldoorn, N.; Haesebrouck, F.; van Immerseel, F. Salmonella enterica serovar Enteritidis colonization of the chicken caecum requires the HilA regulatory protein. Vet. Microbiol. 2006, 116, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Koroleva, E.A.; Kobets, N.V.; Shcherbinin, D.N.; Zigangirova, N.A.; Shmarov, M.M.; Tukhvatulin, A.I.; Logunov, D.Y.; Naroditsky, B.S.; Gintsburg, A.L. Chlamydial type III secretion system needle protein induces protective immunity against Chlamydia muridarum intravaginal infection. BioMed Res. Int. 2017, 2017, 3865802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotloff, K.L.; Taylor, D.N.; Sztein, M.B.; Wasserman, S.S.; Losonsky, G.A.; Nataro, J.P.; Venkatesan, M.; Hartman, A.; Picking, W.D.; Katz, D.E.; et al. Phase I evaluation of ΔvirG Shigella sonnei live, attenuated, oral vaccine strain WRSS1 in healthy adults. Infect. Immun. 2002, 70, 2016–2021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winter, S.E.; Winter, M.G.; Poon, V.; Keestra, A.M.; Sterzenbach, T.; Faber, F.; Costa, L.F.; Cassou, F.; Costa, E.A.; Alves, G.E.S.; et al. Salmonella enterica serovar Typhi conceals the invasion- associated type three secretion system from the innate immune system by gene regulation. PLoS Pathog. 2014, 10, e1004207. [Google Scholar] [CrossRef] [PubMed]
- Watson, P.R.; Paulin, S.M.; Bland, A.P.; Jones, P.W.; Wallis, T.S. Characterization of intestinal invasion by Salmonella Typhimurium and Salmonella Dublin and effect of a mutation in the invH gene. Infect. Immun. 1995, 63, 2743–2754. [Google Scholar]
- Raffatellu, M.; Wilson, R.P.; Chessa, D.; Andrews-Polymenis, H.; Tran, Q.T.; Lawhon, S.; Khare, S.; Adams, L.G.; Ba, A.J. SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype Typhimurium invasion of epithelial cells. Infect. Immun. 2005, 73, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Ritchie, J.M.; Hiyoshi, H.; Iida, T.; Davis, B.M.; Waldor, M.K.; Kodama, T. The hydrophilic translocator for Vibrio parahaemolyticus, T3SS2, is also translocated. Infect. Immun. 2012, 80, 2940–2947. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Liao, C.; Zhang, B.; Tolbert, W.D.; He, W.; Dai, Z.; Zhang, W.; Yuan, W.; Pazgier, M.; Liu, J.; et al. Human enteric α-defensin 5 promotes Shigella infection by enhancing bacterial adhesion and invasion. Immunity 2018, 48, 1233–1244.e7. [Google Scholar] [CrossRef] [Green Version]
- Bricker, E.M. Bladder substitution after pelvic evisceration. Surg. Clin. N. Am. 1950, 30, 1511–1521. [Google Scholar] [CrossRef]
E. coli | Salmonella spp. | Pseudomonas spp. | Shigella spp. | Bordetella spp. | Vibrio spp. | Chlamydia spp. | Yersinia spp. | |
---|---|---|---|---|---|---|---|---|
Mouse | [35,36,37,38] | [39,40,41,42,43,44,45] | [46] | [47] | [11] | [12] | [48] | [49,50] |
Rat | [23] | [51] | [52] | [53] | [28] | [54,55] | [56] | [57] |
Guinea Pig | [58] | [59] | [60] | [61] | [62] | [63] | [64] | |
Rabbit | [65,66] | [59] | [67] | [27] | [68] | [69] | [70] | |
Cat and Dog | [71,72] | [73] | [74] | |||||
Pig | [75] | [76] | [77] | [78] | [79] | [80] | ||
Cattle | [81] | [82,83] | [84] | |||||
Baboon | [85] | [86] | [87] | |||||
Macaques | [88] | [89] | [90] | [91] | [92] | [93] | ||
Chicken | [94] | [95] | [96] | [97] | ||||
Zebrafish | [29] | [98] | [99] | [100] | [101] | |||
Worms | [102] | [103] | [104] | [105] | [106] | [103] | ||
Wax Moth | [107] | [59] | [108] | [109] | [110] | [111] | ||
Flea | [112] | |||||||
Fly | [113] | [114] | [113] | [115] | ||||
Amoeba | [116] | [117] | [118] | [31] |
Score | Symptoms | Action to Take |
---|---|---|
1—None | No diarrhea (normal pellets are dark green, hard, and formed) | None required |
2—Mild | Mix of soft yellow–green unformed and formed pellets, resulting in light staining of the hind legs | Increase monitoring of animal |
3—Severe | Unformed or liquid stool, resulting in significant staining of the perineum and hind legs | Animal should be euthanized |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hotinger, J.A.; May, A.E. Animal Models of Type III Secretion System-Mediated Pathogenesis. Pathogens 2019, 8, 257. https://doi.org/10.3390/pathogens8040257
Hotinger JA, May AE. Animal Models of Type III Secretion System-Mediated Pathogenesis. Pathogens. 2019; 8(4):257. https://doi.org/10.3390/pathogens8040257
Chicago/Turabian StyleHotinger, Julia A., and Aaron E. May. 2019. "Animal Models of Type III Secretion System-Mediated Pathogenesis" Pathogens 8, no. 4: 257. https://doi.org/10.3390/pathogens8040257
APA StyleHotinger, J. A., & May, A. E. (2019). Animal Models of Type III Secretion System-Mediated Pathogenesis. Pathogens, 8(4), 257. https://doi.org/10.3390/pathogens8040257