Clinical Biofilm Ring Test® Reveals the Potential Role of β-Lactams in the Induction of Biofilm Formation by P. aeruginosa in Cystic Fibrosis Patients
Abstract
:1. Introduction
2. Results
2.1. Microbial Biofilm Profiling with cBRT
2.2. Early Bacterial Adhesion Induction by Antimicrobials Evidenced with Modified cBRT Assay
2.3. Morphological Change and Increase in Covering Surface by Sessile Cells Corroborated in Epifluorescence Microscopy
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Bacterial Strains
5.2. Antibiotic Selection and Minimum Inhibitory Concentration (MIC) Determination
5.3. Clinical Biofilm Ring Test (cBRT)
5.4. cBRT with Antibiotics
5.5. Staining of Adherent Bacteria and Fluorescence Microscopic Image Acquisition
Author Contributions
Funding
Conflicts of Interest
References
- Faure, E.; Kwong, K.; Nguyen, D. Pseudomonas aeruginosa in Chronic Lung Infections: How to Adapt within the Host? Front. Immunol. 2018, 9, 2416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nathwani, D.; Raman, G.; Sulham, K.; Gavaghan, M.; Menon, V. Clinical and economic consequences of hospital-acquired resistant and multidrug-resistant Pseudomonas aeruginosa infections: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2014, 3, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, M.; Anju, C.P.; Biswas, L.; Anil Kumar, V.; Gopi Mohan, C.; Biswas, R. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int. J. Med. Microbiol. 2016, 306, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.W.; Mah, T.-F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev. 2017, 41, 276–301. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatesan, N.; Perumal, G.; Doble, M. Bacterial resistance in biofilm-associated bacteria. Future Microbiol. 2015, 10, 1743–1750. [Google Scholar] [CrossRef]
- Aminov, R.I. Biotic acts of antibiotics. Front. Microbiol. 2013, 4, 241. [Google Scholar] [CrossRef] [Green Version]
- Linares, J.F.; Gustafsson, I.; Baquero, F.; Martinez, J.L. Antibiotics as intermicrobial signaling agents instead of weapons. Proc. Natl. Acad. Sci. USA 2006, 103, 19484–19489. [Google Scholar] [CrossRef] [Green Version]
- Hathroubi, S.; Mekni, M.A.; Domenico, P.; Nguyen, D.; Jacques, M. Biofilms: Microbial Shelters Against Antibiotics. Microb. Drug Resist. 2017, 23, 147–156. [Google Scholar] [CrossRef]
- Kaplan, J.B. Antibiotic-induced biofilm formation. Int. J. Artif. Organs 2011, 34, 737–751. [Google Scholar] [CrossRef]
- Lund-Palau, H.; Turnbull, A.R.; Bush, A.; Bardin, E.; Cameron, L.; Soren, O.; Wierre-Gore, N.; Alton, E.W.; Bundy, J.G.; Connett, G.; et al. Pseudomonas aeruginosa infection in cystic fibrosis: Pathophysiological mechanisms and therapeutic approaches. Expert Rev. Respir. Med. 2016, 10, 685–697. [Google Scholar] [CrossRef] [PubMed]
- Olivares, E.; Badel-Berchoux, S.; Provot, C.; Jaulhac, B.; Prévost, G.; Bernardi, T.; Jehl, F. The BioFilm Ring Test: A Rapid Method for Routine Analysis of Pseudomonas aeruginosa Biofilm Formation Kinetics. J. Clin. Microbiol. 2016, 54, 657–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivares, E.; Badel-Berchoux, S.; Provot, C.; Jaulhac, B.; Prévost, G.; Bernardi, T.; Jehl, F. Tobramycin and Amikacin Delay Adhesion and Microcolony Formation in Pseudomonas aeruginosa Cystic Fibrosis Isolates. Front. Microbiol. 2017, 8, 1289. [Google Scholar] [CrossRef] [PubMed]
- Di Domenico, E.G.; Toma, L.; Provot, C.; Ascenzioni, F.; Sperduti, I.; Prignano, G.; Gallo, M.T.; Pimpinelli, F.; Bordignon, V.; Bernardi, T.; et al. Development of an in vitro Assay, Based on the BioFilm Ring Test®, for Rapid Profiling of Biofilm-Growing Bacteria. Front. Microbiol. 2016, 7, 1429. [Google Scholar] [CrossRef] [PubMed]
- EUCAST: New S, I and R Definitions. Available online: https://www.eucast.org/newsiandr/ (accessed on 7 October 2020).
- Kaplan, J.B.; Izano, E.A.; Gopal, P.; Karwacki, M.T.; Kim, S.; Bose, J.L.; Bayles, K.W.; Horswill, A.R. Low Levels of β-Lactam Antibiotics Induce Extracellular DNA Release and Biofilm Formation in Staphylococcus aureus. mBio 2012, 3, e00198-12. [Google Scholar] [CrossRef] [Green Version]
- Nucleo, E.; Steffanoni, L.; Fugazza, G.; Migliavacca, R.; Giacobone, E.; Navarra, A.; Pagani, L.; Landini, P. Growth in glucose-based medium and exposure to subinhibitory concentrations of imipenem induce biofilm formation in a multidrug-resistant clinical isolate of Acinetobacter baumannii. BMC Microbiol. 2009, 9, 270. [Google Scholar] [CrossRef] [Green Version]
- Macià, M.D.; Rojo-Molinero, E.; Oliver, A. Antimicrobial susceptibility testing in biofilm growing bacteria. Clin. Microbiol. Infect. 2014, 20, 981–990. [Google Scholar] [CrossRef] [Green Version]
- Eladawy, M.; El-Mowafy, M.; El-Sokkary, M.M.A.; Barwa, R. Effects of Lysozyme, Proteinase K, and Cephalosporins on Biofilm Formation by Clinical Isolates of Pseudomonas aeruginosa. Interdiscip. Perspect. Infect. Dis. 2020, 2020, 6156720. [Google Scholar] [CrossRef] [Green Version]
- Perez, L.R.R.; Costa, M.C.N.; Freitas, A.L.P.D.; Barth, A.L. Evaluation of biofilm production by Pseudomonas aeruginosa isolates recovered from cystic fibrosis and non-cystic fibrosis patients. Braz. J. Microbiol. 2011, 42, 476–479. [Google Scholar] [CrossRef] [Green Version]
- Penesyan, A.; Paulsen, I.T.; Gillings, M.R.; Kjelleberg, S.; Manefield, M.J. Secondary Effects of Antibiotics on Microbial Biofilms. Front. Microbiol. 2020, 11, 2109. [Google Scholar] [CrossRef]
- Sousa, A.M.; Pereira, M.O. Pseudomonas aeruginosa diversification during infection development in cystic fibrosis lungs—A review. Pathogens 2014, 3, 680–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliver, A.; Cantón, R.; Campo, P.; Baquero, F.; Blázquez, J. High Frequency of Hypermutable Pseudomonas aeruginosa in Cystic Fibrosis Lung Infection. Science 2000, 288, 1251–1253. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Duperthuy, M.; Wai, S.N. Sub-Optimal Treatment of Bacterial Biofilms. Antibiotics 2016, 5, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horii, T.; Kobayashi, M.; Sato, K.; Ichiyama, S.; Ohta, M. An in vitro study of carbapenem-induced morphological changes and endotoxin release in clinical isolates of gram-negative bacilli. J. Antimicrob. Chemother. 1998, 41, 435–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, J.J.; Kropp, H. Differences in mode of action of β-lactam antibiotics influence morphology, LPS release and in vivo antibiotic efficacy. J. Endotoxin Res. 1996, 3, 201–218. [Google Scholar] [CrossRef]
- Buijs, J.; Dofferhoff, A.S.M.; Mouton, J.W.; Wagenvoort, J.H.T.; van der Meer, J.W.M. Concentration-dependency of β-lactam-induced filament formation in Gram-negative bacteria. Clin. Microbiol. Infect. 2008, 14, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Pucci, M.J.; Boice-Sowek, J.; Kessler, R.E.; Dougherty, T.J. Comparison of cefepime, cefpirome, and cefaclidine binding affinities for penicillin-binding proteins in Escherichia coli K-12 and Pseudomonas aeruginosa SC8329. Antimicrob. Agents Chemother. 1991, 35, 2312–2317. [Google Scholar] [CrossRef] [Green Version]
- Elliott, T.S.; Greenwood, D. The response of Pseudomonas aeruginosa to azlocillin, ticarcillin and cefsulodin. J. Med. Microbiol. 1983, 16, 351–362. [Google Scholar] [CrossRef]
- Oura, H.; Tashiro, Y.; Toyofuku, M.; Ueda, K.; Kiyokawa, T.; Ito, S.; Takahashi, Y.; Lee, S.; Nojiri, H.; Nakajima-Kambe, T.; et al. Inhibition of Pseudomonas aeruginosa Swarming Motility by 1-Naphthol and Other Bicyclic Compounds Bearing Hydroxyl Groups. Appl. Environ. Microbiol. 2015, 81, 2808–2818. [Google Scholar] [CrossRef] [Green Version]
- Van Teeseling, M.C.F.; de Pedro, M.A.; Cava, F. Determinants of Bacterial Morphology: From Fundamentals to Possibilities for Antimicrobial Targeting. Front. Microbiol. 2017, 8, 1265. [Google Scholar] [CrossRef] [Green Version]
- Rasamiravaka, T.; Labtani, Q.; Duez, P.; El Jaziri, M. The Formation of Biofilms by Pseudomonas aeruginosa: A Review of the Natural and Synthetic Compounds Interfering with Control Mechanisms. Biomed. Res. Int. 2015, 2015, 759348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayakumar, S.; Rajenderan, S.; Laishram, S.; Anandan, S.; Balaji, V.; Biswas, I. Biofilm Formation and Motility Depend on the Nature of the Acinetobacter baumannii Clinical Isolates. Front. Public Health 2016, 4, 105. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, L.R.; D’Argenio, D.A.; MacCoss, M.J.; Zhang, Z.; Jones, R.A.; Miller, S.I. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 2005, 436, 1171–1175. [Google Scholar] [CrossRef] [PubMed]
- Ratcliff, W.C.; Denison, R.F. Alternative Actions for Antibiotics. Science 2011, 332, 547–548. [Google Scholar] [CrossRef]
- Cornforth, D.M.; Foster, K.R. Competition sensing: The social side of bacterial stress responses. Nat. Rev. Micro. 2013, 11, 285–293. [Google Scholar] [CrossRef]
- Elliott, D.; Burns, J.L.; Hoffman, L.R. Exploratory Study of the Prevalence and Clinical Significance of Tobramycin-Mediated Biofilm Induction in Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients. Antimicrob. Agents Chemother. 2010, 54, 3024–3026. [Google Scholar] [CrossRef] [Green Version]
- Odenholt, I. Pharmacodynamic effects of subinhibitory antibiotic concentrations. Int. J. Antimicrob. Agents 2001, 17, 1–8. [Google Scholar] [CrossRef]
- Hurley, M.N.; Ariff, A.H.A.; Bertenshaw, C.; Bhatt, J.; Smyth, A.R. Results of antibiotic susceptibility testing do not influence clinical outcome in children with cystic fibrosis. J. Cyst. Fibros. 2012, 11, 288–292. [Google Scholar] [CrossRef] [Green Version]
(A) McF | CTR (+) | TIM | FEP | CAZ | IPM | MEM | |
10−1 | 0.71 (0.26) | 1.00 (0.00) | 0.81 (0.17) | 0.86 (0.12) | 1.00 (0.00) | 1.00 (0.00) | No |
10−2 | 0.29 (0.24) | 0.94 (0.06) | 0.76 (0.23) | 0.71 (0.18) | 1.00 (0.00) | 1.00 (0.00) | Weak |
10−3 | −0.03 (0.08) | 0.52 (0.16) | 0.48 (0.26) | 0.50 (0.14) | 0.75 (0.08) | 0.77 (0.05) | Moderate |
10−4 | −0.10 (0.13) | 0.27 (0.21) | 0.21 (0.20) | 0.24 (0.17) | 0.13 (0.12) | 0.13 (0.14) | Moderate |
10−5 | −0.08 (0.13) | 0.10 (0.17) | 0.23 (0.18) | 0.24 (0.18) | 0.07 (0.06) | 0.04 (0.01) | High |
10−6 | −0.09 (0.14) | 0.03 (0.23) | 0.18 (0.15) | 0.17 (0.13) | 0.02 (0.09) | −0.08 (0.09) | High |
Average BPc = 0.71 (0.12). | |||||||
(B) McF | CTR (+) | TIM | FEP | CAZ | IPM | MEM | |
10−1 | 1.00 (0.00) | 1.00 (0.00) | 1.00 (0.00) | 1.00 (0.00) | 1.00 (0.00) | 1.00 (0.00) | No |
10−2 | 1.00 (0.00) | 1.00 (0.00) | 1.00 (0.00) | 1.00 (0.00) | 1.00 (0.00) | 1.00 (0.01) | Weak |
10−3 | 0.50 (0.29) | 0.67 (0.12) | 0.69 (0.23) | 0.70 (0.15) | 0.86 (0.19) | 0.52 (0.18) | Moderate |
10−4 | 0.00 (0.02) | 0.01 (0.06) | 0.02 (0.04) | 0.02 (0.02) | 0.18 (0.29) | 0.03 (0.07) | Moderate |
10−5 | 0.00 (0.02) | 0.01 (0.03) | 0.02 (0.05) | 0.01 (0.02) | 0.01 (0.05) | 0.04 (0.08) | High |
10−6 | 0.00 (0.02) | 0.03 (0.04) | 0.04 (0.07) | 0.03 (0.02) | 0.04 (0.09) | −0.01 (0.02) | High |
Average BPc = 0.57 (0.02) | |||||||
(C) McF | CTR (+) | TIM | FEP | CAZ | IPM | MEM | |
10−1 | 0.98 (0.03) | 1.00 (0.00) | 1.00 (0.00) | 1.00 (0.00) | 1.00 (0.00) | 1.00 (0.00) | No |
10−2 | 0.22 (0.18) | 0.90 (0.18) | 0.76 (0.31) | 0.70 (0.33) | 0.46 (0.19) | 0.66 (0.22) | Weak |
10−3 | 0.03 (0.02) | 0.09 (0.13) | 0.00 (0.06) | 0.01 (0.03) | 0.11 (0.23) | 0.14 (0.27) | Moderate |
10−4 | −0.03 (0.09) | 0.08 (0.13) | 0.05 (0.09) | −0.07 (0.05) | 0.11 (0.22) | 0.13 (0.20) | Moderate |
10−5 | 0.00 (0.05) | 0.07 (0.19) | 0.02 (0.03) | −0.08 (0.01) | 0.11 (0.26) | 0.09 (0.19) | High |
10−6 | 0.04 (0.10) | 0.12 (0.14) | 0.04 (0.03) | −0.01 (0.01) | 0.11 (0.24) | 0.10 (0.12) | High |
Average BPc = 0.59 (0.03) | |||||||
(D) McF | CTR (+) | TIM | FEP | CAZ | IPM | MEM | |
10−1 | 0.80 (0.26) | 0.98 (0.04) | 0.93 (0.13) | 0.87 (0.23) | 1.00 (0.00) | 0.95 (0.09) | No |
10−2 | 0.15 (0.22) | 0.24 (0.07) | 0.19 (0.17) | 0.09 (0.01) | 0.92 (0.07) | 0.14 (0.02) | Weak |
10−3 | 0.03 (0.08) | 0.26 (0.21) | 0.19 (0.28) | 0.18 (0.24) | 0.16 (0.09) | 0.03 (0.07) | Moderate |
10−4 | 0.02 (0.06) | 0.02 (0.05) | −0.03 (0.03) | −0.01 (0.05) | 0.03 (0.09) | 0.00 (0.07) | Moderate |
10−5 | −0.01 (0.08) | −0.01 (0.01) | −0.03 (0.02) | −0.04 (0.02) | 0.01 (0.08) | −0.01 (0.01) | High |
10−6 | 0.02 (0.05) | 0.04 (0.05) | −0.01 (0.05) | −0.03 (0.03) | 0.05 (0.09) | −0.01 (0.04) | High |
Average BPc = 0.58 (0.02) |
Strains | Cell/Cluster Size (µm) | Variation Rate (%) | ||||
CTR(+) | TIM | FEP | CAZ | IPM | MEM | |
#6 | 0.9 | +244% *** | +175% * | +193% *** | +43% ns | +213% **** |
#20 | 49 ● | +180% ●ns | +66% ●ns | −15% ●ns | +84% ●ns | −22% ●ns |
#22 | 1.2 | +299% **** | +329% **** | +389% **** | +113% ns | +474% **** |
#31 | 1.1 | +78% **** | +58% *** | +47% ** | −29% ns | +35% ns |
Strains | Cell/Cluster Number | Variation Rate (%) | ||||
CTR(+) | TIM | FEP | CAZ | IPM | MEM | |
#6 | 351 | −60% * | −54% * | −77% ** | +82% ** | −31% ns |
#20 | 56 ● | −10% ●ns | −2% ●ns | +7% ●ns | +14% ●ns | +89% ●ns |
#22 | 204 | −20% ns | −73% * | −46% ns | +203% **** | −37% ns |
#31 | 567 | −76%* | −57% ns | −38% ns | +107% ** | −66% ns |
(µg/mL) | TIM | FEP | CAZ | IPM | MEM | |
---|---|---|---|---|---|---|
Strain #6 | MIC | 48 | 24 | 16 | 3 | 0.75 |
0.1 × MIC | 4.8 | 2.4 | 1.6 | 0.3 | 0.075 | |
Strain #20 | MIC | 1 | 12 | 0.75 | 1.5 | 0.064 |
0.1 × MIC | 0.1 | 1.2 | 0.075 | 0.15 | 0.0064 | |
Strain #22 | MIC | 256 | 96 | 128 | 16 | 32 |
0.1 × MIC | 25.6 | 9.6 | 12.8 | 1.6 | 3.2 | |
Strain #31 | MIC | 24 | 1.5 | 1.5 | 3 | 1 |
0.1 × MIC | 2.4 | 0.15 | 0.15 | 0.3 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivares, E.; Tasse, J.; Badel-Berchoux, S.; Provot, C.; Prévost, G.; Bernardi, T. Clinical Biofilm Ring Test® Reveals the Potential Role of β-Lactams in the Induction of Biofilm Formation by P. aeruginosa in Cystic Fibrosis Patients. Pathogens 2020, 9, 1065. https://doi.org/10.3390/pathogens9121065
Olivares E, Tasse J, Badel-Berchoux S, Provot C, Prévost G, Bernardi T. Clinical Biofilm Ring Test® Reveals the Potential Role of β-Lactams in the Induction of Biofilm Formation by P. aeruginosa in Cystic Fibrosis Patients. Pathogens. 2020; 9(12):1065. https://doi.org/10.3390/pathogens9121065
Chicago/Turabian StyleOlivares, Elodie, Jason Tasse, Stéphanie Badel-Berchoux, Christian Provot, Gilles Prévost, and Thierry Bernardi. 2020. "Clinical Biofilm Ring Test® Reveals the Potential Role of β-Lactams in the Induction of Biofilm Formation by P. aeruginosa in Cystic Fibrosis Patients" Pathogens 9, no. 12: 1065. https://doi.org/10.3390/pathogens9121065
APA StyleOlivares, E., Tasse, J., Badel-Berchoux, S., Provot, C., Prévost, G., & Bernardi, T. (2020). Clinical Biofilm Ring Test® Reveals the Potential Role of β-Lactams in the Induction of Biofilm Formation by P. aeruginosa in Cystic Fibrosis Patients. Pathogens, 9(12), 1065. https://doi.org/10.3390/pathogens9121065