Immunotherapy against Prion Disease
Abstract
:1. Background
2. Why Is Immunotherapy a Plausible Choice for Prion Disease?
3. Active Immunization against Prion Diseases
4. Passive Immunization against Prion Diseases
5. Difficulties and Potential Approaches to a Successful Immunotherapy against Prion Disease
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Prusiner, S.B. Novel proteinaceous infectious particles cause scrapie. Science 1982, 216, 136–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prusiner, S.B. Prions. Proc. Natl. Acad. Sci. USA 1998, 95, 13363–13383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ironside, J.W.; Ritchie, D.L.; Head, M.W. Prion diseases. Handb. Clin. Neurol. 2017, 145, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Houston, F.; Andreoletti, O. Animal prion diseases: The risks to human health. Brain Pathol. 2019, 29, 248–262. [Google Scholar] [CrossRef] [Green Version]
- Sarnataro, D.; Pepe, A.; Zurzolo, C. Cell biology of prion protein. Prog. Mol. Biol. Transl. Sci. 2017, 150, 57–82. [Google Scholar] [CrossRef]
- Bendheim, P.E.; Brown, H.R.; Rudelli, R.D.; Scala, L.J.; Goller, N.L.; Wen, G.Y.; Kascsak, R.J.; Cashman, N.R.; Bolton, D.C. Nearly ubiquitous tissue distribution of the scrapie agent precursor protein. Neurology 1992, 42, 149–156. [Google Scholar] [CrossRef]
- Lloyd, S.E.; Linehan, J.M.; Desbruslais, M.; Joiner, S.; Buckell, J.; Brandner, S.; Wadsworth, J.D.; Collinge, J. Characterization of two distinct prion strains derived from bovine spongiform encephalopathy transmissions to inbred mice. J. Gen. Virol. 2004, 85, 2471–2478. [Google Scholar] [CrossRef]
- Bruce, M.E.; Boyle, A.; Cousens, S.; McConnell, I.; Foster, J.; Goldmann, W.; Fraser, H. Strain characterization of natural sheep scrapie and comparison with BSE. J. Gen. Virol. 2002, 83, 695–704. [Google Scholar] [CrossRef]
- Igel-Egalon, A.; Beringue, V.; Rezaei, H.; Sibille, P. Prion strains and transmission barrier phenomena. Pathogens 2018, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Bartz, J.C. Prion strain diversity. Cold Spring Harb. Perspect. Med. 2016, 6. [Google Scholar] [CrossRef]
- Collinge, J.; Clarke, A.R. A general model of prion strains and their pathogenicity. Science 2007, 318, 930–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angers, R.C.; Kang, H.E.; Napier, D.; Browning, S.; Seward, T.; Mathiason, C.; Balachandran, A.; McKenzie, D.; Castilla, J.; Soto, C.; et al. Prion strain mutation determined by prion protein conformational compatibility and primary structure. Science 2010, 328, 1154–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giles, K.; Olson, S.H.; Prusiner, S.B. Developing therapeutics for PrP prion diseases. Cold Spring Harb. Perspect. Med. 2017, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguzzi, A.; Lakkaraju, A.K.K.; Frontzek, K. Toward therapy of human prion diseases. Annu. Rev. Pharmacol. Toxicol. 2018, 58, 331–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roettger, Y.; Du, Y.; Bacher, M.; Zerr, I.; Dodel, R.; Bach, J.P. Immunotherapy in prion disease. Nat. Rev. Neurol. 2013, 9, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Gilch, S.; Schatzl, H.M. Aptamers against prion proteins and prions. Cell. Mol. Life Sci. 2009, 66, 2445–2455. [Google Scholar] [CrossRef]
- Mashima, T.; Nishikawa, F.; Kamatari, Y.O.; Fujiwara, H.; Saimura, M.; Nagata, T.; Kodaki, T.; Nishikawa, S.; Kuwata, K.; Katahira, M. Anti-Prion activity of an RNA aptamer and its structural basis. Nucleic Acids Res. 2013, 41, 1355–1362. [Google Scholar] [CrossRef] [Green Version]
- Aguzzi, A.; Nuvolone, M.; Zhu, C. The immunobiology of prion diseases. Nat. Rev. Immunol. 2013, 13, 888–902. [Google Scholar] [CrossRef]
- Raymond, G.J.; Zhao, H.T.; Race, B.; Raymond, L.D.; Williams, K.; Swayze, E.E.; Graffam, S.; Le, J.; Caron, T.; Stathopoulos, J.; et al. Antisense oligonucleotides extend survival of prion-infected mice. JCI Insight 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Hannaoui, S.; Arifin, M.I.; Chang, S.C.; Yu, J.; Gopalakrishnan, P.; Doh-Ura, K.; Schatzl, H.M.; Gilch, S. Cellulose ether treatment in vivo generates chronic wasting disease prions with reduced protease resistance and delayed disease progression. J. Neurochem. 2019, 152, 727–740. [Google Scholar] [CrossRef] [Green Version]
- Abdulrahman, B.A.; Tahir, W.; Doh-Ura, K.; Gilch, S.; Schatzl, H.M. Combining autophagy stimulators and cellulose ethers for therapy against prion disease. Prion 2019, 13, 185–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teruya, K.; Oguma, A.; Nishizawa, K.; Kawata, M.; Sakasegawa, Y.; Kamitakahara, H.; Doh-Ura, K. A single subcutaneous injection of cellulose ethers administered long before infection confers sustained protection against prion diseases in rodents. PLoS Pathog. 2016, 12, e1006045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, A.R.; Enever, P.; Tayebi, M.; Mushens, R.; Linehan, J.; Brandner, S.; Anstee, D.; Collinge, J.; Hawke, S. Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature 2003, 422, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Dyer, C. British man with CJD gets experimental treatment in world first. BMJ 2018, 363. [Google Scholar] [CrossRef] [PubMed]
- Brody, D.L.; Holtzman, D.M. Active and passive immunotherapy for neurodegenerative disorders. Annu. Rev. Neurosci. 2008, 31, 175–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valera, E.; Spencer, B.; Masliah, E. Immunotherapeutic approaches targeting amyloid-β, α-synuclein, and tau for the treatment of neurodegenerative disorders. Neurotherapeutics 2016, 13, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, R.N.; Lambracht-Washington, D. Active immunotherapy to prevent Alzheimer disease-a DNA amyloid β 1–42 trimer vaccine. JAMA Neurol. 2019. [Google Scholar] [CrossRef]
- Sevigny, J.; Chiao, P.; Bussiere, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature 2016, 537, 50–56. [Google Scholar] [CrossRef]
- Brys, M.; Fanning, L.; Hung, S.; Ellenbogen, A.; Penner, N.; Yang, M.; Welch, M.; Koenig, E.; David, E.; Fox, T.; et al. Randomized phase I clinical trial of anti-alpha-synuclein antibody BIIB054. Mov. Disord. 2019, 34, 1154–1163. [Google Scholar] [CrossRef]
- Weihofen, A.; Liu, Y.; Arndt, J.W.; Huy, C.; Quan, C.; Smith, B.A.; Baeriswyl, J.L.; Cavegn, N.; Senn, L.; Su, L.; et al. Development of an aggregate-selective, human-derived α-synuclein antibody BIIB054 that ameliorates disease phenotypes in Parkinson’s disease models. Neurobiol. Dis. 2019, 124, 276–288. [Google Scholar] [CrossRef]
- Loureiro, J.C.; Pais, M.V.; Stella, F.; Radanovic, M.; Teixeira, A.L.; Forlenza, O.V.; de Souza, L.C. Passive antiamyloid immunotherapy for Alzheimer’s disease. Curr. Opin. Psychiatry 2020. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, X.; Yuan, C.G.; Ma, J. Generating a prion with bacterially expressed recombinant prion protein. Science 2010, 327, 1132–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deleault, N.R.; Walsh, D.J.; Piro, J.R.; Wang, F.; Wang, X.; Ma, J.; Rees, J.R.; Supattapone, S. Cofactor molecules maintain infectious conformation and restrict strain properties in purified prions. Proc. Natl. Acad. Sci. USA 2012, 109, E1938–E1946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caughey, B.; Baron, G.S.; Chesebro, B.; Jeffrey, M. Getting a grip on prions: Oligomers, amyloids, and pathological membrane interactions. Annu. Rev. Biochem. 2009, 78, 177–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reimann, R.R.; Sonati, T.; Hornemann, S.; Herrmann, U.S.; Arand, M.; Hawke, S.; Aguzzi, A. Differential toxicity of antibodies to the prion protein. PLoS Pathog. 2016, 12, e1005401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, J.A.; Radford, H.; Peretti, D.; Steinert, J.R.; Verity, N.; Martin, M.G.; Halliday, M.; Morgan, J.; Dinsdale, D.; Ortori, C.A.; et al. Sustained translational repression by eIF2β-P mediates prion neurodegeneration. Nature 2012, 485, 507–511. [Google Scholar] [CrossRef] [Green Version]
- Moreno, J.A.; Halliday, M.; Molloy, C.; Radford, H.; Verity, N.; Axten, J.M.; Ortori, C.A.; Willis, A.E.; Fischer, P.M.; Barrett, D.A.; et al. Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci. Transl. Med. 2013, 5. [Google Scholar] [CrossRef]
- Giles, K.; Berry, D.B.; Condello, C.; Dugger, B.N.; Li, Z.; Oehler, A.; Bhardwaj, S.; Elepano, M.; Guan, S.; Silber, B.M.; et al. Optimization of aryl amides that extend survival in prion-infected mice. J. Pharmacol. Exp. Ther. 2016, 358, 537–547. [Google Scholar] [CrossRef] [Green Version]
- Berry, D.B.; Lu, D.; Geva, M.; Watts, J.C.; Bhardwaj, S.; Oehler, A.; Renslo, A.R.; DeArmond, S.J.; Prusiner, S.B.; Giles, K. Drug resistance confounding prion therapeutics. Proc. Natl. Acad. Sci. USA 2013, 110, E4160–E4169. [Google Scholar] [CrossRef] [Green Version]
- Berry, D.; Giles, K.; Oehler, A.; Bhardwaj, S.; DeArmond, S.J.; Prusiner, S.B. Use of a 2-aminothiazole to treat chronic wasting disease in transgenic mice. J. Infect. Dis. 2015, 212 (Suppl. 1), S17–S25. [Google Scholar] [CrossRef]
- Wopfner, F.; Weidenhofer, G.; Schneider, R.; von Brunn, A.; Gilch, S.; Schwarz, T.F.; Werner, T.; Schatzl, H.M. Analysis of 27 mammalian and 9 avian PrPs reveals high conservation of flexible regions of the prion protein. J. Mol. Biol. 1999, 289, 1163–1178. [Google Scholar] [CrossRef] [PubMed]
- Sevillano, A.M.; Fernandez-Borges, N.; Younas, N.; Wang, F.; Elezgarai, R.S.; Bravo, S.; Vazquez-Fernandez, E.; Rosa, I.; Erana, H.; Gil, D.; et al. Recombinant PrPSc shares structural features with brain-derived PrPSc: Insights from limited proteolysis. PLoS Pathog. 2018, 14, e1006797. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.J.; Vazquez-Fernandez, E.; Onisko, B.; Requena, J.R. Proteinase K and the structure of PrPSc: The good, the bad and the ugly. Virus Res. 2015, 207, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.S.; Wilson, I.A. Structural characterization of viral epitopes recognized by broadly cross-reactive antibodies. Curr. Top. Microbiol. Immunol. 2015, 386, 323–341. [Google Scholar] [CrossRef] [Green Version]
- Abskharon, R.N.; Giachin, G.; Wohlkonig, A.; Soror, S.H.; Pardon, E.; Legname, G.; Steyaert, J. Probing the N-terminal β-sheet conversion in the crystal structure of the human prion protein bound to a nanobody. J. Am. Chem. Soc. 2014, 136, 937–944. [Google Scholar] [CrossRef]
- Osterholm, M.T.; Anderson, C.J.; Zabel, M.D.; Scheftel, J.M.; Moore, K.A.; Appleby, B.S. Chronic wasting disease in cervids: implications for prion transmission to humans and other animal species. mBio 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Rivera, N.A.; Brandt, A.L.; Novakofski, J.E.; Mateus-Pinilla, N.E. Chronic wasting disease in cervids: Prevalence, impact and management strategies. Vet. Med. 2019, 10, 123–139. [Google Scholar] [CrossRef] [Green Version]
- Benestad, S.L.; Mitchell, G.; Simmons, M.; Ytrehus, B.; Vikoren, T. First case of chronic wasting disease in Europe in a Norwegian free-ranging reindeer. Vet. Res. 2016, 47, 88. [Google Scholar] [CrossRef]
- Sohn, H.J.; Kim, J.H.; Choi, K.S.; Nah, J.J.; Joo, Y.S.; Jean, Y.H.; Ahn, S.W.; Kim, O.K.; Kim, D.Y.; Balachandran, A. A case of chronic wasting disease in an elk imported to Korea from Canada. J. Vet. Med. Sci. 2002, 64, 855–858. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.Y.; Shon, H.J.; Joo, Y.S.; Mun, U.K.; Kang, K.S.; Lee, Y.S. Additional cases of chronic wasting disease in imported deer in Korea. J. Vet. Med. Sci. 2005, 67, 753–759. [Google Scholar] [CrossRef] [Green Version]
- Williams, E.S. Chronic wasting disease. Vet. Pathol. 2005, 42, 530–549. [Google Scholar] [CrossRef] [PubMed]
- Kurt, T.D.; Sigurdson, C.J. Cross-species transmission of CWD prions. Prion 2016, 10, 83–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannaoui, S.; Schatzl, H.M.; Gilch, S. Chronic wasting disease: Emerging prions and their potential risk. PLoS Pathog. 2017, 13, e1006619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsh, R.F.; Kincaid, A.E.; Bessen, R.A.; Bartz, J.C. Interspecies transmission of chronic wasting disease prions to squirrel monkeys (Saimiri sciureus). J. Virol. 2005, 79, 13794–13796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Race, B.; Meade-White, K.D.; Miller, M.W.; Barbian, K.D.; Rubenstein, R.; LaFauci, G.; Cervenakova, L.; Favara, C.; Gardner, D.; Long, D.; et al. Susceptibilities of nonhuman primates to chronic wasting disease. Emerg. Infect. Dis. 2009, 15, 1366–1376. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Browning, S.; Mahal, S.P.; Oelschlegel, A.M.; Weissmann, C. Darwinian evolution of prions in cell culture. Science 2010, 327, 869–872. [Google Scholar] [CrossRef] [Green Version]
- Haley, N.J.; Hoover, E.A. Chronic wasting disease of cervids: Current knowledge and future perspectives. Annu. Rev. Anim. Biosci. 2015, 3, 305–325. [Google Scholar] [CrossRef]
- Mathiason, C.K.; Hays, S.A.; Powers, J.; Hayes-Klug, J.; Langenberg, J.; Dahmes, S.J.; Osborn, D.A.; Miller, K.V.; Warren, R.J.; Mason, G.L.; et al. Infectious prions in pre-clinical deer and transmission of chronic wasting disease solely by environmental exposure. PLoS ONE 2009, 4, e5916. [Google Scholar] [CrossRef] [Green Version]
- Goni, F.; Mathiason, C.K.; Yim, L.; Wong, K.; Hayes-Klug, J.; Nalls, A.; Peyser, D.; Estevez, V.; Denkers, N.; Xu, J.; et al. Mucosal immunization with an attenuated Salmonella vaccine partially protects white-tailed deer from chronic wasting disease. Vaccine 2015, 33, 726–733. [Google Scholar] [CrossRef] [Green Version]
- Mabbott, N.A. How do PrP(Sc) prions spread between host species, and within hosts? Pathogens 2017, 6, 60. [Google Scholar] [CrossRef] [Green Version]
- Polymenidou, M.; Heppner, F.L.; Pellicioli, E.C.; Urich, E.; Miele, G.; Braun, N.; Wopfner, F.; Schatzl, H.M.; Becher, B.; Aguzzi, A. Humoral immune response to native eukaryotic prion protein correlates with anti-prion protection. Proc. Natl. Acad. Sci. USA 2004, 101 (Suppl. 2), 14670–14676. [Google Scholar] [CrossRef] [Green Version]
- Gregoire, S.; Bergot, A.S.; Feraudet, C.; Carnaud, C.; Aucouturier, P.; Rosset, M.B. The murine B cell repertoire is severely selected against endogenous cellular prion protein. J. Immunol. 2005, 175, 6443–6449. [Google Scholar] [CrossRef] [PubMed]
- Souan, L.; Tal, Y.; Felling, Y.; Cohen, I.R.; Taraboulos, A.; Mor, F. Modulation of proteinase-K resistant prion protein by prion peptide immunization. Eur. J. Immunol. 2001, 31, 2338–2346. [Google Scholar] [CrossRef]
- Handisurya, A.; Gilch, S.; Winter, D.; Shafti-Keramat, S.; Maurer, D.; Schatzl, H.M.; Kirnbauer, R. Vaccination with prion peptide-displaying papillomavirus-like particles induces autoantibodies to normal prion protein that interfere with pathologic prion protein production in infected cells. FEBS J. 2007, 274, 1747–1758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikles, D.; Bach, P.; Boller, K.; Merten, C.A.; Montrasio, F.; Heppner, F.L.; Aguzzi, A.; Cichutek, K.; Kalinke, U.; Buchholz, C.J. Circumventing tolerance to the prion protein (PrP): Vaccination with PrP-displaying retrovirus particles induces humoral immune responses against the native form of cellular PrP. J. Virol. 2005, 79, 4033–4042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosset, M.B.; Ballerini, C.; Gregoire, S.; Metharom, P.; Carnaud, C.; Aucouturier, P. Breaking immune tolerance to the prion protein using prion protein peptides plus oligodeoxynucleotide-CpG in mice. J. Immunol. 2004, 172, 5168–5174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachy, V.; Ballerini, C.; Gourdain, P.; Prignon, A.; Iken, S.; Antoine, N.; Rosset, M.; Carnaud, C. Mouse vaccination with dendritic cells loaded with prion protein peptides overcomes tolerance and delays scrapie. J. Gen. Virol. 2010, 91, 809–820. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz, D.H.; Thapa, S.; Abdulrahman, B.; Lu, L.; Jain, S.; Schatzl, H.M. Immunization of cervidized transgenic mice with multimeric deer prion protein induces self-antibodies that antagonize chronic wasting disease infectivity In Vitro. Sci. Rep. 2017, 7, 10538. [Google Scholar] [CrossRef] [Green Version]
- Abdelaziz, D.H.; Thapa, S.; Brandon, J.; Maybee, J.; Vankuppeveld, L.; McCorkell, R.; Schatzl, H.M. Recombinant prion protein vaccination of transgenic elk PrP mice and reindeer overcomes self-tolerance and protects mice against chronic wasting disease. J. Biol. Chem. 2018, 293, 19812–19822. [Google Scholar] [CrossRef] [Green Version]
- Ishibashi, D.; Yamanaka, H.; Yamaguchi, N.; Yoshikawa, D.; Nakamura, R.; Okimura, N.; Yamaguchi, Y.; Shigematsu, K.; Katamine, S.; Sakaguchi, S. Immunization with recombinant bovine but not mouse prion protein delays the onset of disease in mice inoculated with a mouse-adapted prion. Vaccine 2007, 25, 985–992. [Google Scholar] [CrossRef]
- Magri, G.; Clerici, M.; Dall’Ara, P.; Biasin, M.; Caramelli, M.; Casalone, C.; Giannino, M.L.; Longhi, R.; Piacentini, L.; Della Bella, S.; et al. Decrease in pathology and progression of scrapie after immunisation with synthetic prion protein peptides in hamsters. Vaccine 2005, 23, 2862–2868. [Google Scholar] [CrossRef] [PubMed]
- Koller, M.F.; Grau, T.; Christen, P. Induction of antibodies against murine full-length prion protein in wild-type mice. J. Neuroimmunol. 2002, 132, 113–116. [Google Scholar] [CrossRef]
- Schwarz, A.; Kratke, O.; Burwinkel, M.; Riemer, C.; Schultz, J.; Henklein, P.; Bamme, T.; Baier, M. Immunisation with a synthetic prion protein-derived peptide prolongs survival times of mice orally exposed to the scrapie agent. Neurosci. Lett. 2003, 350, 187–189. [Google Scholar] [CrossRef]
- Tayebi, M.; Collinge, J.; Hawke, S. Unswitched immunoglobulin M response prolongs mouse survival in prion disease. J. Gen. Virol. 2009, 90, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Gilch, S.; Wopfner, F.; Renner-Muller, I.; Kremmer, E.; Bauer, C.; Wolf, E.; Brem, G.; Groschup, M.H.; Schatzl, H.M. Polyclonal anti-PrP auto-antibodies induced with dimeric PrP interfere efficiently with PrPSc propagation in prion-infected cells. J. Biol. Chem. 2003, 278, 18524–18531. [Google Scholar] [CrossRef] [Green Version]
- Ishibashi, D.; Yamanaka, H.; Mori, T.; Yamaguchi, N.; Yamaguchi, Y.; Nishida, N.; Sakaguchi, S. Antigenic mimicry-mediated anti-prion effects induced by bacterial enzyme succinylarginine dihydrolase in mice. Vaccine 2011, 29, 9321–9328. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Li, Y.; Song, J.; Wang, Y.; Shi, Q.; Chen, C.; Zhang, B.; Guo, Y.; Li, C.; Han, J.; et al. Immune responses in wild-type mice against prion proteins induced using a DNA prime-protein boost strategy. Biomed. Env. Sci. 2011, 24, 523–529. [Google Scholar] [CrossRef]
- Alexandrenne, C.; Wijkhuisen, A.; Dkhissi, F.; Hanoux, V.; Priam, F.; Allard, B.; Boquet, D.; Couraud, J.Y. Electrotransfer of cDNA coding for a heterologous prion protein generates autoantibodies against native murine prion protein in wild-type mice. DNA Cell Biol. 2010, 29, 121–131. [Google Scholar] [CrossRef]
- Goni, F.; Knudsen, E.; Schreiber, F.; Scholtzova, H.; Pankiewicz, J.; Carp, R.; Meeker, H.C.; Rubenstein, R.; Brown, D.R.; Sy, M.S.; et al. Mucosal vaccination delays or prevents prion infection via an oral route. Neuroscience 2005, 133, 413–421. [Google Scholar] [CrossRef]
- Goni, F.; Prelli, F.; Schreiber, F.; Scholtzova, H.; Chung, E.; Kascsak, R.; Brown, D.R.; Sigurdsson, E.M.; Chabalgoity, J.A.; Wisniewski, T. High titers of mucosal and systemic anti-PrP antibodies abrogate oral prion infection in mucosal-vaccinated mice. Neuroscience 2008, 153, 679–686. [Google Scholar] [CrossRef] [Green Version]
- Sassa, Y.; Kataoka, N.; Inoshima, Y.; Ishiguro, N. Anti-PrP antibodies detected at terminal stage of prion-affected mouse. Cell. Immunol. 2010, 263, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Marciniuk, K.; Maattanen, P.; Taschuk, R.; Airey, T.D.; Potter, A.; Cashman, N.R.; Griebel, P.; Napper, S. Development of a multivalent, PrP(Sc)-specific prion vaccine through rational optimization of three disease-specific epitopes. Vaccine 2014, 32, 1988–1997. [Google Scholar] [CrossRef] [PubMed]
- Taschuk, R.; Marciniuk, K.; Maattanen, P.; Madampage, C.; Hedlin, P.; Potter, A.; Lee, J.; Cashman, N.R.; Griebel, P.J.; Napper, S. Safety, specificity and immunogenicity of a PrP(Sc)-specific prion vaccine based on the YYR disease specific epitope. Prion 2014, 8, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taschuk, R.; Scruten, E.; Woodbury, M.; Cashman, N.; Potter, A.; Griebel, P.; Tikoo, S.K.; Napper, S. Induction of PrP(Sc)-specific systemic and mucosal immune responses in white-tailed deer with an oral vaccine for chronic wasting disease. Prion 2017, 11, 368–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, M.E.; Griebel, P.; Huizenga, M.L.; Lockwood, S.; Hansen, C.; Potter, A.; Cashman, N.; Mapletoft, J.W.; Napper, S. Accelerated onset of chronic wasting disease in elk (Cervus canadensis) vaccinated with a PrP(Sc)-specific vaccine and housed in a prion contaminated environment. Vaccine 2018, 36, 7737–7743. [Google Scholar] [CrossRef] [PubMed]
- Sigurdsson, E.M.; Brown, D.R.; Daniels, M.; Kascsak, R.J.; Kascsak, R.; Carp, R.; Meeker, H.C.; Frangione, B.; Wisniewski, T. Immunization delays the onset of prion disease in mice. Am. J. Pathol. 2002, 161, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Kaiser-Schulz, G.; Heit, A.; Quintanilla-Martinez, L.; Hammerschmidt, F.; Hess, S.; Jennen, L.; Rezaei, H.; Wagner, H.; Schatzl, H.M. Polylactide-Coglycolide microspheres co-encapsulating recombinant tandem prion protein with CpG-oligonucleotide break self-tolerance to prion protein in wild-type mice and induce CD4 and CD8 T cell responses. J. Immunol. 2007, 179, 2797–2807. [Google Scholar] [CrossRef] [Green Version]
- Xanthopoulos, K.; Lagoudaki, R.; Kontana, A.; Kyratsous, C.; Panagiotidis, C.; Grigoriadis, N.; Yiangou, M.; Sklaviadis, T. Immunization with recombinant prion protein leads to partial protection in a murine model of TSEs through a novel mechanism. PLoS ONE 2013, 8, e59143. [Google Scholar] [CrossRef]
- Bade, S.; Baier, M.; Boetel, T.; Frey, A. Intranasal immunization of Balb/c mice against prion protein attenuates orally acquired transmissible spongiform encephalopathy. Vaccine 2006, 24, 1242–1253. [Google Scholar] [CrossRef]
- Sacquin, A.; Bergot, A.S.; Aucouturier, P.; Bruley-Rosset, M. Contribution of antibody and T cell-specific responses to the progression of 139A-scrapie in C57BL/6 mice immunized with prion protein peptides. J. Immunol. 2008, 181, 768–775. [Google Scholar] [CrossRef]
- Pilon, J.; Loiacono, C.; Okeson, D.; Lund, S.; Vercauteren, K.; Rhyan, J.; Miller, L. Anti-Prion activity generated by a novel vaccine formulation. Neurosci. Lett. 2007, 429, 161–164. [Google Scholar] [CrossRef] [Green Version]
- Rosset, M.B.; Sacquin, A.; Lecollinet, S.; Chaigneau, T.; Adam, M.; Crespeau, F.; Eloit, M. Dendritic cell-mediated-immunization with xenogenic PrP and adenoviral vectors breaks tolerance and prolongs mice survival against experimental scrapie. PLoS ONE 2009, 4, e4917. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Borges, N.; Brun, A.; Whitton, J.L.; Parra, B.; Diaz-San Segundo, F.; Salguero, F.J.; Torres, J.M.; Rodriguez, F. DNA vaccination can break immunological tolerance to PrP in wild-type mice and attenuates prion disease after intracerebral challenge. J. Virol. 2006, 80, 9970–9976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nitschke, C.; Flechsig, E.; van den Brandt, J.; Lindner, N.; Luhrs, T.; Dittmer, U.; Klein, M.A. Immunisation strategies against prion diseases: Prime-Boost immunisation with a PrP DNA vaccine containing foreign helper T-cell epitopes does not prevent mouse scrapie. Vet. Microbiol. 2007, 123, 367–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedlin, P.D.; Cashman, N.R.; Li, L.; Gupta, J.; Babiuk, L.A.; Potter, A.A.; Griebel, P.; Napper, S. Design and delivery of a cryptic PrP(C) epitope for induction of PrP(Sc)-specific antibody responses. Vaccine 2010, 28, 981–988. [Google Scholar] [CrossRef]
- Enari, M.; Flechsig, E.; Weissmann, C. Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc. Natl. Acad. Sci. USA 2001, 98, 9295–9299. [Google Scholar] [CrossRef] [Green Version]
- Peretz, D.; Williamson, R.A.; Kaneko, K.; Vergara, J.; Leclerc, E.; Schmitt-Ulms, G.; Mehlhorn, I.R.; Legname, G.; Wormald, M.R.; Rudd, P.M.; et al. Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 2001, 412, 739–743. [Google Scholar] [CrossRef]
- Perrier, V.; Solassol, J.; Crozet, C.; Frobert, Y.; Mourton-Gilles, C.; Grassi, J.; Lehmann, S. Anti-PrP antibodies block PrPSc replication in prion-infected cell cultures by accelerating PrPC degradation. J. Neurochem. 2004, 89, 454–463. [Google Scholar] [CrossRef] [Green Version]
- Feraudet, C.; Morel, N.; Simon, S.; Volland, H.; Frobert, Y.; Creminon, C.; Vilette, D.; Lehmann, S.; Grassi, J. Screening of 145 anti-PrP monoclonal antibodies for their capacity to inhibit PrPSc replication in infected cells. J. Biol. Chem. 2005, 280, 11247–11258. [Google Scholar] [CrossRef] [Green Version]
- Pankiewicz, J.; Prelli, F.; Sy, M.S.; Kascsak, R.J.; Kascsak, R.B.; Spinner, D.S.; Carp, R.I.; Meeker, H.C.; Sadowski, M.; Wisniewski, T. Clearance and prevention of prion infection in cell culture by anti-PrP antibodies. Eur. J. Neurosci. 2006, 23, 2635–2647. [Google Scholar] [CrossRef] [Green Version]
- Sigurdsson, E.M.; Sy, M.-S.; Li, R.; Scholtzova, H.; Kascsak, R.J.; Kascsak, R.; Carp, R.; Meeker, H.C.; Frangione, B.; Wisniewski, T. Anti-Prion antibodies for prophylaxis following prion exposure in mice. Neurosci. Lett. 2003, 336, 185–187. [Google Scholar] [CrossRef]
- Sadowski, M.J.; Pankiewicz, J.; Prelli, F.; Scholtzova, H.; Spinner, D.S.; Kascsak, R.B.; Kascsak, R.J.; Wisniewski, T. Anti-PrP Mab 6D11 suppresses PrP(Sc) replication in prion infected myeloid precursor line FDC-P1/22L and in the lymphoreticular system In Vivo. Neurobiol. Dis. 2009, 34, 267–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, C.H.; Furuoka, H.; Kim, C.L.; Ogino, M.; Suzuki, A.; Hasebe, R.; Horiuchi, M. Effect of intraventricular infusion of anti-prion protein monoclonal antibodies on disease progression in prion-infected mice. J. Gen. Virol. 2008, 89, 1533–1544. [Google Scholar] [CrossRef] [PubMed]
- Heppner, F.L.; Musahl, C.; Arrighi, I.; Klein, M.A.; Rulicke, T.; Oesch, B.; Zinkernagel, R.M.; Kalinke, U.; Aguzzi, A. Prevention of scrapie pathogenesis by transgenic expression of anti-prion protein antibodies. Science 2001, 294, 178–182. [Google Scholar] [CrossRef]
- Wuertzer, C.A.; Sullivan, M.A.; Qiu, X.; Federoff, H.J. CNS delivery of vectored prion-specific single-chain antibodies delays disease onset. Mol. Ther. 2008, 16, 481–486. [Google Scholar] [CrossRef]
- Petsch, B.; Muller-Schiffmann, A.; Lehle, A.; Zirdum, E.; Prikulis, I.; Kuhn, F.; Raeber, A.J.; Ironside, J.W.; Korth, C.; Stitz, L. Biological effects and use of PrPSc- and PrP-specific antibodies generated by immunization with purified full-length native mouse prions. J. Virol. 2011, 85, 4538–4546. [Google Scholar] [CrossRef] [Green Version]
- Moda, F.; Vimercati, C.; Campagnani, I.; Ruggerone, M.; Giaccone, G.; Morbin, M.; Zentilin, L.; Giacca, M.; Zucca, I.; Legname, G.; et al. Brain delivery of AAV9 expressing an anti-PrP monovalent antibody delays prion disease in mice. Prion 2012, 6, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Mabbott, N.A. Prospects for safe and effective vaccines against prion diseases. Expert Rev. Vaccines 2015, 14, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Solforosi, L.; Criado, J.R.; McGavern, D.B.; Wirz, S.; Sanchez-Alavez, M.; Sugama, S.; DeGiorgio, L.A.; Volpe, B.T.; Wiseman, E.; Abalos, G.; et al. Cross-Linking cellular prion protein triggers neuronal apoptosis In Vivo. Science 2004, 303, 1514–1516. [Google Scholar] [CrossRef]
- Sonati, T.; Reimann, R.R.; Falsig, J.; Baral, P.K.; O’Connor, T.; Hornemann, S.; Yaganoglu, S.; Li, B.; Herrmann, U.S.; Wieland, B.; et al. The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature 2013, 501, 102–106. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre-Roque, M.; Kremmer, E.; Gilch, S.; Zou, W.Q.; Feraudet, C.; Gilles, C.M.; Sales, N.; Grassi, J.; Gambetti, P.; Baron, T.; et al. Toxic effects of intracerebral PrP antibody administration during the course of BSE infection in mice. Prion 2007, 1, 198–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klohn, P.C.; Farmer, M.; Linehan, J.M.; O’Malley, C.; Fernandez de Marco, M.; Taylor, W.; Farrow, M.; Khalili-Shirazi, A.; Brandner, S.; Collinge, J. PrP antibodies do not trigger mouse hippocampal neuron apoptosis. Science 2012, 335, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, U.S.; Sonati, T.; Falsig, J.; Reimann, R.R.; Dametto, P.; O’Connor, T.; Li, B.; Lau, A.; Hornemann, S.; Sorce, S.; et al. Prion infections and anti-PrP antibodies trigger converging neurotoxic pathways. PLoS Pathog. 2015, 11, e1004662. [Google Scholar] [CrossRef] [Green Version]
- Senatore, A.; Frontzek, K.; Emmenegger, M.; Chincisan, A.; Losa, M.; Reimann, R.; Horny, G.; Guo, J.; Fels, S.; Sorce, S.; et al. Protective anti-prion antibodies in human immunoglobulin. bioRxiv 2020, in press. [Google Scholar] [CrossRef] [Green Version]
- Terry, C.; Harniman, R.L.; Sells, J.; Wenborn, A.; Joiner, S.; Saibil, H.R.; Miles, M.J.; Collinge, J.; Wadsworth, J.D.F. Structural features distinguishing infectious Ex Vivo mammalian prions from non-infectious fibrillar assemblies generated in vitro. Sci. Rep. 2019, 9, 376. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Wang, X.; Orru, C.D.; Groveman, B.R.; Surewicz, K.; Abskharon, R.; Imamura, M.; Yokoyama, T.; Kim, Y.S.; Vander Stel, K.J.; et al. Self-Propagating, protease-resistant, recombinant prion protein conformers with or without in vivo pathogenicity. PLoS Pathog. 2017, 13, e1006491. [Google Scholar] [CrossRef]
- Li, Q.; Wang, F.; Xiao, X.; Kim, C.; Bohon, J.; Kiselar, J.; Safar, J.G.; Ma, J.; Surewicz, W.K. Structural attributes of mammalian prion infectivity: Insights from studies with synthetic prions. J. Biol. Chem. 2018, 293, 18494–18503. [Google Scholar] [CrossRef] [Green Version]
- Heikenwalder, M.; Polymenidou, M.; Junt, T.; Sigurdson, C.; Wagner, H.; Akira, S.; Zinkernagel, R.; Aguzzi, A. Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nat. Med. 2004, 10, 187–192. [Google Scholar] [CrossRef]
- Aucouturier, P.; Geissmann, F.; Damotte, D.; Saborio, G.P.; Meeker, H.C.; Kascsak, R.; Kascsak, R.; Carp, R.I.; Wisniewski, T. Infected splenic dendritic cells are sufficient for prion transmission to the CNS in mouse scrapie. J. Clin. Invest. 2001, 108, 703–708. [Google Scholar] [CrossRef]
- Pulgar, V.M. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front. Neurosci. 2018, 12, 1019. [Google Scholar] [CrossRef]
- Lajoie, J.M.; Shusta, E.V. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu. Rev. Pharmacol. Toxicol. 2015, 55, 613–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhury, S.R.; Hudry, E.; Maguire, C.A.; Sena-Esteves, M.; Breakefield, X.O.; Grandi, P. Viral vectors for therapy of neurologic diseases. Neuropharmacology 2017, 120, 63–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, T.; Zhang, Y.S.; Pang, B.; Hyun, D.C.; Yang, M.; Xia, Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. Engl. 2014, 53, 12320–12364. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.M.; Patel, B.M. Crossing the blood-brain barrier: Recent advances in drug delivery to the brain. CNS Drugs 2017, 31, 109–133. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood-Brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 2018, 14, 133–150. [Google Scholar] [CrossRef]
- Requena, J.R.; Wille, H. The Structure of the infectious prion protein and its propagation. Prog. Mol. Biol. Transl. Sci. 2017, 150, 341–359. [Google Scholar] [CrossRef]
- Spagnolli, G.; Rigoli, M.; Orioli, S.; Sevillano, A.M.; Faccioli, P.; Wille, H.; Biasini, E.; Requena, J.R. Full atomistic model of prion structure and conversion. PLoS Pathog. 2019, 15, e1007864. [Google Scholar] [CrossRef] [Green Version]
- Baskakov, I.V.; Caughey, B.; Requena, J.R.; Sevillano, A.M.; Surewicz, W.K.; Wille, H. The prion 2018 round tables (I): The structure of PrP(Sc). Prion 2019, 13, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Vazquez-Fernandez, E.; Vos, M.R.; Afanasyev, P.; Cebey, L.; Sevillano, A.M.; Vidal, E.; Rosa, I.; Renault, L.; Ramos, A.; Peters, P.J.; et al. The structural architecture of an infectious mammalian prion using electron cryomicroscopy. PLoS Pathog. 2016, 12, e1005835. [Google Scholar] [CrossRef]
- Muyldermans, S. Nanobodies: Natural single-domain antibodies. Annu. Rev. Biochem. 2013, 82, 775–797. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.R.; Taylor, W.A.; Bate, C.; David, M.; Tayebi, M. A camelid anti-PrP antibody abrogates PrP replication in prion-permissive neuroblastoma cell lines. PLoS ONE 2010, 5, e9804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, M.A.; Jones, D.R.; Tayebi, M. Potential candidate camelid antibodies for the treatment of protein-misfolding diseases. J. Neuroimmunol. 2014, 272, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Abskharon, R.; Wang, F.; Wohlkonig, A.; Ruan, J.; Soror, S.; Giachin, G.; Pardon, E.; Zou, W.; Legname, G.; Ma, J.; et al. Structural evidence for the critical role of the prion protein hydrophobic region in forming an infectious prion. PLoS Pathog. 2019, 15, e1008139. [Google Scholar] [CrossRef] [PubMed]
- Lauren, J.; Gimbel, D.A.; Nygaard, H.B.; Gilbert, J.W.; Strittmatter, S.M. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature 2009, 457, 1128–1132. [Google Scholar] [CrossRef] [Green Version]
- Freir, D.B.; Nicoll, A.J.; Klyubin, I.; Panico, S.; Mc Donald, J.M.; Risse, E.; Asante, E.A.; Farrow, M.A.; Sessions, R.B.; Saibil, H.R.; et al. Interaction between prion protein and toxic amyloid beta assemblies can be therapeutically targeted at multiple sites. Nat. Commun. 2011, 2, 336. [Google Scholar] [CrossRef]
- Klyubin, I.; Nicoll, A.J.; Khalili-Shirazi, A.; Farmer, M.; Canning, S.; Mably, A.; Linehan, J.; Brown, A.; Wakeling, M.; Brandner, S.; et al. Peripheral administration of a humanized anti-PrP antibody blocks Alzheimer’s disease Abeta synaptotoxicity. J. Neurosci. 2014, 34, 6140–6145. [Google Scholar] [CrossRef] [Green Version]
- Scott-McKean, J.J.; Surewicz, K.; Choi, J.K.; Ruffin, V.A.; Salameh, A.I.; Nieznanski, K.; Costa, A.C.S.; Surewicz, W.K. Soluble prion protein and its N-terminal fragment prevent impairment of synaptic plasticity by Abeta oligomers: Implications for novel therapeutic strategy in Alzheimer’s disease. Neurobiol. Dis. 2016, 91, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, D.G.; Temido-Ferreira, M.; Vicente Miranda, H.; Batalha, V.L.; Coelho, J.E.; Szego, E.M.; Marques-Morgado, I.; Vaz, S.H.; Rhee, J.S.; Schmitz, M.; et al. α-Synuclein interacts with PrP(C) to induce cognitive impairment through mGluR5 and NMDAR2B. Nat. Neurosci. 2017, 20, 1569–1579. [Google Scholar] [CrossRef]
- Aulic, S.; Masperone, L.; Narkiewicz, J.; Isopi, E.; Bistaffa, E.; Ambrosetti, E.; Pastore, B.; De Cecco, E.; Scaini, D.; Zago, P.; et al. α-Synuclein amyloids hijack prion protein to gain cell entry, facilitate cell-to-cell spreading and block prion replication. Sci. Rep. 2017, 7, 10050. [Google Scholar] [CrossRef]
- Corbett, G.T.; Wang, Z.; Hong, W.; Colom-Cadena, M.; Rose, J.; Liao, M.; Asfaw, A.; Hall, T.C.; Ding, L.; DeSousa, A.; et al. PrP is a central player in toxicity mediated by soluble aggregates of neurodegeneration-causing proteins. Acta Neuropathol. 2019, 503–526. [Google Scholar] [CrossRef] [Green Version]
Immunogen | Adjuvant | Administration Route | Prion Inoculation | Outcome | Reference | |
---|---|---|---|---|---|---|
Monomeric PrP | Mouse recombinant PrP treated with urea | Freund’s adjuvant | Subcutaneous | Intraperitoneal inoculation with 139A prion in CD-1 mice | The survival time was prolonged by 9.25% (189 ± 4/173 ± 2 days)*. | [86] |
Bovine PrP25–242 | Freund’s adjuvant | Intraperitoneal | Intraperitoneal inoculation with Fukuoka-1 prion in BALB/c mice | The survival time was prolonged by 10.65% (322 ± 15/291 ± 10 days)*. | [70] | |
Mouse recombinant PrP cross-linked with DnaK | Freund’s adjuvant | Intraperitoneal | N/A | Antibodies against PrP were detected. | [72] | |
Multimeric PrP | Mouse recombinant PrP tandem dimer | Freund’s adjuvant/CpG/TiterMax | Subcutaneous | N/A | Anti-PrP antibodies were induced, which suppressed PrPSc propagation in cultured cells. | [75] |
Mouse recombinant PrP tandem dimer | CpG | Subcutaneous | N/A | Self-tolerance was broken; CD4 and CD8 T cell responses were detected. | [87] | |
Mouse recombinant PrP tandem dimer | Freund’s adjuvant | Subcutaneous | Intraperitoneal inoculation with RML prion in mice | Anti-recombinant PrP antibodies were induced when the immunization was coupled with the administration of anti-OX40 antibody; The induced antibodies do not recognize native PrP in mice and had little effect in delaying prion pathogenesis. | [61] | |
Deer PrP dimer/deer PrP monomer/mouse PrP dimer/mouse PrP monomer | CpG | Subcutaneous | Intraperitoneal inoculation of CWD prion in transgenic mice expressing elk PrP | Survival time was prolonged by 24.13%, 28.40%, 15.94% or 59.93% (142.5 ± 5.8, 147.4 ± 13.4, 133.1 ± 15 or 183.6 ± 8.8/114.8 ± 10 days)*. | [69] | |
Multimeric recombinant cervid PrP | CpG | Subcutaneous | N/A | Auto-antibodies were induced, which interfere with in vitro prion conversion. | [68] | |
Aggregated PrP | Freund’s adjuvant | Subcutaneous | Intraperitoneal inoculation of RML prion in mice | The survival time was prolonged approximately by 14% (228/200 days)*. | [88] | |
PrP fragment or peptide | Mouse recombinant PrP90–231 | CT (cholera toxin) | Intranasal | Oral inoculation with 139A prion in BALB/c mice | The median survival time was prolonged by 3.30% (266.0/257.5 days)*. | [89] |
Mouse PrP131–150/PrP211–230 | Freund’s adjuvant | Hind footpad injection | N/A | The peptides were strongly immunogenic in both NOD and in C57BL/6 mice. | [63] | |
Mouse PrP98–127/PrP158–187 | CpG + Freund’s adjuvant | Subcutaneous | Intraperitoneal inoculation of 139A prion in C57 BL/6 mice | The mean survival time was prolonged by 8.10% or 5.71% (227 ± 8 or 222 ± 14/21 0± 8 days)*. | [90] | |
Mouse PrP141–159/PrP165–178 conjugated to BCP | AdjuvacTM | Intramuscular | Intraperitoneal inoculation of RML prion in C57 BL/6 mice | The mean survival time was prolonged by 8.41% or 6.54% (232 ± 12 or 228 ± 19/214 ± 8 days)*. | [91] | |
Mouse PrP105–125 linked to KLH | Montanide IMS-1313 | Intraperitoneal | Oral inoculation with 139A prion in NMRI mice | The survival time was prolonged by 11.22% (223 ± 18/200.5 ± 10 days)*. | [73] | |
Hamster PrP105–128/119–146/142–179 conjugated to mcKLH | Freund’s adjuvant | Intramuscular, subcutaneous, and intradermic | Intraperitoneal inoculation with 263K prion in hamster | Average survival time was prolonged by 12.95%, 18.71% or 18.71% (157 ± 49, 165 ± 43 or 165 ± 54/139 ± 24 days)*, but without significant statistical differences. | [71] | |
PrP-loaded DCs | Mouse PrP98–127 loaded dendritic cells (DCs) | N/A | Intraperitoneal | Intraperitoneal inoculation of 139A prion in C57 BL/6 mice | The median total survival time was extended by 18.69% (254/214 days)*. | [67] |
Human recombinant PrP (encoded by adenovirus) loaded dendritic cells (DCs) | N/A | Intramuscular | Intraperitoneal inoculation of 139A prion in C57 BL/6 mice | Compared with prion infected only group, survival times were prolonged by more than 7% in all vaccinated groups, including the DC control groups. | [92] | |
Oral vaccine using a Salmonella vector | Mouse PrP-TetC expressed by Salmonella | Alum | Oral | Oral infection with 139A prion in CD-1 mice | 30% of each treatment group were alive and without clinical signs of infection by 500 days (control groups showed clinical signs of prion infection by 300 days). | [79] |
Mouse PrP-TetC expressed by Salmonella | Alum | Oral | Oral inoculation of 139A prion in CD-1 mice | At 400 days post-inoculation, 100% of the animals in the high IgG, high IgA group (n = 14) were free from clinical symptoms, (control groups had shown clinical signs of prion infection by 205 days). | [80] | |
Mouse/cervid PrP expressed by Salmonella | Alum | Oral | Oral inoculation of CWD prion in white-tailed deer | The median survival time was prolonged by 51% (909/602 days)*. | [59] | |
Antigen mimicry | Recombinant succinylarginine dihydrolase E/S (SADH-E/S) | Freund’s adjuvant | Intraperitoneal | Intraperitoneal inoculation of Fukuoka-1 in BALB/c mice | Anti-PrP auto-antibodies with anti-prion activity were induced and the survival time of prion infected mice was prolonged by 10.40% or 7.72% (329 ± 15 or 321 ± 15/298 ± 28 days)*. | [76] |
DNA vaccine | Plasmid pcDNA3.1-PrP/-Ubiq-PrP/-PrP-LII/-PrP-ER (human) | N/A | Intraperitoneal | N/A | Vaccination with PrP DNA followed by protein boosting induces PrP-specific PrP-specific antibody response and T-cell mediated responses. | [77] |
Plasmid pcDNA3.1-PrP(human) | Freund’s adjuvant | Tibialis anterior muscles injection | N/A | The antibodies against the native form of human PrP and autoantibodies against the native form of murine PrPC were generated. | [78] | |
Plasmid pCMV–UbPrP/pCMV–PrPLII (mouse) | N/A | Anterior tibial muscle | Intracerebral inoculation of BSE prion in 129/Ola mice | Average survival time was prolonged by 10% (22/20 weeks)*. | [93] | |
Plasmid pCG-PrP-P30 (mouse) | CpG | Intradermal and subcutaneous | Intraperitoneal inoculation with RML prion in C57 BL/6 mice | Failed to protect wild-type mice from prion infection. | [94] | |
PrPSc-specific epitopes | ICSM35-Dynabeads-RML/ICSM18-Dynabeads-RML | Freund’s adjuvant | Intraperitoneal | Intraperitoneal inoculation of RML prion in FVB/N mice | The mean survival time was prolonged by 10.89% (224 ± 16 or 224 ± 22/202 ± 2 days)*. | [74] |
Epitope (QVYYRPVDQYSNQN)-Lkt fusion protein | Emulsigen-D | Subcutaneous | N/A | PrPSc-specific IgG antibody responses were induced following two vaccinations. | [95] | |
Ad5: tgG-RL (RL epitope) | N/A | Oral | N/A | PrPSc-specific systemic and mucosal antibody responses were induced. | [84] | |
Epitope (QVYYRPVDQYSNQN)-Lkt fusion protein | Emulsigen-D | Intramuscular | Elk in CWD contaminated pens | Accelerated onset and PrP genotype dependent shortening of survival time in vaccinated group were observed. | [85] |
Antibody | Properties of Antibody | Administration Route | Prion Inoculation | Outcome | Reference |
---|---|---|---|---|---|
6H4μ | IgG1 monoclonal antibody recognizing residues 144–152 of murine PrPC | Transgene | Intraperitoneal inoculation with RML prion in transgenic mice. | The i.p. prion inoculation induced pathogenic changes were prevented in 6H4μ transgenic mice, but not in 15B3μ transgenic mice. | [104] |
15B3μ | IgM antibody recognizing PrPSc-like PrP aggregates | ||||
ICSM35 | IgG2b monoclonal antibody with high affinity for both murine PrPC and PrPSc, recognizing residues 91–110 of murine PrP | Intraperitoneal injection started 7 days or 30 days post prion inoculation; 2 mg antibody was injected twice weekly. | Intraperitoneal inoculation with RML prion in FVB/N mice. | Animals remained healthy for over 300 days after equivalent untreated animals had succumbed to the disease. | [23] |
ICSM18 | IgG1 monoclonal antibody recognizes residues 146–159 of murine PrP with a lower affinity for PrPSc | ||||
8B4 | Monoclonal antibody recognizing residues 34–52 of PrP | Intraperitoneal injection started immediately after prion infection; 50 µg of antibody was injected weekly after. | Intraperitoneal inoculation of 139A prion in mice. | The onset of clinical symptoms was delayed. | [101] |
8H4 | Monoclonal antibody recognizing residues 175–185 of PrP | ||||
8F9 | Monoclonal antibody recognizing residues 205–233 of PrP | ||||
106 | IgG2b monoclonal antibody recognizing residues 88–90 of murine PrP | Intraventricular infusion | Intracerebral inoculation of Obihiro or Chandler prion | Antibody 31C6 treatment prolonged the survival time about 8% even when the treatment started at very late stage of prion disease. | [103] |
110 | IgG2b monoclonal antibody recognizing residues 83–89 of murine PrP | ||||
31C6 | IgG1 monoclonal antibody recognizing residues 143–149 of murine PrP | ||||
44B1 | IgG2a monoclonal antibody recognizing a discontinuous epitope within residues 155–231 of murine PrP | ||||
scFvs | AAV2 delivery of single chain variable fragment of D18 antibody (scFvD18) recognizing residues 132–156 of PrP, or anti-PrP scFvs (scFv3:3, scFv6:4, and scFv6:6) obtained by screening a human scFv library. | Intracerebral delivery | Intraperitoneal inoculation of RML prion 1 month after the AAV2 delivery. | Treatment with scFvD18 or scFv3:3 extended mean incubation time by 25.63% or 11.56%. | [105] |
6D11 | Monoclonal antibody recognizing residues 97–100 of murine PrP | Intravenous injection started with 1 mg of antibody immediately after prion infection; 0.5 mg antibody was injected intraperitoneally twice weekly for 4 or 8 weeks. | Intraperitoneal inoculation of 22L prion in CD-1 mice. | Antibody treatment prolonged the incubation period by 36.9% and ameliorated CNS pathology. | [102] |
W226 | Monoclonal antibody recognizes residues 146–159 of murine PrP | Intraperitoneal injection started 28 days post prion inoculation; 2 mg of antibody was injected twice weekly. | Intraperitoneal inoculation of RML prion | Incubation period of prion infected mice was slightly increased. | [106] |
scFvD18 | AAV9 delivery of single chain variable fragment D18 (scFvD18) recognizing residues 132–156 of PrP | Intracerebral delivery | Intraperitoneal inoculation of RML prion one month after the delivery of AAV9-scFvD18. | Incubation time was slightly increased and the amount of PrPSc in the brain was reduced. | [107] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Ma, J. Immunotherapy against Prion Disease. Pathogens 2020, 9, 216. https://doi.org/10.3390/pathogens9030216
Ma Y, Ma J. Immunotherapy against Prion Disease. Pathogens. 2020; 9(3):216. https://doi.org/10.3390/pathogens9030216
Chicago/Turabian StyleMa, Yue, and Jiyan Ma. 2020. "Immunotherapy against Prion Disease" Pathogens 9, no. 3: 216. https://doi.org/10.3390/pathogens9030216
APA StyleMa, Y., & Ma, J. (2020). Immunotherapy against Prion Disease. Pathogens, 9(3), 216. https://doi.org/10.3390/pathogens9030216