Strategies for Assessing Arbovirus Genetic Variability in Vectors and/or Mammals
Abstract
:1. Introduction
1.1. Vector-Borne Diseases in the World
1.2. Ticks and Tick-Borne Disease
2. Arboviruses
2.1. Viruses Quasi-Species
2.2. Genetic Variability Studies of Insect-Borne Viruses
2.2.1. In Vitro Studies
2.2.2. In Vivo Studies
2.3. Genetic Variability of Tick-Borne Viruses
3. Arbovirus–Vector as a Complex System
3.1. Co-Evolution between Arboviruses and Arthropod Vectors
3.2. Role of Arthropods in Natural Survival and Spread of Arboviruses
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. A Global Brief on Vector-Borne Diseases; World Health Organization: Geneva, Switzerland, 2014; Volume 11. [Google Scholar]
- World Health Organization. World Malaria Report; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Rushton, J.; Lyons, N. Economic impact of Bluetongue: A review of the effects on production. Vet. Ital. 2015, 51, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Gould, E.A.; Pettersson, J.; Higgs, S.; Charrel, R.; de Lamballerie, X. Emerging arboviruses: Why today? One Health 2017, 4, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Gould, E.A.; Higgs, S. Impact of climate change and other factors on emerging arbovirus diseases. Trans. R. Soc. Trop. Med. Hyg. 2009, 103, 109–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnet, S.; Huber, K.; Joncour, G.; René-Martellet, M.; Stachurski, F.; Zenner, L. Biologie des tiques. In Tiques et Maladies à Tiques; IRD: Marseille, France, 2015; pp. 53–84. [Google Scholar]
- Jongejan, F.; Uilenberg, G. The Global Importance of ticks. Parasitology 2004, 129, 3–14. [Google Scholar] [CrossRef]
- Bonnet, S.; George, J.-C.; Boulanger, N. L’interface tique-hôte et la transmission des pathogènes. In Tiques et Maladies à Tiques; IRD: Marseille, France, 2015; pp. 165–191. [Google Scholar]
- Moutailler, S.; George, J.-C.; Hansmann, Y.; Degeilh, B.; Joncour, G.; Jourdain, E.; Malandrin, L.; Umhang, G.; Vayssier-Taussat, M.; Vial, L.; et al. Principales maladies transmises par les tiques: Épidémiologie, clinique et diagnostic. In Tiques et Maladies à Tiques; IRD: Marseille, France, 2015; pp. 193–238. [Google Scholar]
- Labuda, M.; Nuttall, P.A. Tick-Borne Viruses. Parasitology 2004, 221–245. [Google Scholar] [CrossRef]
- Shi, J.; Hu, Z.; Deng, F.; Shen, S. Tick-Borne Viruses. Virol. Sin. 2018, 33, 21–43. [Google Scholar] [CrossRef] [Green Version]
- Mansfield, K.L.; Jizhou, L.; Phipps, L.P.; Johnson, N. Emerging Tick-Borne Viruses in the Twenty-First Century. Front. Cell. Infect. Microbiol. 2017, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CDC Tickborne Diseases Abroad. Available online: https://www.cdc.gov/ticks/diseases/abroad.html (accessed on 11 July 2019).
- Mandl, C.W. Steps of the tick-borne encephalitis virus replication cycle that affect neuropathogenesis. Virus Res. 2005, 111, 161–174. [Google Scholar] [CrossRef]
- Valarcher, J.F.; Hägglund, S.; Juremalm, M.; Blomqvist, G. Tick-borne encephalitis. Rev. Sci. Tech. Off. Int. Epiz. 2015, 34, 453–466. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, R. Frühsommermeningoenzephalitis. Nervenarzt 2016, 87, 667–680. [Google Scholar] [CrossRef] [PubMed]
- Hermance, M.E.; Thangamani, S. Powassan Virus: An Emerging Arbovirus of Public Health Concern in North America. Vector-Borne Zoonotic Dis. 2017, 17, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Krow-Lucal, E.R.; Lindsey, N.P.; Fischer, M.; Hills, S.L. Powassan Virus Disease in the United States, 2006–2016. Vector-Borne Zoonotic Dis. 2018, 18, 286–290. [Google Scholar] [CrossRef] [Green Version]
- Růžek, D.; Yakimenko, V.V.; Karan, L.S.; Tkachev, S.E. Omsk haemorrhagic fever. Lancet 2010, 376, 2104–2113. [Google Scholar] [CrossRef]
- Wang, Z.-D.; Wang, B.; Wei, F.; Han, S.-Z. A New Segmented Virus Associated with Human Febrile Illness in China. N. Engl. J. Med. 2019, 380, 2116–2125. [Google Scholar] [CrossRef] [PubMed]
- Kuivanen, S.; Levanov, L.; Kareinen, L.; Sironen, T.; Jääskeläinen, A.J.; Plyusnin, I.; Zakham, F.; Emmerich, P.; Schmidt-Chanasit, J.; Hepojoki, J.; et al. Detection of novel tick-borne pathogen, Alongshan virus, in Ixodes ricinus ticks, south-eastern Finland, 2019. Eurosurveillance 2019, 24, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kholodilov, I.S.; Litov, A.G.; Klimentov, A.S.; Belova, O.A.; Polienko, A.E.; Nikitin, N.A.; Shchetinin, A.M.; Ivannikova, A.Y.; Bell-Sakyi, L.; Yakovlev, A.S.; et al. Isolation and characterisation of Alongshan virus in Russia. Viruses 2020, 12, 362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attoui, H.; Jaafar, F.M.; De Micco, P.; De Lamballerie, X. Coltiviruses and Seadornaviruses in North America, Europe, and Asia. Emerg. Infect. Dis. 2005, 11, 1673–1679. [Google Scholar] [CrossRef]
- Marfin, A.A.; Staples, J.E.; Stallones, L.; Brackney, M.M.; Keefe, T.; Iv, W.C.B.; Campbell, G.L. Epidemiology of Colorado Tick Fever in Montana, Utah, and Wyoming, 1995–2003. Vector Borne Zoonotic Dis. 2010, 10, 381–385. [Google Scholar] [CrossRef]
- Savage, H.M.; Godsey, M.S.; Panella, N.A.; Burkhalter, K.L.; Manford, J.; Trevino-Garrison, I.C.; Straily, A.; Wilson, S.; Bowen, J.; Raghavan, R.K. Surveillance for tick-borne viruses near the location of a fatal human case of bourbon virus (Family Orthomyxoviridae: Genus Thogotovirus) in Eastern Kansas, 2015. J. Med. Entomol. 2018, 55, 701–705. [Google Scholar] [CrossRef]
- Savage, H.M.; Burkhalter, K.L.; Godsey, M.S.; Panella, N.A.; Ashley, D.C.; Nicholson, W.L.; Lambert, A.J. Bourbon virus in field-collected ticks, Missouri, USA. Emerg. Infect. Dis. 2017, 23, 2017–2022. [Google Scholar] [CrossRef] [PubMed]
- Brault, A.C.; Savage, H.M.; Duggal, N.K.; Eisen, R.J.; Staples, J.E. Heartland virus epidemiology, vector association, and disease potential. Viruses 2018, 10, 498. [Google Scholar] [CrossRef] [Green Version]
- Marczinke, B.I.; Nichol, S.T. Nairobi sheep disease virus, an important tick-borne pathogen of sheep and goats in Africa, is also present in Asia. Virology 2002, 303, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Davies, F.G.; Casals, J.; Jesset, D.M.; Ochieng, P. The serological relationships of Nairobi sheep disease virus. J. Comp. Pathol. 1978, 88, 519–523. [Google Scholar] [CrossRef]
- Hawman, D.W.; Feldmann, H. Recent advances in understanding Crimean–Congo hemorrhagic fever virus. F1000Research 2018, 7, 1715. [Google Scholar] [CrossRef] [Green Version]
- Xia, H.; Beck, A.S.; Gargili, A.; Forrester, N.; Barrett, A.D.T.; Bente, D.A. Transstadial Transmission and Long-term Association of Crimean-Congo Hemorrhagic Fever Virus in Ticks Shapes Genome Plasticity. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Shayan, S.; Bokaean, M.; Ranjvar Shahrivar, M.; Chinikar, S. Crimean-Congo hemorrhagic fever. Lab Med. 2015, 46, 180–189. [Google Scholar] [CrossRef] [Green Version]
- Galindo, I.; Alonso, C. African swine fever virus: A review. Viruses 2017, 9, 103. [Google Scholar] [CrossRef] [Green Version]
- Kuno, G.; Mackenzie, J.S.; Junglen, S.; Hubálek, Z.; Plyusnin, A.; Gubler, D.J. Vertebrate reservoirs of arboviruses: Myth, synonym of amplifier, or reality? Viruses 2017, 9, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, A.J.; Mellor, P.S. Bluetongue in Europe: Past, present and future. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2669–2681. [Google Scholar] [CrossRef]
- Drake, J.W. Rates of spontaneous mutation among RNA viruses. Proc. Natl. Acad. Sci. USA 2006, 90, 4171–4175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domingo, E.; Perales, C. Quasispecies and virus. Eur. Biophys. J. 2018, 47, 443–457. [Google Scholar] [CrossRef]
- Domingo, E.; Sheldon, J.; Perales, C. Viral Quasispecies Evolution. Microbiol. Mol. Biol. Rev. 2012, 76, 159–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forrester, N.L.; Guerbois, M.; Seymour, R.L.; Spratt, H.; Weaver, S.C. Vector-Borne Transmission Imposes a Severe Bottleneck on an RNA Virus Population. PLoS Pathog. 2012, 8. [Google Scholar] [CrossRef]
- Forrester, N.L.; Coffey, L.L.; Weaver, S.C. Arboviral bottlenecks and challenges to maintaining diversity and fitness during mosquito transmission. Viruses 2014, 6, 3991–4004. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Roossinck, M.J. Genetic Bottlenecks Reduce Population Variation in an Experimental RNA Virus Population. J. Virol. 2004, 78, 10582–10587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manrubia, S.C.; Escarmís, C.; Domingo, E.; Lázaro, E. High mutation rates, bottlenecks, and robustness of RNA viral quasispecies. Gene 2005, 347, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Kurosu, T. Quasispecies of dengue virus. Trop. Med. Health 2011, 39, S29–S36. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, P.K.; Vashishtha, M.; Kielian, M. Biochemical Consequences of a Mutation That Controls the Cholesterol Dependence of Semliki Forest Virus Fusion. J. Virol. 2000, 74, 1623–1631. [Google Scholar] [CrossRef] [Green Version]
- Moutailler, S.; Roche, B.; Thiberge, J.M.; Caro, V.; Rougeon, F.; Failloux, A.B. Host alternation is necessary to maintain the genome stability of Rift Valley fever virus. PLoS Negl. Trop. Dis. 2011, 5. [Google Scholar] [CrossRef] [Green Version]
- Weaver, S.C.; Brault, A.C.; Kang, W.; Holland, J.J. Genetic and Fitness Changes Accompanying Adaptation of an Arbovirus to Vertebrate and Invertebrate Cells. J. Virol. 1999, 73, 4316–4326. [Google Scholar] [CrossRef] [Green Version]
- Greene, I.P.; Wang, E.; Deardorff, E.R.; Milleron, R.; Domingo, E.; Weaver, S.C. Effect of Alternating Passage on Adaptation of Sindbis Virus to Vertebrate and Invertebrate Cells. J. Virol. 2005, 79, 14253–14260. [Google Scholar] [CrossRef] [Green Version]
- Coffey, L.L.; Vasilakis, N.; Brault, A.C.; Powers, A.M.; Tripet, F.; Weaver, S.C. Arbovirus evolution in vivo is constrained by host alternation. Proc. Natl. Acad. Sci. USA 2008, 105, 6970–6975. [Google Scholar] [CrossRef] [Green Version]
- Ciota, A.T.; Lovelace, A.O.; Ngo, K.A.; Le, A.N.; Maffei, J.G.; Franke, M.A.; Payne, A.F.; Jones, S.A.; Kauffman, E.B.; Kramer, L.D. Cell-specific adaptation of two flaviviruses following serial passage in mosquito cell culture. Virology 2007, 357, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Setoh, Y.X.; Amarilla, A.A.; Peng, N.Y.G.; Griffiths, R.E.; Carrera, J.; Freney, M.E.; Khromyk, A.A. Determinants of Zika virus host tropism uncovered by deep mutational scanning. Nat. Microbiol. 2019, 4, 876–887. [Google Scholar] [CrossRef]
- Ngo, K.A.; Rose, J.T.; Kramer, L.D.; Ciota, A.T. Adaptation of Rabensburg virus (RBGV) to vertebrate hosts by experimental evolution. Virology 2019, 528, 30–36. [Google Scholar] [CrossRef]
- Coffey, L.L.; Vignuzzi, M. Host Alternation of Chikungunya Virus Increases Fitness while Restricting Population Diversity and Adaptability to Novel Selective Pressures. J. Virol. 2011, 85, 1025–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zárate, S.; Novella, I.S. Vesicular Stomatitis Virus Evolution during Alternation between Persistent Infection in Insect Cells and Acute Infection in Mammalian Cells Is Dominated by the Persistence Phase. J. Virol. 2004, 78, 12236–12242. [Google Scholar] [CrossRef] [Green Version]
- Cooper, L.A.; Scott, T.W. Differential evolution of eastern equine encephalitis virus populations in response to host cell type. Genetics 2001, 157, 1403–1412. [Google Scholar]
- Alexander, R.A.; Haig, D.A.; Adelaar, T.F. The Attenuation of Bluetongue Virus by Serial Passage through Fertile Eggs. Onderstepoort J. Vet. Sci. Anim. Ind. 1947, 21, 231–241. [Google Scholar]
- Neitz, W.O. Immunological studies on bluetongue in sheep. Onderstepoort J. Vet. Res. 1948, 23, 93–136. [Google Scholar]
- Franchi, P.; Mercante, M.T.; Ronchi, G.F.; Armillotta, G.; Ulisse, S.; Molini, U.; Di Ventura, M.; Lelli, R.; Savini, G.; Pini, A. Laboratory tests for evaluating the level of attenuation of bluetongue virus. J. Virol. Methods 2008, 153, 263–265. [Google Scholar] [CrossRef]
- Vasilakis, N.; Deardorff, E.R.; Kenney, J.L.; Rossi, S.L.; Hanley, K.A.; Weaver, S.C. Mosquitoes put the brake on arbovirus evolution: Experimental evolution reveals slower mutation accumulation in mosquito than vertebrate cells. PLoS Pathog. 2009, 5. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Hsieh, S.; Yueh, Y.; Lin, T.; Chao, D.; Chen, W.; King, C.; Wang, W. Study of sequence variation of dengue type 3 virus in naturally infected mosquitoes and human hosts: Implications for transmission and evolution. J. Virol. 2004, 78, 12717–12721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arias-Goeta, C.; Moutailler, S.; Mousson, L.; Zouache, K.; Thiberge, J.M.; Caro, V.; Rougeon, F.; Failloux, A.B. Chikungunya virus adaptation to a mosquito vector correlates with only few point mutations in the viral envelope glycoprotein. Infect. Genet. Evol. 2014, 24, 116–126. [Google Scholar] [CrossRef]
- Ciota, A.T.; Ngo, K.A.; Lovelace, A.O.; Payne, A.F.; Zhou, Y.; Shi, P.; Kramer, L.D. Role of the mutant spectrum in adaptation and replication of West Nile virus. J. Gen. Virol. 2007, 88, 865–874. [Google Scholar] [CrossRef]
- Kopanke, J.H.; Lee, J.S.; Stenglein, M.D.; Mayo, C.E. The genetic diversification of a single bluetongue virus strain using an in vitro model of alternating-host transmission. Viruses 2020, 12, 1038. [Google Scholar] [CrossRef]
- Lean, F.Z.X.; Neave, M.J.; White, J.R.; Payne, J.; Eastwood, T.; Bergfeld, J.; Di Rubbo, A.; Stevens, V.; Davies, K.R.; Devlin, J.; et al. Attenuation of bluetongue virus (BTV) in an in ovo model is related to the changes of viral genetic diversity of cell-culture passaged BTV. Viruses 2019, 11, 481. [Google Scholar] [CrossRef] [Green Version]
- Vignuzzi, M.; López, C.B. Defective viral genomes are key drivers of the virus–host interaction. Nat. Microbiol. 2019, 4, 1075–1087. [Google Scholar] [CrossRef]
- Spindler, K.; Horodyski, F.; Holland, J.J. High multiplicities of infection favor rapid and random evolution of vesicular stomatitis virus. Virology 1982, 119, 96–108. [Google Scholar] [CrossRef]
- Taylor, W.P.; Marshall, I.D. Adaptation studies with Ross River virus: Laboratory mice and cell cultures. J. Gen. Virol. 1975, 28, 59–72. [Google Scholar] [CrossRef]
- Attoui, H.; Jaafar, F.M.; Belhouchet, M.; Tao, S.; Chen, B.; Liang, G.; Tesh, R.B.; de Micco, P.; de Lamballerie, X. Liao ning virus, a new Chinese seadornavirus that replicates in transformed and embryonic mammalian cells. J. Gen. Virol. 2006, 87, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Romanova, L.I.; Gmyl, A.P.; Dzhivanian, T.I.; Bakhmutov, D.V.; Lukashev, A.N.; Gmyl, L.V.; Rumyantsev, A.A.; Burenkova, L.A.; Lashkevich, V.A.; Karganova, G.G. Microevolution of tick-borne encephalitis virus in course of host alternation. Virology 2007, 362, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Mitzel, D.N.; Best, S.M.; Masnick, M.F.; Porcella, S.F.; Wolfinbarger, J.B.; Bloom, M.E. Identification of genetic determinants of a tick-borne flavivirus associated with host-specific adaptation and pathogenicity. Virology 2008, 381, 268–276. [Google Scholar] [CrossRef] [Green Version]
- Mohd Jaafar, F.; Belhouchet, M.; Belaganahalli, M.; Tesh, R.B.; Mertens, P.P.C.; Attoui, H. Full-genome characterisation of orungo, lebombo and changuinola viruses provides evidence for co-evolution of orbiviruses with their arthropod vectors. PLoS ONE 2014, 9, e86392. [Google Scholar] [CrossRef]
- Belaganahalli, M.N.; Maan, S.; Maan, N.S.; Brownlie, J.; Tesh, R.; Attoui, H.; Mertens, P.P.C. Genetic characterization of the tick-borne orbiviruses. Viruses 2015, 7, 2185–2209. [Google Scholar] [CrossRef]
- Gould, E.A.; de Lamballerie, X.; Zanotto, P.; Holmes, E.C. Origins, evolution, and vector/host coadaptations within the genus Flavivirus. Adv. Virus Res. 2003, 59, 277–314. [Google Scholar]
- Cook, S.; Holmes, E.C. A multigene analysis of the phylogenetic relationships among the flaviviruses (Family: Flaviviridae) and the evolution of vector transmission. Arch. Virol. 2006, 151, 309–325. [Google Scholar] [CrossRef] [Green Version]
- Billoir, F.; De Chesse, R.; Tolou, H.; De Micco, P.; Gould, E.A.; De Lamballerie, X. Phylogeny of the genus Flavivirus using complete coding sequences of arthropod-borne viruses and viruses with no known vector. J. Gen. Virol. 2000, 81, 781–790. [Google Scholar] [CrossRef]
- Blitvich, B.J.; Firth, A.E. A review of flaviviruses that have no known arthropod vector. Viruses 2017, 9, 154. [Google Scholar] [CrossRef] [Green Version]
- Bell-Sakyi, L.; Weisheit, S.; Rückert, C.; Barry, G.; Fazakerley, J.; Fragkoudis, R. Microscopic visualisation of zoonotic arbovirus replication in tick cell and organ cultures using Semliki Forest virus reporter systems. Vet. Sci. 2016, 3, 28. [Google Scholar] [CrossRef]
- Lawrie, C.H.; Uzcátegui, N.Y.; Armesto, M.; Bell-Sakyi, L.; Gould, E.A. Susceptibility of mosquito and tick cell lines to infection with various flaviviruses. Med. Vet. Entomol. 2004, 18, 268–274. [Google Scholar] [CrossRef]
- Singh, K.R. Growth of arboviruses in arthropod tissue culture. Adv. Virus Res. 1972, 17, 187–206. [Google Scholar] [CrossRef]
- Flores, F.S.; Zanluca, C.; Guglielmone, A.A.; Duarte dos Santos, C.N.; Labruna, M.B.; Diaz, A. Vector competence for West Nile virus and St. Louis encephalitis virus (flavivirus) of three tick species of the genus Amblyomma (Acari: Ixodidae). Am. J. Trop. Med. Hyg. 2019, 100, 1230–1235. [Google Scholar] [CrossRef] [Green Version]
- Yunker, C.E.; Cory, J. Colorado Tick Fever Virus: Growth in a Mosquito Cell Line. J. Virol. 1969, 3, 631–632. [Google Scholar] [CrossRef] [Green Version]
- Attoui, H. Etude biologique et moleculaire du genre Coltivirus. Ph.D. Thesis, Université de la Méditerranée, Marseille, France, 1998. [Google Scholar]
- Gargili, A.; Estrada-Peña, A.; Spengler, J.R.; Lukashev, A.; Nuttall, P.A.; Bente, D.A. The role of ticks in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus: A review of published field and laboratory studies. Antiviral Res. 2017, 144, 93–119. [Google Scholar] [CrossRef]
- Rodhain, F. Le fonctionnement des systèmes virus-vecteurs. Ann. Soc. Belg. Med. Trop. 1991, 71, 189–199. [Google Scholar]
- Nuttall, P.A.; Jones, L.D.; Labuda, M.; Kaufman, W.R. Adaptations of arboviruses to ticks. J. Med. Entomol. 1994, 31, 1–9. [Google Scholar] [CrossRef]
- Davies, C.R.; Jones, L.D.; Green, B.M.; Nuttall, P.A. In vivo reassortment of Thogoto virus (a tick-borne influenza-like virus) following oral infection of Rhipicephalus appendiculatus ticks. J. Gen. Virol. 1987, 68, 2331–2338. [Google Scholar] [CrossRef]
- Kingsolver, M.B.; Huang, Z.; Hardy, R.W. Insect antiviral innate immunity: Pathways, effectors, and connections. J. Mol. Biol. 2013, 425, 4921–4936. [Google Scholar] [CrossRef] [Green Version]
- Campbell-Lendrum, D.; Manga, L.; Bagayoko, M.; Sommerfeld, J. Climate change and vector-borne diseases: What are the implications for public health research and policy? Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tsetsarkin, K.A.; Vanlandingham, D.L.; McGee, C.E.; Higgs, S. A single mutation in Chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 2007, 3, 1895–1906. [Google Scholar] [CrossRef] [PubMed]
- Tsetsarkin, K.A.; Weaver, S.C. Sequential adaptive mutations enhance efficient vector switching by chikungunya virus and its epidemic emergence. PLoS Pathog. 2011, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caminade, C.; Turner, J.; Metelmann, S.; Hesson, J.C.; Blagrove, M.S.C.; Solomon, T.; Morse, A.P.; Baylis, M. Global risk model for vector-borne transmission of Zika virus reveals the role of El Niño 2015. Proc. Natl. Acad. Sci. USA 2017, 114, 119–124. [Google Scholar] [CrossRef] [Green Version]
Order | Family | Genus | Genome |
---|---|---|---|
Asfuvirales | Asfarviridae | Asfivirus | dsDNA |
Articulavirales | Orthomyxoviridae | Thogotovirus | 6 ssRNA genome segments 8 ssRNA genome segments |
Quaranjavirus | |||
Bunyavirales | Nairoviridae | Orthonairovirus | 3 ssRNA genome segments |
Peribunyaviridae | Orthobunyavirus | ||
Phenuiviridae | Phlebovirus | ||
Mononegavirales | Nyamiviridae | Nyavirus | Non-segmented linear ssRNA |
Rhabdoviridae | Ledantevirus | ||
Vesiculovirus | |||
Amarillovirales | Flaviviridae | Flavivirus | Linear ssRNA |
Reovirales | Reoviridae | Orbivirus | 10 dsRNA genome segments |
Coltivirus | 12 dsRNA genome segments |
Virus | Family | Genus | Vector | Vertebrate Reservoir | Geographical Distribution | Disease | References |
---|---|---|---|---|---|---|---|
Tick-borne encephalitis virus (TBEV) | Flaviviridae | Flavivirus | I. ricinus, I. persulcatus | Bank vole | Europe Asia | Fever to encephalitis | [14,15,16] |
Powassan virus (POWV) | I. scapularis, I. cookie | Rodents | North America | Neurological disorders | [17,18] | ||
Omsk haemorrhagic fever virus (OHFV) | D. reticulatus, D. marginatus and I. persulcatus | Rodents | Western Siberia in Russia | Haemorrhagic fever | [19] | ||
Alongshan virus (ALSV) | Unclassified flavi-like virus | I. ricinus, I. persulcatus | ? | China Finland | Fever | [20,21,22] | |
Colorado tick fever virus (CTFV) | Reoviridae | Coltivirus | Dermacentor, Ixodes, Haemaphysalis and Otobius | Rodents and deer species | North America | Fever to encephalitis | [23,24] |
Bourbon virus (BRBV) | Orthomyxoviridae | Thogotovirus | Amblyomma americanum | ? | North America | Nausea, weakness, pains and leukopenia, lymphopenia, thrombocytopenia, hyponatremia | [25,26] |
Heartland virus (HRTV) | Phenuiviridae | Phlebovirus | Amblyomma americanum | ? | North America | Fever, fatigue, anorexia and thrombocytopenia | [27] |
Severe fever with thrombocytopenia syndrome virus (SFTSV) | Haemaphysalis longicornis and Boophilus microplus | ? | Asia | Fever, fatigue, anorexia and thrombocytopenia | [27] | ||
Nairobi sheep disease virus (NSDV) | Nairoviridae | Orthonairovirus | Rhipicephalus appendiculatus, Haemaphysalis intermedia | Sheep and goats | Africa, Asia | Fever and haemorrhagic gastroenteritis, abortion, and high mortality | [28,29] |
Crimean-Congo haemorrhagic fever virus (CCHFV) | Hyalomma spp. | Cattle, goats, sheep and hares? | Africa, Southern and Eastern Europe and Asia | Haemorrhagic fever | [30,31,32] | ||
African swine fever virus (ASFV) | Asfarviridae | Asfivirus | Ornithodoros spp. | Swine | Europe Asia | In animal: fever, depression, anorexia, abortion in gestating female | [33] |
Virus | In Vitro, In Vitro/In Vivo, In Vivo | Findings | References | |
---|---|---|---|---|
WNV | Flavivirus | in vitro | Specialisation to a single cell type in serially passaged virus Increased genetic variability after serial passages in mosquito cells as compared to mammalian-derived strain | [49,61] |
SLEV | in vitro | Specialisation to a single cell type in serially passaged virus | [49] | |
RBGV | in vitro | Adaptation to cell culture in mammalian cells at high temperature Role of NS3 in host range | [51] | |
DENV | in vitro | Lower number of substitutions in mosquito-cell serially passaged virus as compared to alternated virus | [58,59] | |
ZIKV | in vitro | Substitutions in envelop protein that give benefits for replication in a cell type | [50] | |
TBEV | in vivo | Tick-adapted strain less virulent in mice than the parental strain Mutations in E, prM, NS2A ans NS4A—a role of E protein in fitness | [68] | |
LGVT | In vitro | Specialisation to a single cell type in serially passaged virus Mutations in E, prM, NS3, NS4A and NS4B—a role of these proteins in host adaptation | [69] | |
EEEV | Alphavirus | in vitro | Specialisation to a single cell type in serially passaged virusSame characteristics as parental strain in alternated passages | [46,54] |
VEEV | in vitro | Specialisation to a single cell type in serially passaged virus—Increased binding efficiency to mammalian cells | [48] | |
in vivo | Host specialisation following serial passages in mammals | |||
SINV | in vitro | Faster growth kinetics in single cell type | [47] | |
CHIKV | in vitro | Specialisation to a single cell type of serially passaged virus Same characteristics as parental strain in alternated passages Fewer amino acid substitutions in invertebrate cells than in mammalian cells and alternation of cells | [52,60] | |
RRV | in vitro | Decreased virulence following serial passages | [66] | |
in vivo | Increased virulence following serial passages | |||
RVFV | Phlebovirus | in vitro | Specialisation to a single cell type and decreased virulence following serial passages Faster growth kinetics in the same cell type | [45] |
in vitro/in vivo | Mammalian-cell adapted strain less virulent in mice than parental and alternated strains | |||
VSV | Rhabdovirus | in vitro | Decreased virulence following serial passages Decreased fitness in serial passages in arthropod cells and alternating passages Increased fitness following serial passages in mammalian cells | [53] |
BTV | Orbivirus | in vitro | Decreased virulence in serially passaged virus Increased genetic diversity in arthropod cells | [55,57,63] |
CCHFV | Orthonairovirus | in vivo | Substitutions in viral genome observed only in tick samples Genetic variability higher in ticks than in mice | [31] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migné, C.V.; Moutailler, S.; Attoui, H. Strategies for Assessing Arbovirus Genetic Variability in Vectors and/or Mammals. Pathogens 2020, 9, 915. https://doi.org/10.3390/pathogens9110915
Migné CV, Moutailler S, Attoui H. Strategies for Assessing Arbovirus Genetic Variability in Vectors and/or Mammals. Pathogens. 2020; 9(11):915. https://doi.org/10.3390/pathogens9110915
Chicago/Turabian StyleMigné, Camille Victoire, Sara Moutailler, and Houssam Attoui. 2020. "Strategies for Assessing Arbovirus Genetic Variability in Vectors and/or Mammals" Pathogens 9, no. 11: 915. https://doi.org/10.3390/pathogens9110915
APA StyleMigné, C. V., Moutailler, S., & Attoui, H. (2020). Strategies for Assessing Arbovirus Genetic Variability in Vectors and/or Mammals. Pathogens, 9(11), 915. https://doi.org/10.3390/pathogens9110915