High Prevalence of CTX-M Type Extended-Spectrum Beta-Lactamase Genes and Detection of NDM-1 Carbapenemase Gene in Extraintestinal Pathogenic Escherichia coli in Cuba
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates
4.2. Susceptibility Testing
4.3. Molecular Detection of Beta-Lactamase Genes and Plasmid-Mediated Quinolone Resistance (PMQR) Genes
4.4. Genetic Analysis of E. coli
4.5. GenBank Accession Numbers
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Riley, L.W. Pandemic lineages of extraintestinal pathogenic Escherichia coli. Clin. Microbiol. Infect. 2014, 20, 380–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manges, A.R.; Geum, H.M.; Guo, A.; Edens, T.J.; Fibke, C.D.; Pitout, J.D.D. Global Extraintestinal Pathogenic Escherichia coli (ExPEC) Lineages. Clin. Microbiol. Rev. 2019, 32, e00135-18. [Google Scholar] [CrossRef] [PubMed]
- Giske, C.G.; Monnet, D.L.; Cars, O.; Carmeli, Y. Clinical and economic impact of common multidrug-resistant gram-negative bacilli. Antimicrob. Agents Chemother. 2008, 52, 813–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitout, J.D.; Laupland, K.B. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: An emerging public-health concern. Lancet Infect. Dis. 2008, 8, 159–166. [Google Scholar] [CrossRef]
- Bevan, E.R.; Jones, A.M.; Hawkey, P.M. Global epidemiology of CTX-M β-lactamases: Temporal and geographical shifts in genotype. J. Antimicrob. Chemother. 2017, 72, 2145–2155. [Google Scholar] [CrossRef] [Green Version]
- Thomson, K.S. Extended-spectrum-beta-lactamase, AmpC, and Carbapenemase issues. J. Clin. Microbiol. 2010, 48, 1019–1025. [Google Scholar] [CrossRef] [Green Version]
- Jacoby, G.A. AmpC beta-Lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef] [Green Version]
- Nordmann, P.; Dortet, L.; Poirel, L. Carbapenem resistance in Enterobacteriaceae: Here is the storm! Trends Mol. Med. 2012, 18, 263–272. [Google Scholar] [CrossRef]
- Nordmann, P.; Poirel, L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin. Microbiol. Infect. 2014, 20, 821–830. [Google Scholar] [CrossRef] [Green Version]
- Dalhoff, A. Global fluoroquinolone resistance epidemiology and implications for clinical use. Interdiscip. Perspect. Infect. Dis. 2012, 2012, 976273. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Madec, J.Y.; Lupo, A.; Schink, A.K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial Resistance in Escherichia coli. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González Mesa, L.; Ramos Morí, A.; Nadal Becerra, L.; Morffi Figueroa, J.; Hernández Robledo, E.; Alvarez, A.B.; Marchena Bequer, J.J.; González Alemán, M.; Villain Plous, C. Phenotypic and molecular identification of extended-spectrum beta-lactamase (ESBL) TEM and SHV produced by clinical isolates Escherichia coli and Klebsiella spp. in hospitals. Rev. Cubana Med. Trop. 2007, 59, 52–58. [Google Scholar] [PubMed]
- Sader, H.S.; Castanheira, M.; Farrell, D.J.; Flamm, R.K.; Mendes, R.E.; Jones, R.N. Tigecycline antimicrobial activity tested against clinical bacteria from Latin American medical centres: Results from SENTRY Antimicrobial Surveillance Program (2011–2014). Int. J. Antimicrob. Agents 2016, 48, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Gales, A.C.; Castanheira, M.; Jones, R.N.; Sader, H.S. Antimicrobial resistance among Gram-negative bacilli isolated from Latin America: Results from SENTRY Antimicrobial Surveillance Program (Latin America, 2008–2010). Diagn. Microbiol. Infect. Dis. 2012, 73, 354–360. [Google Scholar] [CrossRef]
- Chandramohan, L.; Revell, P.A. Prevalence and molecular characterization of extended-spectrum-β-lactamase-producing Enterobacteriaceae in a pediatric patient population. Antimicrob. Agents Chemother. 2012, 56, 4765–4770. [Google Scholar] [CrossRef] [Green Version]
- Denisuik, A.J.; Karlowsky, J.A.; Adam, H.J.; Baxter, M.R.; Lagacé-Wiens, P.R.S.; Mulvey, M.R.; Hoban, D.J.; Zhanel, G.G. Canadian Antimicrobial Resistance Alliance (CARA) and CANWARD. Dramatic rise in the proportion of ESBL-producing Escherichia coli and Klebsiella pneumoniae among clinical isolates identified in Canadian hospital laboratories from 2007 to 2016. J. Antimicrob. Chemother. 2019, 74 (Suppl. 4), iv64–iv71. [Google Scholar] [CrossRef]
- Nicolas-Chanoine, M.H.; Bertrand, X.; Madec, J.Y. Escherichia coli ST131, an intriguing clonal group. Clin. Microbiol. Rev. 2014, 27, 543–574. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, Y.; Pitout, J.D.; Gomi, R.; Matsuda, T.; Noguchi, T.; Yamamoto, M.; Peirano, G.; DeVinney, R.; Bradford, P.A.; Motyl, M.R.; et al. Global Escherichia coli Sequence Type 131 Clade with blaCTX-M-27 Gene. Emerg. Infect. Dis. 2016, 22, 1900–1907. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Gou, J.; Guo, X.; Cao, Z.; Li, Y.; Jiao, H.; He, X.; Ren, Y.; Tian, F. Genetic contexts related to the diffusion of plasmid-mediated CTX-M-55 extended-spectrum beta-lactamase isolated from Enterobacteriaceae in China. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 12. [Google Scholar] [CrossRef]
- Tamang, M.D.; Nam, H.M.; Gurung, M.; Jang, G.C.; Kim, S.R.; Jung, S.C.; Park, Y.H.; Lim, S.K. Molecular characterization of CTX-M β-lactamase and associated addiction systems in Escherichia coli circulating among cattle, farm workers, and the farm environment. Appl. Environ. Microbiol. 2013, 79, 3898–3905. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Fillor, R.E.; Brilhante, M.; Espinosa, I.; Perreten, V. Complete Circular Genome Sequence of a Multidrug-Resistant Escherichia coli Strain from Cuba Obtained with Nanopore and Illumina Hybrid Assembly. Microbiol. Resour. Announc. 2019, 8, e01269-19. [Google Scholar]
- Dadashi, M.; Yaslianifard, S.; Hajikhani, B.; Kabir, K.; Owlia, P.; Goudarzi, M.; Hakemivala, M.; Darban-Sarokhalil, D. Frequency distribution, genotypes and prevalent sequence types of New Delhi metallo-β-lactamase-producing Escherichia coli among clinical isolates around the world: A review. J. Glob. Antimicrob. Resist. 2019, 19, 284–293. [Google Scholar] [CrossRef]
- Dortet, L.; Poirel, L.; Nordmann, P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. BioMed Res. Int. 2014, 2014, 249856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Shi, X.; Yin, W.; Wang, Y.; Shen, Z.; Ding, S.; Wang, S. A Multiplex SYBR Green Real-Time PCR Assay for the Detection of Three Colistin Resistance Genes from Cultured Bacteria, Feces, and Environment Samples. Front. Microbiol. 2017, 8, 2078. [Google Scholar] [CrossRef] [PubMed]
- Torres-González, P.; Bobadilla-Del Valle, M.; Tovar-Calderón, E.; Leal-Vega, F.; Hernández-Cruz, A.; Martínez-Gamboa, A.; Niembro-Ortega, M.D.; Sifuentes-Osornio, J.; Ponce-de-León, A. Outbreak caused by Enterobacteriaceae harboring NDM-1 metallo-β-lactamase carried in an IncFII plasmid in a tertiary care hospital in Mexico City. Antimicrob. Agents Chemother. 2015, 59, 7080–7083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bocanegra-Ibarias, P.; Garza-González, E.; Morfín-Otero, R.; Barrios, H.; Villarreal-Treviño, L.; Rodríguez-Noriega, E.; Garza-Ramos, U.; Petersen-Morfin, S.; Silva-Sanchez, J. Molecular and microbiological report of a hospital outbreak of NDM-1-carrying Enterobacteriaceae in Mexico. PLoS ONE 2017, 12, e0179651. [Google Scholar] [CrossRef] [PubMed]
- Quiñones, D.; Carvajal, I.; Perez, Y.; Hart, M.; Perez, J.; Garcia, S.; Salazar, D.; Ghosh, S.; Kawaguchiya, M.; Aung, M.S.; et al. High prevalence of blaOXA-23 in Acinetobacter spp. and detection of blaNDM-1 in A. soli in Cuba: Report from National Surveillance Program (2010–2012). New Microbes New Infect. 2015, 7, 52–56. [Google Scholar] [CrossRef] [Green Version]
- Alsharapy, S.A.; Gharout-Sait, A.; Muggeo, A.; Guillard, T.; Cholley, P.; Brasme, L.; Bertrand, X.; Moghram, G.S.; Touati, A.; De Champs, C. Characterization of Carbapenem-Resistant Enterobacteriaceae Clinical Isolates in Al Thawra University Hospital, Sana’a, Yemen. Microb. Drug Resist. 2019. [Google Scholar] [CrossRef]
- Pitart, C.; Solé, M.; Roca, I.; Román, A.; Moreno, A.; Vila, J.; Marco, F. Molecular characterization of blaNDM-5 carried on an IncFII plasmid in an Escherichia coli isolate from a nontraveler patient in Spain. Antimicrob. Agents Chemother. 2015, 59, 659–662. [Google Scholar] [CrossRef] [Green Version]
- Porres-Osante, N.; Azcona-Gutiérrez, J.M.; Rojo-Bezares, B.; Undabeitia, E.; Torres, C.; Sáenz, Y. Emergence of a multiresistant KPC-3 and VIM-1 carbapenemase-producing Escherichia coli strain in Spain. J. Antimicrob. Chemother. 2014, 69, 1792–1795. [Google Scholar] [CrossRef] [Green Version]
- Johnson, T.J.; Elnekave, E.; Miller, E.A.; Munoz-Aguayo, J.; Flores Figueroa, C.; Johnston, B.; Nielson, D.W.; Logue, C.M.; Johnson, J.R. Phylogenomic Analysis of Extraintestinal Pathogenic Escherichia coli Sequence Type 1193, an Emerging Multidrug-Resistant Clonal Group. Antimicrob. Agents Chemother. 2018, 63, e01913-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.R.; Johnston, B.D.; Porter, S.B.; Clabots, C.; Bender, T.L.; Thuras, P.; Trott, D.J.; Cobbold, R.; Mollinger, J.; Ferrieri, P.; et al. Rapid Emergence, Subsidence, and Molecular Detection of Escherichia coli Sequence Type 1193-fimH64, a New Disseminated Multidrug-Resistant Commensal and Extraintestinal Pathogen. J. Clin. Microbiol. 2019, 57, e01664-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valenza, G.; Werner, M.; Eisenberger, D.; Nickel, S.; Lehner-Reindl, V.; Höller, C.; Bogdan, C. First report of the new emerging global clone ST1193 among clinical isolates of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli from Germany. J. Glob. Antimicrob. Resist. 2019, 17, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Birgy, A.; Madhi, F.; Jung, C.; Levy, C.; Cointe, A.; Bidet, P.; Hobson, C.A.; Bechet, S.; Sobral, E.; Vuthien, H.; et al. Diversity and trends in population structure of ESBL-producing Enterobacteriaceae in febrile urinary tract infections in children in France from 2014 to 2017. J. Antimicrob. Chemother. 2019, 75, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, G.A.; Strahilevitz, J.; Hooper, D.C. Plasmid-mediated quinolone resistance. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirth, T.; Falush, D.; Lan, R.; Colles, F.; Mensa, P.; Wieler, L.H.; Karch, H.; Reeves, P.R.; Maiden, M.C.; Ochman, H.; et al. Sex and virulence in Escherichia coli: An evolutionary perspective. Mol. Microbiol. 2006, 60, 1136–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical Breakpoints-Bacteria v 6.0; 2016. Available online: http://www.eucast.org/clinical_breakpoints/ (accessed on 15 January 2020).
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement, M100-S24; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2014. [Google Scholar]
- Monstein, H.J.; Ostholm-Balkhed, A.; Nilsson, M.V.; Nilsson, M.; Dornbusch, K.; Nilsson, L.E. Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX-M genes in Enterobacteriaceae. APMIS 2007, 115, 1400–1408. [Google Scholar] [CrossRef]
- Xu, L.; Ensor, V.; Gossain, S.; Nye, K.; Hawkey, P. Rapid and simple detection of blaCTX-M genes by multiplex PCR assay. J. Med. Microbiol. 2005, 54, 1183–1187. [Google Scholar] [CrossRef]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef]
- Pérez-Pérez, F.J.; Hanson, N.D. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 2002, 40, 2153–2162. [Google Scholar] [CrossRef] [Green Version]
- National Center for Biotechnology Information. Basic Local Alignment Search Tool (BLAST). Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 15 January 2020).
- Ciesielczuk, H.; Hornsey, M.; Choi, V.; Woodford, N.; Wareham, D.W. Development and evaluation of a multiplex PCR for eight plasmid-mediated quinolone-resistance determinants. J. Med. Microbiol. 2013, 62, 1823–1827. [Google Scholar] [CrossRef] [PubMed]
- Clermont, O.; Bonacorsi, S.; Bingen, E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 2000, 66, 4555–4558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clermont, O.; Lavollay, M.; Vimont, S.; Deschamps, C.; Forestier, C.; Branger, C.; Denamur, E.; Arlet, G. The CTX-M-15-producing Escherichia coli diffusing clone belongs to a highly virulent B2 phylogenetic subgroup. J. Antimicrob. Chemother. 2008, 61, 1024–1028. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Tchesnokova, V.; Johnston, B.; Clabots, C.; Roberts, P.L.; Billig, M.; Riddell, K.; Rogers, P.; Qin, X.; Butler-Wu, S.; et al. Abrupt emergence of a single dominant multidrug-resistant strain of Escherichia coli. J. Infect. Dis. 2013, 207, 919–928. [Google Scholar] [CrossRef]
Beta-Lactamase Gene (Genotype) / PMQR Determinant * 1 / O25b Allele | Number of Isolates in Phylogenetic Group (%) | Total | ||||
---|---|---|---|---|---|---|
A (n = 64) | B1 (n = 21) | B2 (n = 150) | D (n = 71) | (n = 306) (%) | ||
CTX-M | 39 (60.9) | 11 (52.4) | 94 (62.7) | 43 (60.6) | 187 (61.1) | |
CTX-M-1 group | 37 (57.8) | 11 (52.4) | 78 (52) | 42 (59.2) | 168 (54.9) | |
CTX-M-2 group | 2 (3.1) | 0 | 0 | 0 | 2 (0.7) | |
CTX-M-9 group | 0 | 0 | 16 (10.7) | 1 (1.4) | 17 * 2 (5.6) | |
TEM | 16 (25) | 7 (33.3) | 47 (31.3) | 27 (38.0) | 97 (31.7) | |
CTX-M * 3 + TEM | 8 (12.5) | 5 (23.8) | 26 (17.3) | 14 (19.7) | 53 (17.3) | |
NDM-1 | 0 | 2 (9.5) | 0 | 0 | 2 (0.7) | |
CMY-2 | 1 (1.6) | 3 (14.3) | 0 | 0 | 4 (1.3) | |
PMQR | ||||||
aac (6’)-Ib-cr | 27 (42.2) | 8 (38.1) | 71 (47.3) | 18 (25.4) | 124 (40.5) | |
qnrB | 16 (25) | 3 (14.3) | 5 (3.3) | 17 (23.9) | 41 (13.4) | |
qnrD | 1 (1.6) | 0 | 1 (0.7) | 0 | 2 (0.7) | |
qnrS | 4 (6.3) | 1 (4.8) | 2 (1.3) | 2 (2.8) | 9 (2.9) | |
oqxAB | 2 (3.1) | 0 | 0 | 0 | 2 (0.7) | |
CTX-M * 4 + aac (6’)-Ib-cr | 22 (34.4) | 7 (33.3) | 57 (38) | 16 (22.5) | 102 (33.3) | |
O25b allele | 0 | 0 | 106 (70.7) | 0 | 106 (34.6) |
Strain ID (IPK) | Year | Specimen | Patient Age, Sex | Province * 1 | Phylogenetic Group | ST * 2 | Allelic Profile * 3 | O25b Allele * 4 | fimH Type * 4 | Beta-Lactamase Gene | PMQR * 5 Gene | Antimicrobial Resistance Profile * 6 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
25 | 2014 | wound | Adult, F | LH | A | ST1463 | 6-95-4-222-7-7-7 | ND | ND | blaTEM-1, blaCMY-2 | CAZ, CTX, CXM, FOX, TOB | |
86 | 2014 | blood | Adult, F | LH | A | ST5715 (ST410 SLV) | 6-4-12-1-20-18-73 | ND | ND | blaTEM-1 | qnrB | CAZ, CTX, CXM, ATM, NAL, CIP, NOR, GEN, TOB, AMK, SXT |
110 | 2015 | peritoneal fluid | Adult, M | LH | A | ST167 (ST10 SLV) | 10-11-4-8-8-13-2 | ND | ND | blaCTX-M-15 | aac (6’)-Ib-cr, qnrB | TZP, CTX, CXM, FOX, ATM, NAL, CIP, NOR |
118 | 2015 | wound | Adult, M | SC | A | ST1488 (ST10 SLV) | 10-11-4-8-8-8-73 | ND | ND | blaCTX-M-2 | qnrS | CTX, CXM, TOB, AMK |
119 | 2015 | respiratory tissue | Adult, M | VC | A | ST1488 (ST10 SLV) | 10-11-4-8-8-8-73 | ND | ND | blaCTX-M-15 | aac (6’)-Ib-cr | CTX, CXM, ATM, NAL, CIP, NOR, GEN |
145 | 2015 | urine | Adult, F | HG | A | ST4238 (ST10 SLV) | 10-11-4-8-8-9-2 | ND | ND | blaCTX-M-15, blaTEM-1 | qnrB | CTX, CXM, FEP, ATM, GEN, SXT |
152 | 2015 | wound | Adult, F | CF | A | ST10 (ST10 Cplx) | 10-11-4-8-8-8-2 | ND | ND | blaCTX-M-15 | qnrS | CTX, CXM, ATM |
121 | 2015 | wound | Adult, F | PR | A | ST156 (ST156 Cplx) | 6-29-32-16-11-8-44 | ND | ND | blaCTX-M-15, blaTEM-1 | qnrB | CTX, CXM, FOX, ATM, NAL, CIP, NOR, GEN |
107 | 2015 | urine | Adult, F | LH | A | ST166 DLV | 52-746-55-53-40-422-43 | ND | ND | qnrD | CXM | |
192 | 2016 | respiratory tissue | Adult, M | HG | A | ST1437 | 10-27-5-8-8-1-2 | ND | ND | blaCTX-M-32 | qnrB | CAZ, CTX, FEP, NAL, CIP, GEN, ATM |
204 | 2016 | placenta | Adult, F | MT | A | ST1421 | 8-7-1-8-8-8-2 | ND | ND | blaCTX-M-32 | CAZ, CTX, FEP, NAL, CIP, GEN, ATM | |
266 | 2016 | urine | Adult, F | LH | A | ST410 | 6-4-12-1-20-18-7 | ND | ND | blaTEM-1 | qnrB | FOX, FEP, CIP, NOR, NAL, SXT |
290 | 2016 | urine | Child, F | HG | A | ST735 SLV | 92-11-4-8-8-8-295 | ND | ND | qnrB | CIP, NOR, NAL | |
75 | 2018 | urine | Child, M | LH | A | ST410 DLV | 6-4-281-1-20-12-7 | ND | ND | blaCTX-M-15 | oqxAB | NAL, CIP, NOR, SXT |
543 | 2018 | blood | Adult, M | SC | A | ST410 | 6-4-12-1-20-18-7 | ND | ND | blaCTX-M-15 | qnrS | TZP, CAZ, CTX, FEP, FOF, NAL, CIP, MEM, IPM, GEN, AMK, SXT |
556 | 2018 | blood | Child, M | LH | A | ST410 DLV | 6-4-281-1-20-12-7 | ND | ND | blaCTX-M-15, blaTEM-1 | aac (6’)-Ib-cr, oqxAB | TZP, CAZ, CTX, NAL, CIP, GEN, AMK, SXT |
17 | 2014 | urine | Adult, F | SS | B1 | ST156 | 6-29-32-16-11-8-44 | ND | ND | blaTEM-1 | qnrB | CAZ, SXT |
101 | 2015 | respiratory tissue | Adult, M | LH | B1 | ST641 (ST86 Cplx) | 9-6-33-131-24-8-7 | ND | ND | blaCTX-M-15 | aac (6’)-Ib-cr, qnrB | CTX, CXM, ATM |
182 | 2016 | urine | Adult, M | SC | B1 | ST448 | 6-6-5-16-11-8-7 | ND | ND | blaNDM-1, blaCTX-M-15 | CXM, TZP, CAZ, CTX, FOX, FEP, NAL, CIP, NOR, MEM, IPM | |
184 | 2016 | kidney | Adult, M | VC | B1 | ST448 | 6-6-5-16-11-8-7 | ND | ND | blaNDM-1, blaCTX-M-15 | CXM, CTX, FEP, NAL, CIP, FOF, TOB, ATM, MEM, IPM | |
191 | 2016 | sputum | Adult, M | HG | B1 | ST162 (ST469 Cplx) | 9-65-5-1-9-13-6 | ND | ND | blaCTX-M-15 | CXM, CTX, FEP, NAL, CIP, FOF, TOB, ATM | |
216 | 2016 | wound | Child, F | SC | B1 | ST23 (ST23 Cplx) | 6-4-12-1-20-13-7 | ND | ND | blaCTX-M-15, blaTEM-1 | aac (6’)-Ib-cr | CTX, FEP, NAL, CIP, NOR, GEN, SXT, TIC |
152 | 2018 | urine | Adult, F | LH | B1 | ST224 | 6-4-33-16-11-8-6 | ND | ND | CTX, CIP, NOR, SXT | ||
185 | 2018 | urine | Adult, M | LH | B1 | ST448 | 6-6-5-16-11-8-7 | ND | ND | blaCMY-2 | aac (6’)-Ib-cr | CTX, CIP, NOR, SXT |
232 | 2018 | skin | Adult, F | LH | B1 | ST448 | 6-6-5-16-11-8-7 | ND | ND | blaCTX-M-15 | aac (6’)-Ib-cr | CAZ, CTX, FEP, CIP, MEM, GEN, SXT |
373 | 2018 | skin | Adult, F | LH | B1 | ST448 | 6-6-5-16-11-8-7 | ND | ND | blaCTX-M-15, blaCMY-2 | aac (6’)-Ib-cr | TZP, CAZ, CTX, FOX, FEP, CIP, MEM, AMK, SXT |
544 | 2018 | blood | Adult, M | SC | B1 | ST4173 | 6-6-32-16-9-7-6 | ND | ND | blaCTX-M-15 | qnrS | CAZ, CTX, FEP, FOF, CIP, SXT |
19 | 2014 | blood | Adult, F | GT | B2 | ST5718 (ST131 SLV) | 36-40-9-13-17-11-25 | - | ND | qnrD | SXT | |
45 | 2014 | endotracheal tube | Adult, M | SC | B2 | ST131 | 53-40-47-13-36-28-29 | O25b | fimH-30 | blaCTX-M-27 | aac (6’)-Ib-cr, qnrS | CAZ, CTX, CXM, ATM, CIP, NOR |
68 | 2014 | respiratory tissue | Adult, M | LH | B2 | ST131 | 53-40-47-13-36-28-29 | O25b | fimH-30 | blaCTX-M-27 | CAZ, CTX, CXM, FOX, FEP, ATM, NAL, CIP, NOR, MEM, IPM, CST, TOB, SXT | |
69 | 2014 | respiratory tissue | Adult, M | LH | B2 | ST131 | 53-40-47-13-36-28-29 | - | ND | blaCTX-M-27 | aac (6’)-Ib-cr, qnrB | CAZ, CTX, CXM, FEP, ATM, NAL, CIP, NOR, TOB, SXT |
89 | 2014 | tracheal aspirate | Adult, M | LH | B2 | ST131 | 53-40-47-13-36-28-29 | - | ND | blaCTX-M-15 | aac (6’)-Ib-cr | TZP, CAZ, CTX, ATM, NAL, CIP, NOR, MEM, GEN, TOB, SXT |
104 | 2015 | wound | Adult, M | LH | B2 | ST131 | 53-40-47-13-36-28-29 | - | ND | blaCTX-M-15 | aac (6’)-Ib-cr | CTX, CMX, FEP, ATM, NAL, CIP, NOR, MEM, GEN, TOB, SXT |
117 | 2015 | wound | Adult, F | SC | B2 | ST131 | 53-40-47-13-36-28-29 | O25b | fimH-30 | blaCTX-M-15, blaTEM-1 | aac (6’)-Ib-cr | CTX, CXM, ATM, NAL, CIP, NOR, GEN |
130 | 2015 | urine | Adult, F | VC | B2 | ST5717 (ST131 SLV) | 53-40-47-13-36-28-73 | - | ND | blaCTX-M-15, blaTEM-1 | aac (6’)-Ib-cr | CAZ, CTX, CXM, FEP, ATM, NAL, CIP, NOR, SXT |
151 | 2015 | catheter tip | Adult, M | CF | B2 | ST131 | 53-40-47-13-36-28-29 | O25b | fimH-30 | blaCTX-M-27 | CTX, CXM, FEP, NAL, CIP, NOR, SXT | |
168 | 2015 | urine | Adult, F | HG | B2 | ST5716 (ST131 SLV) | 53-24-47-13-36-28-29 | O25b | fimH-30 | blaCTX-M-15 | aac (6’)-Ib-cr | CTX, CXM, FEP, NAL, CIP, NOR, TOB, SXT |
177 | 2016 | respiratory tissue | Adult, M | VC | B2 | ST131 | 53-40-47-13-36-28-29 | O25b | fimH-30 | blaCTX-M-27 | CAZ, CXM, CTX, FEP, NAL, CIP | |
186 | 2016 | urine | Child, M | CF | B2 | ST131 | 53-40-47-13-36-28-29 | O25b | fimH-30 | blaCTX-M-27 | CXM, CTX, FEP, NAL, CIP | |
203 | 2016 | catheter | Adult, F | MT | B2 | ST131 | 53-40-47-13-36-28-29 | O25b | fimH-30 | blaCTX-M-27 | SXT, CXM, CAZ, CTX, FEP, NAL, CIP | |
222 | 2016 | urine | Adult, F | LH | B2 | ST131 | 53-40-47-13-36-28-29 | O25b | fimH-30 | blaCTX-M-15 | aac (6’)-Ib-cr | CMX, CTX, FOX, FEP, NAL, CIP, NOR, MEM, IPM, TOB, AMK, SXT |
234 | 2016 | wound | Adult, M | LH | B2 | ST131 | 53-40-47-13-36-28-29 | - | ND | blaCTX-M-15, blaTEM-1 | aac (6’)-Ib-cr, qnrB | GEN, CTX, CIP |
283 | 2016 | endotracheal tube | Adult, M | LH | B2 | ST131 | 53-40-47-13-36-28-29 | O25b | fimH-30 | blaCTX-M-27 | CAZ, CTX, NAL, CIP, NOR, SXT | |
288 | 2016 | urine | Child, F | HG | B2 | ST3185 (ST131 SLV) | 92-40-47-13-36-28-29 | O25b | fimH-30 | blaCTX-M-15 | qnrS | CTX, FEP, NAL, CIP |
324 | 2016 | blood | Adult, M | LH | B2 | ST131 | 53-40-47-13-36-28-29 | - | ND | aac (6’)-Ib-cr | CAZ, FEP, NAL, CIP, NOR, MEM, IPM, GEN, SXT, CST | |
37 | 2018 | urine | Adult, F | LH | B2 | ST131 | 53-40-47-13-36-28-29 | O25b | fimH-30 | blaCTX-M-27 | CAZ, ATM, CIP, NOR, SXT | |
149 | 2018 | urine | Adult, M | LH | B2 | ST131 | 53-40-47-13-36-28-29 | O25b | fimH-30 | blaCTX-M-27 | CAZ, CIP, NOR, SXT | |
194 | 2018 | urine | Adult, F | LH | B2 | ST3223 (ST131 SLV) | 10-40-47-13-36-28-29 | O25b | fimH-30 | blaCTX-M-15 | aac (6’)-Ib-cr, qnrB | CAZ, ATM, CIP, NOR |
330 | 2018 | urine | Adult, M | LH | B2 | ST131 | 53-40-47-13-36-28-29 | O25b | fimH-30 | blaCTX-M-15 | Aac (6’)-Ib-cr, qnrB | ATM, CIP, NOR, SXT |
398 | 2018 | wound | Child, F | CF | B2 | ST131 | 53-40-47-13-36-28-29 | O25b | fimH-30 | blaCTX-M-27 | TPZ, CAZ, CTX, FEP, CIP, GEN, AMK, SXT | |
401 | 2018 | endotracheal tube | Child, M | CF | B2 | ST131 | 53-40-47-13-36-28-29 | O25b | fimH-30 | blaCTX-M-15 | CAZ, CTX, FOX, FEP, CIP, MEM, IPM, GEN, AMK, SXT | |
417 | 2018 | skin | Adult, F | LH | B2 | ST131 | 53-40-47-13-36-28-29 | - | ND | blaCTX-M-27 | CAZ, CTX, FEP, CIP, SXT | |
506 | 2018 | skin | Adult, F | LH | B2 | ST131 | 53-40-47-13-36-28-29 | O25b | fimH-30 | blaCTX-M-27 | CAZ, CTX, FEP, CIP, SXT | |
528 | 2018 | sputum | Adult, M | IJ | B2 | ST131 | 53-40-47-13-36-28-29 | - | ND | blaCTX-M-15 | aac (6’)-Ib-cr | CAZ, CTX, FOX, FEP, CIP, MEM, IPM, GEN, AMK, SXT |
602 | 2018 | urine | Adult, F | IJ | B2 | ST131 | 53-40-47-13-36-28-29 | O25b | fimH-30 | blaCTX-M-27, blaTEM-1 | CAZ, NAL, CIP, SXT | |
610 | 2018 | urine | Adult, F | IJ | B2 | ST131 | 53-40-47-13-36-28-29 | - | ND | blaCTX-M-27 | CAZ, NAL, CIP, SXT | |
629 | 2018 | lochia | Adult, F | GT | B2 | ST1193 | 14-14-10-200-17-7-10 | - | ND | blaCTX-M-27 | CAZ, CTX, FEP, CIP, SXT | |
15 | 2014 | wound | Child, F | HG | D | ST5162 (ST405 SLV) | 35-37-29-25-4-5-2 | ND | ND | blaTEM-1 | qnrB | CXM, GEN |
65 | 2014 | respiratory tissue | Adult, F | LH | D | ST405 | 35-37-29-25-4-5-73 | ND | ND | blaCTX-M-15 | TZP, CAZ, CTX, CXM, FOX, FEP, ATM, NAL, CIP, NOR, GEN, TOB, SXT | |
174 | 2015 | cerebrospinal fluid | Adult, M | LH | D | ST405 | 35-37-29-25-4-5-73 | ND | ND | blaCTX-M-55 | aac (6’)-Ib-cr | TZP, CAZ, CTX, FOX, FEP, FOF, GEN, CIP, SXT |
217 | 2016 | urine | Adult, F | LH | D | ST3496 (ST405 DLV) | 35-37-29-382-4-8-73 | ND | ND | blaCTX-M-15 | SXT, CXM, CTX, FOX, FEP, NAL, CIP, NOR, FOF | |
258 | 2016 | urine | Child, F | LH | D | ST405 | 35-37-29-25-4-5-73 | ND | ND | blaCTX-M-14 | CFZ, NAL, CIP, SXT | |
261 | 2016 | cerebrospinal fluid | Adult, F | AT | D | ST349 | 34-36-39-87-67-16-4 | ND | ND | qnrS | SXT | |
274 | 2016 | blood | Adult, M | SC | D | ST648 | 92-4-87-96-78-58-2 | ND | ND | blaCTX-M-15, blaTEM-1 | qnrS | TZP, CAZ, CTX, FOX, FEP, ATM, CIP, NOR, NAL, SXT |
135 | 2017 | urine | Adult, F | SC | D | ST405 | 35-37-29-25-4-5-73 | ND | ND | blaCTX-M-15 | aac (6’)-Ib-cr | TZP, CTX, FOX, FEP, NAL, CIP, MEM, GEN, SXT |
517 | 2017 | lung tissue | Child, M | CF | D | ST405 | 35-37-29-25-4-5-73 | ND | ND | blaCTX-M-15 | CAZ, FOX, FEP, NAL, CIP, MEM, IPM, GEN, TET, SXT | |
148 | 2018 | urine | Adult, F | LH | D | ST69 (ST69 Cplx) | 32-35-27-6-5-5-4 | ND | ND | blaTEM-1 | NAL | |
537 | 2018 | urine | Adult, F | SC | D | ST405 | 35-37-29-25-4-5-73 | ND | ND | blaTEM-1 | NAL, CIP, GEN | |
605 | 2018 | urine | Adult, F | IJ | D | ST69 (ST69 Cplx) | 21-35-27-6-5-5-4 | ND | ND | blaTEM-1 | NAL, SXT | |
622 | 2018 | blood | Adult, F | IJ | D | ST68 | 33-26-2-31-5-16-19 | ND | ND | blaCTX-M-15, blaTEM-1 | TZP, CTX, GEN, AMK, SXT | |
630 | 2018 | blood | Adult, F | IJ | D | ST69 (ST69 Cplx) | 21-35-27-6-5-5-4 | ND | ND | blaTEM-1 | GEN, NAL |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quiñones, D.; Aung, M.S.; Carmona, Y.; González, M.K.; Pereda, N.; Hidalgo, M.; Rivero, M.; Zayas, A.; del Campo, R.; Urushibara, N.; et al. High Prevalence of CTX-M Type Extended-Spectrum Beta-Lactamase Genes and Detection of NDM-1 Carbapenemase Gene in Extraintestinal Pathogenic Escherichia coli in Cuba. Pathogens 2020, 9, 65. https://doi.org/10.3390/pathogens9010065
Quiñones D, Aung MS, Carmona Y, González MK, Pereda N, Hidalgo M, Rivero M, Zayas A, del Campo R, Urushibara N, et al. High Prevalence of CTX-M Type Extended-Spectrum Beta-Lactamase Genes and Detection of NDM-1 Carbapenemase Gene in Extraintestinal Pathogenic Escherichia coli in Cuba. Pathogens. 2020; 9(1):65. https://doi.org/10.3390/pathogens9010065
Chicago/Turabian StyleQuiñones, Dianelys, Meiji Soe Aung, Yenisel Carmona, María Karla González, Niurka Pereda, Mercedes Hidalgo, Mayrelis Rivero, Arnaldo Zayas, Rosa del Campo, Noriko Urushibara, and et al. 2020. "High Prevalence of CTX-M Type Extended-Spectrum Beta-Lactamase Genes and Detection of NDM-1 Carbapenemase Gene in Extraintestinal Pathogenic Escherichia coli in Cuba" Pathogens 9, no. 1: 65. https://doi.org/10.3390/pathogens9010065
APA StyleQuiñones, D., Aung, M. S., Carmona, Y., González, M. K., Pereda, N., Hidalgo, M., Rivero, M., Zayas, A., del Campo, R., Urushibara, N., & Kobayashi, N. (2020). High Prevalence of CTX-M Type Extended-Spectrum Beta-Lactamase Genes and Detection of NDM-1 Carbapenemase Gene in Extraintestinal Pathogenic Escherichia coli in Cuba. Pathogens, 9(1), 65. https://doi.org/10.3390/pathogens9010065