Listeria monocytogenes Response to Anaerobic Environments
Abstract
:1. Introduction
2. Survival of L. monocytogenes under Anaerobic Conditions
2.1. Metabolic Pathways
2.2. Adaption to Changes in pH
2.3. Bile Tolerance
2.4. Heat Tolerance
2.5. Cold Tolerance
2.6. Invasion and Intracellular Survival
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Murray, E.G.D.; Webb, R.A.; Swann, M.B.R. A disease of rabbit characterised by a large mononuclear leucocytosis, caused by a hitherto undescribed bacillus: Bacterium monocytogenes (n. sp.). J. Pathol. Bacteriol. 1926, 29, 407–439. [Google Scholar] [CrossRef]
- Carbonnelle, B.; Cottin, J.; Parvery, F.; Chambreuil, G.; Kouyoumdjian, S.; Le Lirzin, M.; Cordier, G.; Vincent, F. Epidemic of listeriosis in Western France (1975–1976). Rev. Epidemiol. Sante Publique 1979, 26, 451–467. [Google Scholar] [PubMed]
- Stavru, F.; Archambaud, C.; Cossart, P. Cell biology and immunology of Listeria monocytogenes infections: Novel insights. Immunol. Rev. 2011, 240, 160–184. [Google Scholar] [CrossRef] [PubMed]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef]
- Cossart, P. Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes. Proc. Natl. Acad. Sci. USA 2011, 108, 19484–19491. [Google Scholar] [CrossRef] [Green Version]
- Bo Andersen, J.; Roldgaard, B.B.; Christensen, B.B.; Licht, T.R. Oxygen restriction increases the infective potential of Listeria monocytogenes In Vitro in Caco-2 cells and In Vivo in guinea pigs. BMC Microbiol. 2007, 7, 55. [Google Scholar] [CrossRef] [Green Version]
- Stritzker, J.; Janda, J.; Schoen, C.; Taupp, M.; Pilgrim, S.; Gentschev, I.; Schreier, P.; Geginat, G.; Goebel, W. Growth, virulence, and immunogenicity of Listeria monocytogenes aro mutants. Infect. Immun. 2004, 72, 5622–5629. [Google Scholar] [CrossRef] [Green Version]
- Sword, C.P. Mechanisms of pathogenesis in Listeria monocytogenes infection. Influence of iron. J. Bacteriol. 1966, 92, 536–542. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.H.; Stins, M.F.; Kim, K.S. Bacterial penetration across the blood-brain barrier during the development of neonatal meningitis. Microbes Infect. 2000, 2, 1237–1244. [Google Scholar] [CrossRef]
- Lecuit, M. Understanding how Listeria monocytogenes targets and crosses host barriers. Clin. Microbiol. Infect. 2005, 11, 430–436. [Google Scholar] [CrossRef] [Green Version]
- Lungu, B.; Ricke, S.C.; Johnson, M.G. Growth, survival, proliferation and pathogenesis of Listeria monocytogenes under low oxygen or anaerobic conditions: A review. Anaerobe 2009, 15, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Couvert, O.; Divanac’h, M.L.; Lochardet, A.; Thuault, D.; Huchet, V. Modelling the effect of oxygen concentration on bacterial growth rates. Food Microbiol. 2019, 77, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Müller-Herbst, S.; Wustner, S.; Muhlig, A.; Eder, D.; Fuchs, T.M.; Held, C.; Ehrenreich, A.; Scherer, S. Identification of genes essential for anaerobic growth of Listeria monocytogenes. Microbiology 2014, 160, 752–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, Y.; Yousef, A.E. Adaptation to sublethal environmental stresses protects Listeria monocytogenes against lethal preservation factors. Appl. Environ. Microbiol. 1997, 63, 1252–1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pine, L.; Malcolm, G.B.; Brooks, J.B.; Daneshvar, M.I. Physiological studies on the growth and utilization of sugars by Listeria species. Can. J. Microbiol. 1989, 35, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Romick, T.L.; Fleming, H.P.; McFeeters, R.F. Aerobic and anaerobic metabolism of Listeria monocytogenes in defined glucose medium. Appl. Environ. Microbiol. 1996, 62, 304–307. [Google Scholar] [CrossRef] [Green Version]
- Wallace, N.; Newton, E.; Abrams, E.; Zani, A.; Sun, Y. Metabolic determinants in Listeria monocytogenes anaerobic listeriolysin O production. Arch. Microbiol. 2017, 199, 827–837. [Google Scholar] [CrossRef] [Green Version]
- Ricke, S.C. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult. Sci. 2003, 82, 632–639. [Google Scholar] [CrossRef]
- Rinehart, E.; Newton, E.; Marasco, M.A.; Beemiller, K.; Zani, A.; Muratore, M.K.; Weis, J.; Steinbicker, N.; Wallace, N.; Sun, Y. Listeria monocytogenes response to propionate is differentially modulated by anaerobicity. Pathogens 2018, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Sewell, D.; Allen, S.; Phillips, C.A. Oxygen limitation induces acid tolerance and impacts simulated gastro-intestinal transit in Listeria monocytogenes J0161. Gut Pathog. 2015, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Jydegaard-Axelsen, A.M.; Aaes-Jorgensen, A.; Koch, A.G.; Jensen, J.S.; Knochel, S. Changes in growth, rRNA content, and cell morphology of Listeria monocytogenes induced by CO2 up-and downshift. Int. J. Food Microbiol. 2005, 98, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, R.E.; Ross, T.; Bowman, J.P.; Britz, M.L. MudPIT profiling reveals a link between anaerobic metabolism and the alkaline adaptive response of Listeria monocytogenes EGD-e. PLoS ONE 2013, 8, e54157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monte, M.J.; Marin, J.J.; Antelo, A.; Vazquez-Tato, J. Bile acids: Chemistry, physiology, and pathophysiology. World J. Gastroenterol. 2009, 15, 804–816. [Google Scholar] [CrossRef] [PubMed]
- Coleman, R.; Iqbal, S.; Godfrey, P.P.; Billington, D. Membranes and bile formation. Composition of several mammalian biles and their membrane-damaging properties. Biochem. J. 1979, 178, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, C.; Bernstein, H.; Payne, C.M.; Beard, S.E.; Schneider, J. Bile salt activation of stress response promoters in Escherichia coli. Curr. Microbiol. 1999, 39, 68–72. [Google Scholar] [CrossRef]
- Prieto, A.I.; Ramos-Morales, F.; Casadesus, J. Bile-Induced DNA damage in Salmonella enterica. Genetics 2004, 168, 1787–1794. [Google Scholar] [CrossRef] [Green Version]
- Dowd, G.C.; Joyce, S.A.; Hill, C.; Gahan, C.G. Investigation of the mechanisms by which Listeria monocytogenes grows in porcine gallbladder bile. Infect. Immun. 2011, 79, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Orsi, R.H.; den Bakker, H.C.; Wiedmann, M. Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. Int. J. Med. Microbiol. 2011, 301, 79–96. [Google Scholar] [CrossRef]
- White, S.J.; McClung, D.M.; Wilson, J.G.; Roberts, B.N.; Donaldson, J.R. Influence of pH on bile sensitivity among various strains of Listeria monocytogenes under aerobic and anaerobic conditions. J. Med. Microbiol. 2015, 64, 1287–1296. [Google Scholar] [CrossRef]
- Begley, M.; Gahan, C.G.; Hill, C. Bile stress response in Listeria monocytogenes LO28: Adaptation, cross-protection, and identification of genetic loci involved in bile resistance. Appl. Environ. Microbiol. 2002, 68, 6005–6012. [Google Scholar] [CrossRef] [Green Version]
- Wright, M.L.; Pendarvis, K.; Nanduri, B.; Edelmann, M.J.; Jenkins, H.N.; Reddy, J.S.; Wilson, J.G.; Ding, X.; Broadway, P.R.; Ammari, M.G.; et al. The effect of oxygen on bile resistance in Listeria monocytogenes. J. Proteom. Bioinform. 2016, 9, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Payne, A.; Schmidt, T.B.; Nanduri, B.; Pendarvis, K.; Pittman, J.R.; Thornton, J.A.; Grissett, J.; Donaldson, J.R. Proteomic analysis of the response of Listeria monocytogenes to bile salts under anaerobic conditions. J. Med. Microbiol. 2013, 62, 25–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doyle, M.E.; Mazzotta, A.S.; Wang, T.; Wiseman, D.W.; Scott, V.N. Heat resistance of Listeria monocytogenes. J. Food Prot. 2001, 64, 410–429. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, R.L.; Klawitter, L.A. Effects of temperature and oxygen on the growth of Listeria monocytogenes at pH 4.5. J. Food Sci. 1990, 55, 1754–1756. [Google Scholar] [CrossRef]
- Knabel, S.J.; Walker, H.W.; Hartman, P.A.; Mendonca, A.F. Effects of growth temperature and strictly anaerobic recovery on the survival of Listeria monocytogenes during pasteurization. Appl. Environ. Microbiol. 1990, 56, 370–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doyle, M.P.; Glass, K.A.; Beery, J.T.; Garcia, G.A.; Pollard, D.J.; Schultz, R.D. Survival of Listeria monocytogenes in milk during high-temperature, short-time pasteurization. Appl. Environ. Microbiol. 1987, 53, 1433–1438. [Google Scholar] [CrossRef] [Green Version]
- Crawford, R.G.; Beliveau, C.M.; Peeler, J.T.; Donnelly, C.W.; Bunning, V.K. Comparative recovery of uninjured and heat-injured Listeria monocytogenes cells from bovine milk. Appl. Environ. Microbiol. 1989, 55, 1490–1494. [Google Scholar] [CrossRef] [Green Version]
- Hudson, J.A.; Mott, S.J.; Penney, N. Growth of Listeria monocytogenes, Aeromonas hydrophila, and Yersinia enterocolitica on vacuum and saturated carbon dioxide controlled atmosphere-packaged sliced roast beef. J. Food Prot. 1994, 57, 204–208. [Google Scholar] [CrossRef]
- Barbosa, W.B.; Cabedo, L.; Wederquist, H.J.; Sofos, J.N.; Schmidt, G.R. Growth variation among species and strains of Listeria in culture broth. J. Food Prot. 1994, 57, 765–769. [Google Scholar] [CrossRef]
- Zhu, K.; Ding, X.; Julotok, M.; Wilkinson, B.J. Exogenous isoleucine and fatty acid shortening ensure the high content of anteiso-C15:0 fatty acid required for low-temperature growth of Listeria monocytogenes. Appl. Environ. Microbiol. 2005, 71, 8002–8007. [Google Scholar] [CrossRef] [Green Version]
- Tasara, T.; Stephan, R. Cold stress tolerance of Listeria monocytogenes: A review of molecular adaptive mechanisms and food safety implications. J. Food Prot. 2006, 69, 1473–1484. [Google Scholar] [CrossRef] [PubMed]
- Garmyn, D.; Augagneur, Y.; Gal, L.; Vivant, A.L.; Piveteau, P. Listeria monocytogenes differential transcriptome analysis reveals temperature-dependent Agr regulation and suggests overlaps with other regulons. PLoS ONE 2012, 7, e43154. [Google Scholar] [CrossRef] [PubMed]
- Rantsiou, K.; Greppi, A.; Garosi, M.; Acquadro, A.; Mataragas, M.; Cocolin, L. Strain dependent expression of stress response and virulence genes of Listeria monocytogenes in meat juices as determined by microarray. Int. J. Food Microbiol. 2012, 152, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Durack, J.; Ross, T.; Bowman, J.P. Characterisation of the transcriptomes of genetically diverse Listeria monocytogenes exposed to hyperosmotic and low temperature conditions reveal global stress-adaptation mechanisms. PLoS ONE 2013, 8, e73603. [Google Scholar] [CrossRef] [Green Version]
- Cordero, N.; Maza, F.; Navea-Perez, H.; Aravena, A.; Marquez-Fontt, B.; Navarrete, P.; Figueroa, G.; Gonzalez, M.; Latorre, M.; Reyes-Jara, A. Different transcriptional responses from slow and fast growth rate strains of Listeria monocytogenes adapted to low temperature. Front. Microbiol. 2016, 7, 229. [Google Scholar] [CrossRef]
- Annous, B.A.; Becker, L.A.; Bayles, D.O.; Labeda, D.P.; Wilkinson, B.J. Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl. Environ. Microbiol. 1997, 63, 3887–3894. [Google Scholar] [CrossRef] [Green Version]
- Verheul, A.; Glaasker, E.; Poolman, B.; Abee, T. Betaine and L-carnitine transport by Listeria monocytogenes Scott A in response to osmotic signals. J. Bacteriol. 1997, 179, 6979–6985. [Google Scholar] [CrossRef] [Green Version]
- Ko, R.; Smith, L.T.; Smith, G.M. Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. J. Bacteriol. 1994, 176, 426–431. [Google Scholar] [CrossRef] [Green Version]
- Buchanan, R.L.; Klawitter, L.A. Effect of temperature history on the growth of Listeria monocytogenes Scott A at refrigeration temperatures. Int. J. Food Microbiol. 1991, 12, 235–245. [Google Scholar] [CrossRef]
- Bayles, D.O.; Annous, B.A.; Wilkinson, B.J. Cold stress proteins induced in Listeria monocytogenes in response to temperature downshock and growth at low temperatures. Appl. Environ. Microbiol. 1996, 62, 1116–1119. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.Y.; Pensinger, D.A.; Sauer, J.D. Listeria monocytogenes cytosolic metabolism promotes replication, survival, and evasion of innate immunity. Cell. Microbiol. 2017, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, J.; Paul, O.; Park, S.H.; White, S.J.; Budachetri, K.; McClung, D.M.; Wilson, J.G.; Olivier, A.K.; Thornton, J.A.; Broadway, P.R.; et al. Oxygen deprivation influences the survival of Listeria monocytogenes in gerbils. Transl. Anim. Sci. 2019, 3, 102–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ofer, A.; Kreft, J.; Logan, D.T.; Cohen, G.; Borovok, I.; Aharonowitz, Y. Implications of the inability of Listeria monocytogenes EGD-e to grow anaerobically due to a deletion in the class III NrdD ribonucleotide reductase for its use as a model laboratory strain. J. Bacteriol. 2011, 193, 2931–2940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roberts, B.N.; Chakravarty, D.; Gardner, J.C., III; Ricke, S.C.; Donaldson, J.R. Listeria monocytogenes Response to Anaerobic Environments. Pathogens 2020, 9, 210. https://doi.org/10.3390/pathogens9030210
Roberts BN, Chakravarty D, Gardner JC III, Ricke SC, Donaldson JR. Listeria monocytogenes Response to Anaerobic Environments. Pathogens. 2020; 9(3):210. https://doi.org/10.3390/pathogens9030210
Chicago/Turabian StyleRoberts, Brandy N., Damayanti Chakravarty, J.C. Gardner, III, Steven C. Ricke, and Janet R. Donaldson. 2020. "Listeria monocytogenes Response to Anaerobic Environments" Pathogens 9, no. 3: 210. https://doi.org/10.3390/pathogens9030210
APA StyleRoberts, B. N., Chakravarty, D., Gardner, J. C., III, Ricke, S. C., & Donaldson, J. R. (2020). Listeria monocytogenes Response to Anaerobic Environments. Pathogens, 9(3), 210. https://doi.org/10.3390/pathogens9030210