Chemical Composition, Antimicrobial activity, In Vitro Cytotoxicity and Leukotoxin Neutralization of Essential Oil from Origanum vulgare against Aggregatibacter actinomycetemcomitans
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of the Essential Oil
2.2. Antimicrobial Activity
2.3. Cytotoxicity
2.4. A. actinomycetemcomitans Leukotoxin Neutralization
3. Discussion
4. Materials and Methods
4.1. Plant Material and Extraction of Essential Oil
4.2. Gas Chromatography Coupled with Mass Spectrometry (GC/MS)
4.3. A. actinomycetemcomitans Strains
4.4. Subgingival Plaque Sampling
4.5. Culture and Isolation
4.6. In Vitro Antimicrobial Susceptibility Assay
4.6.1. Agar Well Diffusion Method
4.6.2. Minimum Inhibitory Concentration (MIC) Determination
4.6.3. Minimum Bactericidal Concentration (MCB) Determination
4.7. Cell Culture
4.8. Cytotoxicity Assay
4.9. LtxA Purification
4.10. Preparation of Psidium Guajava Leave Extract
4.11. LxtA Neutralization Assay
4.12. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Henderson, B.; Ward, J.M.; Ready, D. Aggregatibacter (Actinobacillus) actinomycetemcomitans: AtripleA*periodontopathogen? Periodontology 2000 2010, 54, 78–105. [Google Scholar] [CrossRef] [PubMed]
- Asikainen, S.; Chen, C. Oral ecology and person-to-person transmission of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Periodontology 2000 1999, 20, 65–81. [Google Scholar] [CrossRef] [PubMed]
- Zambon, J.J.; Haraszthy, V.I. The laboratory diagnosis of periodontal infections. Periodontology 2000 1995, 7, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Könönen, E.; Müller, H.P. Microbiology of aggressive periodontitis. Periodontology 2000 2014, 65, 46–78. [Google Scholar] [CrossRef] [PubMed]
- Johansson, A. Aggregatibacter actinomycetemcomitans leukotoxin: A powerful tool with capacity to causeim balance in the hostin flammatory response. Toxins 2011, 3, 242–259. [Google Scholar] [CrossRef] [Green Version]
- Brogan, J.M.; Lally, E.T.; Poulsen, K.; Kilian, M.; Demuth, D.R. Regulation of Actinobacillus actinomycetemcomitans leukotoxin expression: Analysis of the promoter regions of leukotoxic and minimally leukotoxic strains. Infect. Immun. 1994, 62, 501–508. [Google Scholar] [CrossRef] [Green Version]
- Haubek, D.; Ennibi, O.K.; Poulsen, K.; Væth, M.; Poulsen, S.; Kilian, M. Risk of aggressive periodontitis in adolescent carriers of the JP2 clone of Aggregatibacter (Actinobacillus) actinomycetemcomitans in Morocco: A prospective longitudinal cohort study. Lancet 2008, 371, 237–242. [Google Scholar] [CrossRef]
- Ennibi, O.K.; Benrachadi, L.; Bouziane, A.; Haubek, D.; Poulsen, K. The highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans in localized and generalized forms of aggressive periodontitis. Acta Odontol. Scand. 2012, 70, 318–322. [Google Scholar] [CrossRef]
- Caton, J.G.; Armitage, G.; Berglundh, T.; Chapple, I.L.; Jepsen, S.; Kornman, K.S.; Mealey, B.L.; Papapanou, P.N.; Sanz, M.; Tonetti, M.S. A new classification scheme for periodontal and peri-implant diseases and conditions–Introduction and key changes from the 1999 classification. J. Periodontol. 2018, 89, S1–S8. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Wang, H.-C.; Li, J.-M.; Wang, J.-Y.; Yang, K.-C.; Ho, Y.-K.; Lin, P.-Y.; Lee, L.-N.; Yu, C.-J.; Yang, P.-C. Invasive infections of Aggregatibacter (Actinobacillus) actinomycetemcomitans. J. Microbiol. Immunol. Infect. 2010, 43, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Walker, C.B. The acquisition of antibiotic resistance in the periodontal microflora. Periodontology 2000 1996, 10, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Jouad, H.; Haloui, M.; Rhiouani, H.; ElHilaly, J.; Eddouks, M. Ethnobotanical survey of medicinal plants used for the treatment of diabetes, cardiac and renal diseases in the North centre region of Morocco (Fez–Boulemane). J. Ethnopharmacol. 2001, 77, 175–182. [Google Scholar] [CrossRef]
- Akkaoui, S.; Ennibi, O.k. Use of traditional plants in management of halitosis in a Moroccan population. J. Intercult. Ethnopharmacol. 2017, 6, 267. [Google Scholar] [CrossRef] [PubMed]
- Kharbach, M.; Marmouzi, I.; ElJemli, M.; Bouklouze, A.; VanderHeyden, Y. Recent advances in untargeted and targeted approaches applied in herbal-extracts and essential-oils finger printing-Areview. J. Pharm. Biomed. Anal. 2020, 177, 112849. [Google Scholar] [CrossRef]
- Barnes, J. Quality, efficacy and safety of complementary medicines: Fashions, facts and the future. Part I. Regul. Qual. Br. J. Clin. Pharmacol. 2003, 55, 226–233. [Google Scholar] [CrossRef] [PubMed]
- DeMartino, L.; DeFeo, V.; Nazzaro, F. Chemical composition and in vitro antimicrobial and mutagenic activities of seven Lamiacea eessential oils. Molecules 2009, 14, 4213–4230. [Google Scholar] [CrossRef] [Green Version]
- Fikry, S.; Khalil, N.; Salama, O. Chemical profiling, biostatic and biocidal dynamics of Origanum vulgare L. essentialoil. AMB Express 2019, 9, 41. [Google Scholar] [CrossRef]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crop. Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Johnson, C.B.; Kazantzis, A.; Skoula, M.; Mitteregger, U.; Novak, J. Seasonal, populational and ontogenic variation in the volatile oil content and composition of individuals of Origanum vulgare subsp.Hirtum, assessed by GC headspacean alysis and by SPME sampling of individual oil glands. Phytochem. Anal. Int. J. Plant Chem. Biochem. Technol. 2004, 15, 286–292. [Google Scholar]
- Lotti, C.; Ricciardi, L.; Rainaldi, G.; Ruta, C.; Tarraf, W.; DeMastro, G. Morphological, Biochemical, and Molecular Analysis of Origanum vulgare L. Open Agric. J. 2019, 13, 116–124. [Google Scholar] [CrossRef]
- Khan, M.; Khan, S.T.; Khan, M.; Mousa, A.A.; Mahmood, A.; Alkhathlan, H.Z. Chemical diversity in leaf and stem essential oils of Origanum vulgare L. and their effects on microbicidal activities. AMB Express 2019, 9, 176. [Google Scholar] [CrossRef] [PubMed]
- Ennibi, O.K.; Claesson, R.; Akkaoui, S.; Reddahi, S.; Kwamin, F.; Haubek, D.; Johansson, A. High salivary levels of JP2 genotype of Aggregatibacter actinomycetemcomitans is associated with clinical attachment lossin Moroccan adolescents. Clin. Exp. Dent. Res. 2019, 5, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Chaouki, W.; Leger, D.Y.; Eljastimi, J.; Beneytout, J.-L.; Hmamouchi, M. Antiproliferative effect of extracts from Aristolochia baetica and Origanum compactum on human breast cancer cell lineMCF-7. Pharm. Biol. 2010, 48, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Hmamouchi, M.; Hamamouchi, J.; Zouhdi, M.; Bessiere, J. Chemical and antimicrobial properties of essential oils of five Moroccan Pinaceae. J. Essent. Oil Res. 2001, 13, 298–302. [Google Scholar] [CrossRef]
- CanBaser, K. Biological and pharmacological activities of carvacrol and carvacrol bearing essentialoils. Curr. Pharm. Des. 2008, 14, 3106–3119. [Google Scholar] [CrossRef]
- Park, S.-N.; Lim, Y.K.; Freire, M.O.; Cho, E.; Jin, D.; Kook, J.-K. Antimicrobial effect of linalool and α-terpineol against periodontopathic and cariogenic bacteria. Anaerobe 2012, 18, 369–372. [Google Scholar] [CrossRef]
- Bagamboula, C.; Uyttendaele, M.; Debevere, J. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S.flexneri. Food Microbiol. 2004, 21, 33–42. [Google Scholar] [CrossRef]
- Lin, Z.-K.; Hua, Y.; Gu, Y. The chemical constituents of the essential oil from the flowers, leaves and peels of Citrus aurantium. Act. Bot. Sin. 1986, 28, 641–645. [Google Scholar]
- Alipour, G.; Dashti, S.; Hosseinzadeh, H. Review of pharmacological effects of Myrtus communis L. and ist active constituents. Phytother. Res. 2014, 28, 1125–1136. [Google Scholar] [CrossRef]
- Cha, J.-D.; Jung, E.-K.; Kil, B.-S.; Lee, K.-Y. Chemical composition and antibacterial activity of essential oil from Artemisia feddei. J. Microbiol. Biotechnol. 2007, 17, 2061–2065. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters; Version 9.0. 2019. Available online: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/Dosages_EUCAST_Breakpoint_Tables_v_9.0.pdf (accessed on 2 March 2020).
- Winkel, E.; VanWinkelhoff, A.; Timmerman, M.; VanderVelden, U.; VanderWeijden, G. Amoxicillin plus metronidazole in the treatment of adult periodontitis patients: A double-blind placebo-controlled study. J. Clin. Periodontol. 2001, 28, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Zandbergen, D.; Slot, D.E.; Niederman, R.; VanderWeijden, F.A. The concomitant administration of systemic amoxicillin and metronidazole compared to scaling and root planing alone in treating periodontitis:=a systematic review=. BMC Oral Health 2016, 16, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keestra, J.; Grosjean, I.; Coucke, W.; Quirynen, M.; Teughels, W. Non-surgical periodontal therapy with systemic antibiotics in patients with untreated chronic periodontitis: A systematic review and meta-analysis. J. Periodontal Res. 2015, 50, 294–314. [Google Scholar] [CrossRef] [PubMed]
- Mínguez, M.; Ennibi, O.; Perdiguero, P.; Lakhdar, L.; Abdellaoui, L.; Sánchez, M.; Sanz, M.; Herrera, D. Antimicrobial susceptibilities of Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis strains from periodontitis patients in Morocco. Clin. Oral Investig. 2019, 23, 1161–1170. [Google Scholar] [CrossRef]
- Jensen, A.B.; Haubek, D.; Claesson, R.; Johansson, A.; Nørskov-Lauritsen, N. Comprehensive antimicrobial susceptibility testing of a large collection of clinical strains of Aggregatibacter actinomycetemcomitans does not identify resistance to amoxicillin. J. Clin. Periodontol. 2019, 46, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Chao, S.C.; Young, D.G.; Oberg, C.J. Screening for inhibitory activity of essential oils on selected bacteria, fungi and viruses. J. Essent. Oil Res. 2000, 12, 639–649. [Google Scholar] [CrossRef]
- Oussalah, M.; Caillet, S.; Saucier, L.; Lacroix, M. Antimicrobial effects of selected plant essential oils on the growth of a Pseudomonas putida strain isolated from meat. Meat Sci. 2006, 73, 236–244. [Google Scholar] [CrossRef]
- Bouhdid, S.; Skali, S.; Idaomar, M.; Zhiri, A.; Baudoux, D.; Amensour, M.; Abrini, J. Antibacterial and antioxidant activities of Origanum compactum essential oil. Afr. J. Biotechnol. 2008, 7, 1563–1570. [Google Scholar]
- Llana-Ruiz-Cabello, M.; Gutiérrez-Praena, D.; Pichardo, S.; Moreno, F.J.; Bermúdez, J.M.; Aucejo, S.; Cameán, A.M. Cytotoxicity and morphological effects induced by carvacrol and thymolon the human cell line Caco-2. Food Chem. Toxicol. 2014, 64, 281–290. [Google Scholar] [CrossRef]
- Bauer, B.W.; Radovanovic, A.; Willson, N.-L.; Bajagai, Y.S.; Van, T.T.H.; Moore, R.J.; Stanley, D. Oregano: A potential prophylactic treatment for the intestinal microbiota. Heliyon 2019, 5, e02625. [Google Scholar] [CrossRef] [Green Version]
- Kwamin, F.; Gref, R.; Haubek, D.; Johansson, A. Interactions of extracts from selected chewing stick sources with Aggregatibacter actinomycetemcomitans. Bmc Res. Notes 2012, 5, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, A.; Claesson, R.; Hänström, L.; Sandström, G.; Kalfas, S. Polymorphonuclear leukocyte degranulation induced by leukotoxin from Actinobacillus actinomycetemcomitans. J. Periodontal Res. 2000, 35, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Claesson, R.; Johansson, A.; Hanstrom, L.; Kalfas, S. Release and activation of matrix metalloproteinase 8 from human neutrophils triggered by the leukotoxin of Actinobacillus actinomycetemcomitans. J.Periodontal. Res. 2002, 37, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Kelk, P.; Abd, H.; Claesson, R.; Sandström, G.; Sjöstedt, A.; Johansson, A. Cellular and molecular response of human macrophages exposed to Aggregatibacter actinomycetemcomitans leukotoxin. Cell. Death Dis. 2009, 2, e126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Åberg, C.H.; Kelk, P.; Johansson, A. Aggregatibacter actinomycetemcomitans: Virulence of its leukotoxin and association with aggressive periodontitis. Virulence 2015, 6, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Alsina, M.; Olle, E.; Frias, J. Improved, Low-Cost Selective Culture Medium for Actinobacillusactinomycetemcomitans. J. Clin. Microbiol. 2001, 39, 509–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zbinden, R. Aggregatibacter, Capnocytophaga, Eikenella, Kingella, Pasteurella, and other fastidious or rarely encountered gram-negative rods. In Manual of Clinical Microbiology, 11th ed.; American Society of Microbiology: Washington, DC, USA, 2015; pp. 652–666. [Google Scholar]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Magaldi, S.; Mata-Essayag, S.; DeCapriles, C.H.; Perez, C.; Colella, M.; Olaizola, C.; Ontiveros, Y. Well diffusion for antifungal susceptibility testing. Int. J. Infect. Dis. 2004, 8, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Valgas, C.; Souza, S.M.d.; Smânia, E.F.; SmâniaJr, A. Screening methods to determinean tibacterial activity of natural products. Braz. J. Microbiol. 2007, 38, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Adwan, G.; Abu-shanab, B.; Adwan, K. In vitro activity of certain drugs in combination with plant extracts against Staphylococcus aureus in fections. Afr. J. Biotechnol. 2009, 8, 4239–4241. [Google Scholar]
- Boyanova, L.; Gergova, G.; Nikolov, R.; Derejian, S.; Lazarova, E.; Katsarov, N.; Mitov, I. Activity of Bulgarian propolis against 94 Helicobacter pylori strains invitro by agar-well diffusion, agar dilution and disc diffusion methods. J. Med Microbiol. 2005, 54, 481–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oettinger-Barak, O.; Dashper, S.G.; Catmull, D.V.; Adams, G.G.; Sela, M.N.; Machtei, E.E.; Reynolds, E.C. Antibiotic susceptibility of Aggregatibacter actinomycetemcomitans JP2 in a biofilm. J. Oral Microbiol. 2013, 5, 20320. [Google Scholar] [CrossRef] [PubMed]
- Hammer, K.; Dry, L.; Johnson, M.; Michalak, E.; Carson, C.; Riley, T. Susceptibility of oral bacteria to Melaleuca alternifolia(teatree) oil in vitro. Oral Microbiol. Immunol. 2003, 18, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar] [CrossRef] [Green Version]
- Levison, M.E. Pharmacodynamics of antimicrobial drugs. Infect. Dis. Clin. 2004, 18, 451–465. [Google Scholar] [CrossRef]
- Maeß, M.B.; Wittig, B.; Cignarella, A.; Lorkowski, S. Reduced PMA enhances the responsiveness of transfected THP-1 macrophages to polarizing stimuli. J. Immunol. Methods 2014, 402, 76–81. [Google Scholar] [CrossRef]
- Lund, M.E.; To, J.; O’Brien, B.A.; Donnelly, S. The choice of phorbol12-myristate13-acetate differentiation protocol in fluences the response of THP-1 macrophages to apro-inflammatory stimulus. J. Immunol. Methods 2016, 430, 64–70. [Google Scholar] [CrossRef]
- Repetto, G.; DelPeso, A.; Zurita, J.L. Neutral red uptake assay for thee stimation of cell viability/cytotoxicity. Nat. Protoc. 2008, 3, 1125. [Google Scholar] [CrossRef]
- Johansson, A.; Hänström, L.; Kalfas, S. Inhibition of Actinobacillus actinomycetemcomitans leukotoxicity by bacteria from the subgingival flora. Oral Microbiol. Immunol. 2000, 15, 218–225. [Google Scholar] [CrossRef]
No | Compound | Formula | RT (min) | RI | Conc. (%) |
---|---|---|---|---|---|
1 | α-Thujene | C10H16 | 13.768 | 927 | 0.20 |
2 | α-pinene | C10H16 | 14.179 | 936 | 0.44 |
3 | 1-octen-3-ol | C8H16O | 16.403 | 942 | 1.69 |
4 | 3-Octanone | C8H16O | 16.877 | 989 | 0.53 |
5 | Dehydrocineole | C10H16O | 17.291 | 995 | 0.39 |
6 | 3-Octanol | C8H18O | 17.351 | 997 | 0.42 |
7 | p-cymene | C10H14 | 19.335 | 1028 | 16.25 |
8 | Limonene | C10H16 | 19.575 | 1031 | 0.28 |
9 | Eucalyptol | C10H18O | 19.782 | 1035 | 0.82 |
10 | γ-terpinene | C10H16 | 21.457 | 1061 | 1.03 |
11 | Cis-Sabinene hydrate | C10H18O | 22.01 | 1068 | 0.43 |
12 | 1-hepten-3-ol | C7H14O | 22.641 | 1084 | 0.21 |
13 | Linalool | C10H18O | 24.005 | 1101 | 2.16 |
14 | Borneol | C10H18O | 28.615 | 1167 | 0.37 |
15 | Terpinen-4-ol | C10H18O | 29.372 | 1179 | 0.77 |
16 | p-Cimen-8-ol | C10H14O | 29.822 | 1185 | 0.82 |
17 | α-terpineol | C10H18O | 30.296 | 1189 | 16.70 |
18 | Pulegone | C10H16O | 33.591 | 1251 | 0.49 |
19 | Thymol methyl ether | C11H16O | 33.721 | 1235 | 6.60 |
20 | p-Cymen-3-ol | C10H14O | 36.33 | 1287 | 0.88 |
21 | Thymol | C10H14O | 36.787 | 1290 | 12.06 |
22 | p-Thymol | C10H14O | 37.024 | 1291 | 0.74 |
23 | Carvacrol | C10H14O | 37.524 | 1300 | 32.36 |
24 | Caryophyllene | C15H24 | 45.356 | 1418 | 0.93 |
25 | Caryophyllene oxide | C15H24O | 55.195 | 1582 | 2.42 |
A. a. strains | Inhibition Zone Diameter (mm) 1* | p-value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
EO | Antimicrobials | |||||||||
O. vulgare 27.6 µg | AMC 2 | AML 3 | DO 4 | SP 5 | CIP 6 | MH 7 | VA 8 | MTZ 9 | ||
25 µg | 25 µg | 30 µg | 100 µg | 5 µg | 30 µg | 30 µg | 5 µg | |||
Breakpoints | ||||||||||
S ≥ 15 R < 15 | note10 | note11 | no info | S ≥ 30 R < 30 | S ≥ 24 R < 21 | no info | no info | |||
clinical strain 1 | 37.33 ± 2.08 | 31.66 ± 1.15 | 30.33 ± 0.57 | 25.00 ± 0.00 ** | 29.66 ± 0.57 | 28.33 ± 0.57 | 36.00 ± 1.73 | 0.00 | 0.00 | <0.001 |
S | S | S | S | -- | R | S | -- | R | ||
clinical strain 2 | 51.33 ± 0.57 ** | 32.66 ± 0.57 ** | 29.33 ± 1.15 ** | 23.33 ± 0.57 | 22.66 ± 0.57 | 26.66 ± 0.57 ** | 36.33 ± 0.57 ** | 14.33 ± 0.57 ** | 0.00 | <0.001 |
S | S | S | S | -- | R | S | -- | R | ||
clinical strain 3 | 65.66 ± 0.57 ** | 30.66 ± 0.57 | 30.66 ± 1.15 | 25.66 ± 0.57 | 28.66 ± 1.15 | 29.33 ± 1.15 | 38.33 ± 2.08 ** | 15.66 ± 0.57 ** | 0.00 | <0.001 |
S | S | S | S | -- | R | S | -- | R | ||
clinical strain 4 | 63.66 ± 0.57 ** | 32.00 ± 1.00 | 28.66 ± 1.15 | 27.66 ± 0.57 | 27.66 ± 1.15 | 33.00 ± 1.00 | 39.33 ± 0.57 ** | 15.00 ± 0.00 ** | 0.00 | <0,001 |
S | S | S | S | -- | S | S | -- | R | ||
clinical strain 5 | 65.33 ± 0.57 ** | 31.00 ± 1.73 | 27.33 ± 0.57 ** | 23.33 ± 0.57 ** | 28.33 ± 0.57 | 31.66 ± 0.57 | 38.00 ± 1.73 ** | 14.66 ± 0.57 ** | 0.00 | <0.001 |
S | S | S | S | -- | S | S | -- | R | ||
clinical strain 6 | 56.33 ± 1.52 ** | 31.00 ± 0.00 | 27.66 ± 0.57 | 22.66 ± 0.57 ** | 27.00 ± 1.00 | 31.66 ± 0.57 | 34.66 ± 0.57 ** | 15.33 ± 0.57 ** | 0.00 | <0.001 |
S | S | S | S | -- | S | S | -- | R | ||
ATCC 43717 (Suny aB75) | 69.66 ± 0.57 ** | 40.33 ± 0.57 ** | 25.66 ± 0.57 | 28.33 ± 0.57 | 29.33 ± 0.57 | 30.66 ± 0.57 | 33.66 ± 0.57 ** | 24.66 ± 0.57 | 0.00 | <0.001 |
S | S | S | S | -- | S | S | -- | R | ||
ATTC 43718 Y4 | 65.33 ± 0.57 ** | 25.33 ± 0.57 | 34.33 ± 0.57 | 28.66 ± 0.57 | 28.66 ± 1.15 ** | 31.00 ± 1.00 ** | 33.33 ± 0.57 | 24.33 ± 0.57 | 0.00 | <0.001 |
S | S | S | S | -- | S | S | -- | R | ||
HK1651 (JP2) | 67.66 ± 1.52 ** | 28.33 ± 0.57 | 27.66 ± 0.57 | 28.33 ± 0.57 | 27.33 ± 0.57 | 34.33 ± 0.57 | 32.00 ± 1.73 | 23.66 ± 0.57 ** | 0.00 | <0.001 |
S | S | S | S | -- | S | S | -- | R | ||
HK 921 (JP2) | 37.00 ± 1.73 | 29.66 ± 0.57 | 27.66 ± 0.57 | 29.00 ± 0.00 | 25.66 ± 0.57 | 34.66 ± 0.57 | 29.33 ± 1.15 | 20.33 ± 0.57 ** | 0.00 | <0.001 |
S | S | S | S | -- | S | S | -- | R | ||
HK1605 (non JP2) | 46.00 ± 1.00 ** | 29.33 ± 0.57 | 22.66 ± 0.57 ** | 26.66 ± 1.15 ** | 29.33 ± 1.15 | 29.33 ± 1.15 ** | 32.00 ± 1.00 ** | 19.66 ± 0.57 ** | 0.00 | <0.001 |
S | S | S | S | -- | R | S | -- | R |
A. Actinomycetemcomitans Strains | O. vulgareEO | ||
---|---|---|---|
MIC(μg/mL) * | MBC (μg/mL) * | MIC/MBC * | |
clinical strain 1 | 1.00 ± 0.43 | 1.51 ± 0.00 | 0.99 ± 0.87 |
clinical strain 2 | 0.49 ± 0.21 | 0.62 ± 0.21 | 1.34 ± 0.58 |
clinical strain 3 | 0.15 ± 0.51 | 0.18 ± 0.00 | 1.00 ± 0.00 |
clinical strain 4 | 0.12 ± 0.05 | 0.15 ± 0.51 | 0.49 ± 0.05 |
clinical strain 5 | 0.12 ± 0.05 | 0.15 ± 0.05 | 1.00 ± 0.86 |
clinical strain 6 | 0.49 ± 0.21 | 0.75 ± 0.00 | 0.66 ± 0.29 |
ATTC 43717 (Suny aB75) | 0.09 ± 0.00 | 0.09 ± 0.00 | 1.00 ± 0.00 |
Y4 ATTC 43718 | 0.18 ± 0.00 | 0.18 ± 0.00 | 1.00 ± 0.00 |
HK1651 (JP2) | 0.09 ± 0.00 | 0.09 ± 0.00 | 1.00 ± 0.00 |
HK 921( JP2) | 1.51 ± 0.00 | 2.01 ± 0.87 | 0.83 ± 0.28 |
HK1605 (non JP2) | 0.62 ± 0.21 | 0.75 ± 0.00 | 0.83 ± 0.29 |
Concentration (µL/mL) | Oil (%) | Guava (%) | Association oil and Guava (%) | p |
---|---|---|---|---|
0 | 99.99± 0.93 * | 100 ± 0.93 | 100 ± 0.93 | <0.001 |
4 | 93.82 ± 3.13 * | 93.55 ± 0.98 | 96.27 ± 0.98 | <0.001 |
8 | 95.73 ± 0.31 * | 91.92 ± 2.72 | 106.33 ± 1.65 | <0.001 |
16 | 98.99 ± 0.41 * | 106.60 ± 6.14 | 90.01 ± 8.17 | <0.001 |
31 | 102.52 ± 1.22 * | 108.51 ± 10.02 | 105.79 ± 20.35 | <0.001 |
62 | 78.86 ± 3.86 * | 85.39 ± 7.24 | 93.55 ± 2.52 | <0.001 |
125 | 59.28 ± 1.72 * | 98.72 ± 6.81 | 84.30 ± 2.61 | <0.001 |
250 | −4.07 ± 0.31 * | 93.01 ± 4.31 | 98.99 ± 9.99 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akkaoui, S.; Johansson, A.; Yagoubi, M.; Haubek, D.; El hamidi, A.; Rida, S.; Claesson, R.; Ennibi, O. Chemical Composition, Antimicrobial activity, In Vitro Cytotoxicity and Leukotoxin Neutralization of Essential Oil from Origanum vulgare against Aggregatibacter actinomycetemcomitans. Pathogens 2020, 9, 192. https://doi.org/10.3390/pathogens9030192
Akkaoui S, Johansson A, Yagoubi M, Haubek D, El hamidi A, Rida S, Claesson R, Ennibi O. Chemical Composition, Antimicrobial activity, In Vitro Cytotoxicity and Leukotoxin Neutralization of Essential Oil from Origanum vulgare against Aggregatibacter actinomycetemcomitans. Pathogens. 2020; 9(3):192. https://doi.org/10.3390/pathogens9030192
Chicago/Turabian StyleAkkaoui, Sanae, Anders Johansson, Maâmar Yagoubi, Dorte Haubek, Adnane El hamidi, Sana Rida, Rolf Claesson, and OumKeltoum Ennibi. 2020. "Chemical Composition, Antimicrobial activity, In Vitro Cytotoxicity and Leukotoxin Neutralization of Essential Oil from Origanum vulgare against Aggregatibacter actinomycetemcomitans" Pathogens 9, no. 3: 192. https://doi.org/10.3390/pathogens9030192
APA StyleAkkaoui, S., Johansson, A., Yagoubi, M., Haubek, D., El hamidi, A., Rida, S., Claesson, R., & Ennibi, O. (2020). Chemical Composition, Antimicrobial activity, In Vitro Cytotoxicity and Leukotoxin Neutralization of Essential Oil from Origanum vulgare against Aggregatibacter actinomycetemcomitans. Pathogens, 9(3), 192. https://doi.org/10.3390/pathogens9030192