A Francisella tularensis Chitinase Contributes to Bacterial Persistence and Replication in Two Major U.S. Tick Vectors
Abstract
:1. Introduction
2. Results
2.1. Low Dose Ft Infects, Persists, and Replicates in Dv and Aa Ticks But Is Cleared from Hl Ticks
2.2. High Dose (107 CFU) Ft Infects, Persists, and Replicates in Dv and Aa Ticks But Is Cleared from Hl Ticks
2.3. Ft Is Efficiently Transmitted by Infected Dv and Aa Ticks to Naïve Mice
2.4. FTL1793 Exhibits Chitinase Activity
2.5. Ft FTL1793, a Putative Chitinase, Is Required for Ft Persistence in Ticks
3. Discussion
4. Materials and Methods
4.1. Bacterial Stains and Culture Conditions
4.2. Mouse–Tick–F. tularensis Infection and Transmission
4.3. Bioinformatic Predictions
4.4. Generation of F. tularensis Gene Deletion Mutant
4.5. Intranasal Mouse Infections
4.6. Expression and Purification of Recombinant FTL1793 Protein
4.7. Immunoblotting
4.8. Enzymatic Assays for FTL1793 Activity
4.9. Statistics
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dennis, D.T.; Inglesby, T.V.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Friedlander, A.M.; Hauer, J.; Layton, M.; et al. Tularemia as a biological weapon: Medical and public health management. JAMA 2001, 285, 2763–2773. [Google Scholar] [CrossRef] [PubMed]
- Keim, P.; Johansson, A.; Wagner, D.M. Molecular epidemiology, evolution, and ecology of Francisella. Ann. N. Y. Acad. Sci. 2007, 1105, 30–66. [Google Scholar] [CrossRef] [PubMed]
- Kugeler, K.J.; Mead, P.S.; Janusz, A.M.; Staples, J.E.; Kubota, K.A.; Chalcraft, L.G.; Petersen, J.M. Molecular Epidemiology of Francisella tularensis in the United States. Clin. Infect. Dis. 2009, 48, 863–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyston, P.C.; Quarry, J.E. Tularemia vaccine: Past, present and future. Antonie Van Leeuwenhoek 2005, 87, 277–281. [Google Scholar] [CrossRef]
- Ellis, J.; Oyston, P.C.; Green, M.; Titball, R.W. Tularemia. Clin. Microbiol. Rev. 2002, 15, 631–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zellner, B.; Huntley, J.F. Ticks and Tularemia: Do We Know What We Don’t Know? Front. Cell Infect. Microbiol. 2019, 9, 146. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, R.; Lindsey, N.P.; Fischer, M.; Gregory, C.J.; Hinckley, A.F.; Mead, P.S.; Paz-Bailey, G.; Waterman, S.H.; Drexler, N.A.; Kersh, G.J.; et al. Vital Signs: Trends in Reported Vectorborne Disease Cases—United States and Territories, 2004–2016. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 496–501. [Google Scholar] [CrossRef] [Green Version]
- Molaei, G.; Little, E.A.H.; Williams, S.C.; Stafford, K.C. Bracing for the Worst—Range Expansion of the Lone Star Tick in the Northeastern United States. N. Engl. J. Med. 2019, 381, 2189–2192. [Google Scholar] [CrossRef]
- Sagurova, I.; Ludwig, A.; Ogden, N.H.; Pelcat, Y.; Dueymes, G.; Gachon, P. Predicted Northward Expansion of the Geographic Range of the Tick Vector Amblyomma americanum in North America under Future Climate Conditions. Environ. Health Perspect. 2019, 127, 107014. [Google Scholar] [CrossRef] [Green Version]
- Pedati, C.; House, J.; Hancock-Allen, J.; Colton, L.; Bryan, K.; Ortbahn, D.; Kightlinger, L.; Kugeler, K.; Petersen, J.; Mead, P.; et al. Notes from the Field: Increase in Human Cases of Tularemia--Colorado, Nebraska, South Dakota, and Wyoming, January-September 2015. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 1317–1318. [Google Scholar] [CrossRef] [Green Version]
- Eisen, L. A call for renewed research on tick-borne Francisella tularensis in the Arkansas-Missouri primary national focus of tularemia in humans. J. Med. Entomol. 2007, 44, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Mani, R.J.; Metcalf, J.A.; Clinkenbeard, K.D. Amblyomma americanum as a Bridging Vector for Human Infection with Francisella tularensis. PLoS ONE 2015, 10, e0130513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, R.R.; Spencer, R.R.; Francis, E. Tularæmia: XI. Tularæmia Infection in Ticks of the Species Dermacentor Andersoni Stiles in the Bitterroot Valley, Mont. Public Health Rep. 1924, 39. [Google Scholar] [CrossRef]
- Parker, R.R.; Brooks, C.S.; Marsh, H. The Occurrence of Bacterium tularense in the Wood Tick, Dermacentor occidentalis, in California. Public Health Rep. 1929, 44. [Google Scholar] [CrossRef]
- Goethert, H.K.; Shani, I.; Telford, S.R., 3rd. Genotypic diversity of Francisella tularensis infecting Dermacentor variabilis ticks on Martha’s Vineyard, Massachusetts. J. Clin. Microbiol. 2004, 42, 4968–4973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goethert, H.K.; Telford, S.R., 3rd. Quantum of infection of Francisella tularensis tularensis in host-seeking Dermacentor variabilis. Ticks Tick-Borne Dis. 2010, 1, 66–68. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Tularemia—United States, 2001–2010. MMWR Morb. Mortal. Wkly. Rep. 2013, 62, 963–966. [Google Scholar]
- Reese, S.M.; Petersen, J.M.; Sheldon, S.W.; Dolan, M.C.; Dietrich, G.; Piesman, J.; Eisen, R.J. Transmission efficiency of Francisella tularensis by adult american dog ticks (Acari: Ixodidae). J. Med. Entomol. 2011, 48, 884–890. [Google Scholar] [CrossRef] [Green Version]
- Coburn, J.; Maier, T.; Casey, M.; Padmore, L.; Sato, H.; Frank, D.W. Reproducible and quantitative model of infection of Dermacentor variabilis with the live vaccine strain of Francisella tularensis. Appl. Environ. Microbiol. 2015, 81, 386–395. [Google Scholar] [CrossRef] [Green Version]
- Mani, R.J.; Reichard, M.V.; Morton, R.J.; Kocan, K.M.; Clinkenbeard, K.D. Biology of Francisella tularensis subspecies holarctica live vaccine strain in the tick vector Dermacentor variabilis. PLoS ONE 2012, 7, e35441. [Google Scholar] [CrossRef]
- Calhoun, E.L. Natural occurrence of tularemia in the lone star tick, Amblyomma americanus (Linn.), and in dogs in Arkansas. Am. J. Trop. Med. Hyg. 1954, 3, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Hopla, C.E. Experimental studies on tick transmission of tularemia organisms. Am. J. Hyg. 1953, 58, 101–118. [Google Scholar] [CrossRef]
- Beard, C.B.; Occi, J.; Bonilla, D.L.; Egizi, A.M.; Fonseca, D.M.; Mertins, J.W.; Backenson, B.P.; Bajwa, W.I.; Barbarin, A.M.; Bertone, M.A.; et al. Multistate Infestation with the Exotic Disease-Vector Tick Haemaphysalis longicornis—United States, August 2017–September 2018. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 1310–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, J.G.; Ko, S.; Smith, W.B.; Kim, H.C.; Lee, I.Y.; Chae, J.S. Prevalence of Anaplasma, Bartonella and Borrelia Species in Haemaphysalis longicornis collected from goats in North Korea. J. Vet. Sci. 2016, 17, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Chandler, J.C.; Molins, C.R.; Petersen, J.M.; Belisle, J.T. Differential chitinase activity and production within Francisella species, subspecies, and subpopulations. J. Bacteriol. 2011, 193, 3265–3275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forestal, C.A.; Malik, M.; Catlett, S.V.; Savitt, A.G.; Benach, J.L.; Sellati, T.J.; Furie, M.B. Francisella tularensis has a significant extracellular phase in infected mice. J. Infect. Dis. 2007, 196, 134–137. [Google Scholar] [CrossRef] [Green Version]
- Molins, C.R.; Delorey, M.J.; Yockey, B.M.; Young, J.W.; Sheldon, S.W.; Reese, S.M.; Schriefer, M.E.; Petersen, J.M. Virulence differences among Francisella tularensis subsp. tularensis clades in mice. PLoS ONE 2010, 5, e10205. [Google Scholar] [CrossRef]
- Reese, S.M.; Dietrich, G.; Dolan, M.C.; Sheldon, S.W.; Piesman, J.; Petersen, J.M.; Eisen, R.J. Transmission dynamics of Francisella tularensis subspecies and clades by nymphal Dermacentor variabilis (Acari: Ixodidae). Am. J. Trop. Med. Hyg. 2010, 83, 645–652. [Google Scholar] [CrossRef] [Green Version]
- Sonenshine, D.E.; Roe, R.M. (Eds.) Biology of Ticks, 2nd ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 1991; Volume 1, p. 3. [Google Scholar]
- Tahir, D.; Meyer, L.; Fourie, J.; Jongejan, F.; Mather, T.; Choumet, V.; Blagburn, B.; Straubinger, R.K.; Varloud, M. Interrupted Blood Feeding in Ticks: Causes and Consequences. Microorganisms 2020, 8, 910. [Google Scholar] [CrossRef]
- Oyston, P.C.; Sjostedt, A.; Titball, R.W. Tularaemia: Bioterrorism defence renews interest in Francisella tularensis. Nat. Rev. Microbiol. 2004, 2, 967–978. [Google Scholar] [CrossRef]
- Yang, X.; Koci, J.; Smith, A.A.; Zhuang, X.; Sharma, K.; Dutta, S.; Rana, V.S.; Kitsou, C.; Yas, O.B.; Mongodin, E.F.; et al. A novel tick protein supports integrity of gut peritrophic matrix impacting existence of gut microbiome and Lyme disease pathogens. Cell Microbiol. 2020, e13275. [Google Scholar] [CrossRef] [PubMed]
- Tilly, K.; Elias, A.F.; Errett, J.; Fischer, E.; Iyer, R.; Schwartz, I.; Bono, J.L.; Rosa, P. Genetics and regulation of chitobiose utilization in Borrelia burgdorferi. J. Bacteriol. 2001, 183, 5544–5553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tully, B.G.; Huntley, J.F. Mechanisms Affecting the Acquisition, Persistence and Transmission of Francisella tularensis in Ticks. Microorganisms 2020, 8, 1639. [Google Scholar] [CrossRef] [PubMed]
- Markov, E.Y.; Kulikalova, E.S.; Urbanovich, L.Y.; Vishnyakov, V.S.; Balakhonov, S.V. Chitin and Products of Its Hydrolysis in Vibrio cholerae Ecology. Biochemistry 2015, 80, 1109–1116. [Google Scholar] [CrossRef]
- Wucher, B.R.; Bartlett, T.M.; Hoyos, M.; Papenfort, K.; Persat, A.; Nadell, C.D. Vibrio cholerae filamentation promotes chitin surface attachment at the expense of competition in biofilms. Proc. Natl. Acad. Sci. USA 2019, 116, 14216–14221. [Google Scholar] [CrossRef] [Green Version]
- DebRoy, S.; Dao, J.; Soderberg, M.; Rossier, O.; Cianciotto, N.P. Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proc. Natl. Acad. Sci. USA 2006, 103, 19146–19151. [Google Scholar] [CrossRef] [Green Version]
- Rehman, S.; Grigoryeva, L.S.; Richardson, K.H.; Corsini, P.; White, R.C.; Shaw, R.; Portlock, T.J.; Dorgan, B.; Zanjani, Z.S.; Fornili, A.; et al. Structure and functional analysis of the Legionella pneumophila chitinase ChiA reveals a novel mechanism of metal-dependent mucin degradation. PLoS Pathog. 2020, 16, e1008342. [Google Scholar] [CrossRef]
- Tuveng, T.R.; Hagen, L.H.; Mekasha, S.; Frank, J.; Arntzen, M.O.; Vaaje-Kolstad, G.; Eijsink, V.G.H. Genomic, proteomic and biochemical analysis of the chitinolytic machinery of Serratia marcescens BJL200. Biochim. Biophys. Acta Proteins Proteom. 2017, 1865, 414–421. [Google Scholar] [CrossRef]
- Madhuprakash, J.; Singh, A.; Kumar, S.; Sinha, M.; Kaur, P.; Sharma, S.; Podile, A.R.; Singh, T.P. Structure of chitinase D from Serratia proteamaculans reveals the structural basis of its dual action of hydrolysis and transglycosylation. Int. J. Biochem. Mol. Biol. 2013, 4, 166–178. [Google Scholar]
- Kezuka, Y.; Bando, K.; Kobayashi, H.; Yonou, Y.; Sato, T.; Watanabe, T.; Nonaka, T. Crystallization and preliminary X-ray analysis of the catalytic domain of chitinase D from Bacillus circulans WL-12. Protein Pept. Lett. 2006, 13, 951–954. [Google Scholar] [CrossRef]
- Wang, S.; Moyne, A.; Thottappilly, G.; Wu, S.; Locy, R.D.; Singh, N.K. Purification and characterization of a Bacillus cereus exochitinase. Enzym. Microb. Technol. 2001, 28, 492–498. [Google Scholar] [CrossRef]
- Manjeet, K.; Purushotham, P.; Neeraja, C.; Podile, A.R. Bacterial chitin binding proteins show differential substrate binding and synergy with chitinases. Microbiol. Res. 2013, 168, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.E.; Smith, M.; Wilkinson, M.C.; Peek, K. Identification and characterization of a chitinase antigen from Pseudomonas aeruginosa strain 385. Appl. Environ. Microbiol. 2001, 67, 4001–4008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huntley, J.F.; Conley, P.G.; Hagman, K.E.; Norgard, M.V. Characterization of Francisella tularensis outer membrane proteins. J. Bacteriol. 2007, 189, 561–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, A.; Child, R.; Wehrly, T.D.; Rockx-Brouwer, D.; Qin, A.; Mann, B.J.; Celli, J. Structure-Function Analysis of DipA, a Francisella tularensis Virulence Factor Required for Intracellular Replication. PLoS ONE 2013, 8, e67965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margolis, J.J.; El-Etr, S.; Joubert, L.M.; Moore, E.; Robison, R.; Rasley, A.; Spormann, A.M.; Monack, D.M. Contributions of Francisella tularensis subsp. novicida chitinases and Sec secretion system to biofilm formation on chitin. Appl. Environ. Microbiol. 2010, 76, 596–608. [Google Scholar] [CrossRef] [Green Version]
- Reif, K.E.; Palmer, G.H.; Ueti, M.W.; Scoles, G.A.; Margolis, J.J.; Monack, D.M.; Noh, S.M. Dermacentor andersoni transmission of Francisella tularensis subsp. novicida reflects bacterial colonization, dissemination, and replication coordinated with tick feeding. Infect. Immun. 2011, 79, 4941–4946. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Ren, G.; Huntley, J.F. Generating Isogenic Deletions (Knockouts) in Francisella tularensis, a Highly-infectious and Fastidious Gram-negative Bacterium. Bio. Protoc. 2015, 5, e1500. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Ren, G.; Gunning, W.T., 3rd; Weaver, D.A.; Kalinoski, A.L.; Khuder, S.A.; Huntley, J.F. FmvB: A Francisella tularensis Magnesium-Responsive Outer Membrane Protein that Plays a Role in Virulence. PLoS ONE 2016, 11, e0160977. [Google Scholar] [CrossRef] [Green Version]
- Ren, G.; Champion, M.M.; Huntley, J.F. Identification of disulfide bond isomerase substrates reveals bacterial virulence factors. Mol. Microbiol. 2014, 94, 926–944. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, S.L.; Bosio, C.M.; De Pascalis, R.; Elkins, K.L. GM-CSF has disparate roles during intranasal and intradermal Francisella tularensis infection. Microbes Infect. 2016, 18, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Sonenshine, D.E. Range Expansion of Tick Disease Vectors in North America: Implications for Spread of Tick-Borne Disease. Int. J. Environ. Res. Public Health 2018, 15, 478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Bring, A.; Kalantari, Z.; Destouni, G. Potential for Hydroclimatically Driven Shifts in Infectious Disease Outbreaks: The Case of Tularemia in High-Latitude Regions. Int. J. Environ. Res. Public Health 2019, 16, 3717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wormser, G.P.; McKenna, D.; Piedmonte, N.; Vinci, V.; Egizi, A.M.; Backenson, B.; Falco, R.C. First Recognized Human Bite in the United States by the Asian Longhorned Tick, Haemaphysalis longicornis. Clin. Infect. Dis. 2020, 70, 314–316. [Google Scholar] [CrossRef] [PubMed]
- Breuner, N.E.; Ford, S.L.; Hojgaard, A.; Osikowicz, L.M.; Parise, C.M.; Rosales Rizzo, M.F.; Bai, Y.; Levin, M.L.; Eisen, R.J.; Eisen, L. Failure of the Asian longhorned tick, Haemaphysalis longicornis, to serve as an experimental vector of the Lyme disease spirochete, Borrelia burgdorferi sensu stricto. Ticks Tick-Borne Dis. 2020, 11, 101311. [Google Scholar] [CrossRef] [PubMed]
- Stanley, H.M.; Ford, S.L.; Snellgrove, A.N.; Hartzer, K.; Smith, E.B.; Krapiunaya, I.; Levin, M.L. The Ability of the Invasive Asian Longhorned Tick Haemaphysalis longicornis (Acari: Ixodidae) to Acquire and Transmit Rickettsia rickettsii (Rickettsiales: Rickettsiaceae), the Agent of Rocky Mountain Spotted Fever, Under Laboratory Conditions. J. Med. Entomol. 2020, 57, 1635–1639. [Google Scholar] [CrossRef]
- Johns, R.; Sonenshine, D.E.; Hynes, W.L. Identification of a defensin from the hemolymph of the American dog tick, Dermacentor variabilis. Insect. Biochem. Mol. Biol. 2001, 31, 857–865. [Google Scholar] [CrossRef] [Green Version]
- Goethert, H.K.; Telford, S.R., 3rd. A new Francisella (Beggiatiales: Francisellaceae) inquiline within Dermacentor variabilis say (Acari: Ixodidae). J. Med. Entomol. 2005, 42, 502–505. [Google Scholar] [CrossRef] [Green Version]
- Goethert, H.K.; Telford, S.R., 3rd. Nonrandom distribution of vector ticks (Dermacentor variabilis) infected by Francisella tularensis. PLoS Pathog. 2009, 5, e1000319. [Google Scholar] [CrossRef]
- Sauer, J.R.; Hair, J.A. The Quantity of Blood Ingested by the Lone Star Tick (Acarina: Ixodidae). Ann. Entomol. Soc. Am. 1972, 65, 15. [Google Scholar]
- Rechav, Y.; Strydom, W.J.; Clarke, F.C.; Burger, L.B.; Mackie, A.J.; Fielden, L.J. Isotopes as Host Blood Markers To Measure Blood Intake by Feeding Ticks (Acari: Ixodidae). J. Med Entomol. 1994, 31, 5. [Google Scholar]
- Schmitt, D.M.; Barnes, R.; Rogerson, T.; Haught, A.; Mazzella, L.K.; Ford, M.; Gilson, T.; Birch, J.W.; Sjostedt, A.; Reed, D.S.; et al. The Role and Mechanism of Erythrocyte Invasion by Francisella tularensis. Front. Cell Infect. Microbiol. 2017, 7, 173. [Google Scholar] [CrossRef] [PubMed]
- Gall, C.A.; Reif, K.E.; Scoles, G.A.; Mason, K.L.; Mousel, M.; Noh, S.M.; Brayton, K.A. The bacterial microbiome of Dermacentor andersoni ticks influences pathogen susceptibility. ISME J. 2016, 10, 1846–1855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duron, O.; Binetruy, F.; Noel, V.; Cremaschi, J.; McCoy, K.D.; Arnathau, C.; Plantard, O.; Goolsby, J.; Perez de Leon, A.A.; Heylen, D.J.A.; et al. Evolutionary changes in symbiont community structure in ticks. Mol. Ecol. 2017, 26, 2905–2921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rynkiewicz, E.C.; Hemmerich, C.; Rusch, D.B.; Fuqua, C.; Clay, K. Concordance of bacterial communities of two tick species and blood of their shared rodent host. Mol. Ecol. 2015, 24, 2566–2579. [Google Scholar] [CrossRef] [PubMed]
- Clay, K.; Klyachko, O.; Grindle, N.; Civitello, D.; Oleske, D.; Fuqua, C. Microbial communities and interactions in the lone star tick, Amblyomma americanum. Mol. Ecol. 2008, 17, 4371–4381. [Google Scholar] [CrossRef]
- Gerhart, J.G.; Moses, A.S.; Raghavan, R. A Francisella-like endosymbiont in the Gulf Coast tick evolved from a mammalian pathogen. Sci. Rep. 2016, 6, 33670. [Google Scholar] [CrossRef]
- Sojka, D.; Franta, Z.; Horn, M.; Caffrey, C.R.; Mares, M.; Kopacek, P. New insights into the machinery of blood digestion by ticks. Trends Parasitol. 2013, 29, 276–285. [Google Scholar] [CrossRef]
- Meibom, K.L.; Charbit, A. Francisella tularensis metabolism and its relation to virulence. Front. Microbiol. 2010, 1, 140. [Google Scholar] [CrossRef] [Green Version]
- Schorderet, S.; Pearson, R.D.; Vuocolo, T.; Eisemann, C.; Riding, G.A.; Tellam, R.L. cDNA and deduced amino acid sequences of a peritrophic membrane glycoprotein, ‘peritrophin-48′, from the larvae of Lucilia cuprina. Insect. Biochem. Mol. Biol. 1998, 28, 99–111. [Google Scholar] [CrossRef]
- Hayes, C.A.; Dalia, T.N.; Dalia, A.B. Systematic genetic dissection of chitin degradation and uptake in Vibrio cholerae. Environ. Microbiol. 2017, 19, 4154–4163. [Google Scholar] [CrossRef] [PubMed]
- Mueller, R.S.; McDougald, D.; Cusumano, D.; Sodhi, N.; Kjelleberg, S.; Azam, F.; Bartlett, D.H. Vibrio cholerae strains possess multiple strategies for abiotic and biotic surface colonization. J. Bacteriol. 2007, 189, 5348–5360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarva, S.T.; Waldo, R.H.; Belland, R.J.; Klose, K.E. Comparative Transcriptional Analyses of Francisella tularensis and Francisella novicida. PLoS ONE 2016, 11, e0158631. [Google Scholar] [CrossRef] [PubMed]
- Kingry, L.C.; Petersen, J.M. Comparative review of Francisella tularensis and Francisella novicida. Front. Cell Infect. Microbiol. 2014, 4, 35. [Google Scholar] [CrossRef] [PubMed]
- Folders, J.; Algra, J.; Roelofs, M.S.; van Loon, L.C.; Tommassen, J.; Bitter, W. Characterization of Pseudomonas aeruginosa chitinase, a gradually secreted protein. J. Bacteriol. 2001, 183, 7044–7052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frederiksen, R.F.; Paspaliari, D.K.; Larsen, T.; Storgaard, B.G.; Larsen, M.H.; Ingmer, H.; Palcic, M.M.; Leisner, J.J. Bacterial chitinases and chitin-binding proteins as virulence factors. Microbiology 2013, 159, 833–847. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tully, B.G.; Huntley, J.F. A Francisella tularensis Chitinase Contributes to Bacterial Persistence and Replication in Two Major U.S. Tick Vectors. Pathogens 2020, 9, 1037. https://doi.org/10.3390/pathogens9121037
Tully BG, Huntley JF. A Francisella tularensis Chitinase Contributes to Bacterial Persistence and Replication in Two Major U.S. Tick Vectors. Pathogens. 2020; 9(12):1037. https://doi.org/10.3390/pathogens9121037
Chicago/Turabian StyleTully, Brenden G., and Jason F. Huntley. 2020. "A Francisella tularensis Chitinase Contributes to Bacterial Persistence and Replication in Two Major U.S. Tick Vectors" Pathogens 9, no. 12: 1037. https://doi.org/10.3390/pathogens9121037
APA StyleTully, B. G., & Huntley, J. F. (2020). A Francisella tularensis Chitinase Contributes to Bacterial Persistence and Replication in Two Major U.S. Tick Vectors. Pathogens, 9(12), 1037. https://doi.org/10.3390/pathogens9121037