Ethylicin Prevents Potato Late Blight by Disrupting Protein Biosynthesis of Phytophthora infestans
Abstract
:1. Introduction
2. Materials and Methods
2.1. P. infestans Strains, Media and Culture Conditions
2.2. Effects of Ethylicin on the Mycelial Growth, Sporulation Capacity, Spore Germination and Virulence of P. infestans
2.3. Proteomics Assay and Dataset Analysis
2.4. Metabonomics Assay and Dataset Analysis
2.5. Protein Content Test
3. Results
3.1. Ethylicin Significantly Affects P. infestans Mycelial Growth, Sporulation Capacity, Spore Germination and Virulence
3.2. Analysis of Inhibitory Mechanisms of Ethylicin on P. infestans
3.2.1. Ethylicin May Target Amino Acid Metabolism to Inhibit Protein Biosynthesis in P. infestans
3.2.2. Ethylicin Inhibits Accumulation of Ribosomal Components
3.2.3. Ethylicin May Inhibit Virulence of P. infestans by Disrupting Virulence-Related Protein
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DEMs: | differentially expressed metabolites |
DEPs: | differentially expressed proteins |
KEGG: | Kyoto Encyclopedia of Genes and Genomes |
GO term: | Gene ontology |
VIP: | Variable importance in projection |
Corr. Coeffs: | Correlation Coefficient. It means variable reliability; if the value is closer to 1 or −1, the reliability is higher. Corr.Coeffs <0: significantly negative correlation; Corr.Coeffs >0: significantly positive correlation. |
NSI: | Nanospray Flex™ |
References
- Whisson, S.C.; Boevink, P.; Moleleki, L.N.; Avrova, A.O.; Morales, J.G.; Gilroy, E.M.; Armstrong, M.R.; Grouffaud, S.; Van West, P.; Chapman, S. A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 2007, 450, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Jahan, S.N.; Asman, A.K.; Corcoran, P.; Fogelqvist, J.; Vetukuri, R.R.; Dixelius, C. Plant-mediated gene silencing restricts growth of the potato late blight pathogen Phytophthora infestans. J. Exp. Bot. 2015, 66, 2785–2794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Y.; Li, Y.; Chen, Z.; Zheng, B.; Zhang, L.; Niu, B.; Meng, J.; Li, A.; Zhang, J.; Wang, Q. Biological control of potato late blight using isolates of trichoderma. Am. J. Potato Res 2016, 93, 33–42. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, X.; Reiter, R.J.; Feng, S.; Wang, Y.; Liu, S.; Jin, L.; Li, Z.; Datla, R.; Ren, M. Melatonin attenuates potato late blight by disrupting cell growth, stress tolerance, fungicide susceptibility and homeostasis of gene expression in Phytophthora infestans. Front. Plant Sci. 2017, 8, 1993. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Northcote, E.N.; Navia, O.; Gandarillas, A. Basis of the strategies for the chemical control of potato late blight developed by proinpa in bolivia. Rev. Latinoam. Papa 2000, 35, 137–149. [Google Scholar]
- Mitani, S.; Araki, S.; Yamaguchi, T.; Takii, Y.; Ohshima, T.; Matsuo, N. Antifungal activity of the novel fungicide cyazofamid against Phytophthora infestans and other plant pathogenic fungi in vitro. Pestic. Biochem. Physiol. 2001, 70, 92–99. [Google Scholar] [CrossRef]
- Matheron, M.E.; Porchas, M. Impact of azoxystrobin, dimethomorph, fluazinam, fosetyl-al, and metalaxyl on growth, sporulation, and zoospore cyst germination of three Phytophthora spp. Plant Dis. 2000, 84, 454–458. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zhang, H.; Ding, R.; Wang, W.; Wang, W.; Li, H. Determination and dynamics of ethylicin residues in cotton-field ecosystem. Bull. Environ. Contam. Toxicol. 2012, 89, 853–856. [Google Scholar] [CrossRef]
- Avrova, A.O.; Venter, E.; Birch, P.R.J.; Whisson, S.C. Profiling and quantifying differential gene transcription in phytophthora infestans prior to and during the early stages of potato infection. Fungal Genet. Biol. 2003, 40, 4–14. [Google Scholar] [CrossRef]
- Marcelo, R.; Stephanie, R.; Ralph, B. Tobacco plastid ribosomal protein s18 is essential for cell survival. Nucleic Acids Res. 2006, 34, 4537–4545. [Google Scholar]
- Szakonyi, D.; Byrne, M.E. Ribosomal protein l27a is required for growth and patterning in Arabidopsis thaliana. Plant J. 2011, 65, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Vilardell, J.; Warner, J.R. Ribosomal protein l32 of saccharomyces cerevisiae influences both the splicing of its own transcript and the processing of rrna. Mol. Cell. Biol. 1997, 17, 1959–1965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishimura, T.; Wada, T.; Okada, K. A key factor of translation reinitiation, ribosomal protein l24, is involved in gynoecium development in Arabidopsis. Biochem. Soc. Trans. 2004, 32, 611–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Z.; Dooner, H.K. A mutation in the nuclear-encoded plastid ribosomal protein s9 leads to early embryo lethality in maize. Plant J. 2004, 37, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Nissen, P.; Hansen, J.; Ban, N.; Moore, P.B.; Steitz, T.A. The structural basis of ribosome activity in peptide bond synthesis. Science 2000, 289, 920–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramakrishnan, V. Ribosome structure and the mechanism of translation. Cell 2002, 108, 557–572. [Google Scholar] [CrossRef] [Green Version]
- Haas, B.J.; Kamoun, S.; Zody, M.C.; Jiang, R.H.; Handsaker, R.E.; Cano, L.M.; Grabherr, M.; Kodira, C.D.; Raffaele, S.; Torto-Alalibo, T.; et al. Genome sequence and analysis of the irish potato famine pathogen Phytophthora infestans. Nature 2009, 461, 393–398. [Google Scholar] [CrossRef]
- Peverelli, M.G.; Soares da Costa, T.P.; Kirby, N.; Perugini, M.A. Dimerization of bacterial diaminopimelate decarboxylase is essential for catalysis. J. Biol. Chem. 2016, 291, 9785–9795. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Song, T.; Zhu, L.; Ye, W.; Wang, Y. A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a pamp. Plant Cell 2015, 27, 2057. [Google Scholar] [CrossRef] [Green Version]
- Murphy, T.F.; Brauer, A.L.; Johnson, A.; Kirkham, C. Atp-binding cassette (abc) transporters of the human respiratory tract pathogen, Moraxella catarrhalis: Role in virulence. PLoS ONE 2016, 11, e0158689. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, S.; Zhang, J.; Reiter, R.J.; Wang, Y.; Qiu, D.; Luo, X.; Khalid, A.R.; Wang, H.; Feng, L.; et al. Synergistic anti-oomycete effect of melatonin with a biofungicide against oomycetic black shank disease. J. Pineal Res. 2018, 65, e12492. [Google Scholar] [CrossRef] [PubMed]
- Okuyama, A.; Machiyama, N.; Kinoshita, T.; Tanaka, N. Inhibition by kasugamycin of initiation complex formation on 30s ribosomes. Biochem. Biophys. Res. Commun. 1971, 43, 196–199. [Google Scholar] [CrossRef]
- Streltsov, S.A.; Kukhanova, M.K.; Gurskiĭ, G.V.; Kraevskiĭ, A.A.; Beliavskaia, I.V. Oxytetracycline binding to E. coli ribosomes. Mol. Biol. 1975, 9, 910. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, N.; Yamaguchi, H.; Umezawa, H. Mechanism of kasugamycin action on polypeptide synthesis. J. Biochem. 1966, 60, 429–434. [Google Scholar] [CrossRef]
- Taga, M. Ascospore analysis of kasugamycin resistance in the perfect stage of pyricularia oryzae. Phytopathology 1978, 68, 815. [Google Scholar] [CrossRef]
- Tirunarayanan, M.O.; Vischer, W.A.; Renner, U. Streptomycin and amino acid metabolism of bacteria. Antibiot. Chemother. 1962, 12, 117–122. [Google Scholar]
- Sherman, M.I. The role of ribosomal conformation in protein biosynthesis: Further studies with streptomycin . FEBS J. 2005, 25, 291–300. [Google Scholar]
- Abad, J.P.; Amils, R. Location of the streptomycin ribosomal binding site explains its pleiotropic effects on protein biosynthesis. J. Mol. Biol. 1994, 235, 1251–1260. [Google Scholar] [CrossRef]
- Yang, C.; Hamel, C.; Vujanovic, V.; Gan, Y. Fungicide: Modes of action and possible impact on nontarget microorganisms. ISRN Ecol. 2011, 2011, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Old, D.; Gorini, L. Amino acid changes provoked by streptomycin in a polypeptide synthesized in vitro. Science 1965, 150, 1290–1292. [Google Scholar] [CrossRef]
- Cooper, T.G.; Bossinger, J. Selective inhibition of protein synthesis initiation in saccharomyces cerevisiae by low concentrations of cycloheximide. J. Biol. Chem. 1976, 251, 7278–7280. [Google Scholar] [PubMed]
- Sisler, H.D. Effect of fungicides on protein and nucleic acid synthesis. Annu. Rev. Phytopathol. 1969, 7, 311–330. [Google Scholar] [CrossRef]
Name | VIP | Corr.Coeffs | Up (+)/Down (−) | p-Value | FC |
---|---|---|---|---|---|
L-Homoserine | 1.5 | −0.97 | − | 7.80 × 10−8 | 0.479 |
Ratio of Beta-Alanine/L-Aspartic acid | 1.5 | −0.97 | − | 1.00 × 10−7 | 0.516 |
Homocysteine | 1.5 | −0.97 | − | 1.30 × 10−7 | 0.516 |
Beta-Alanine | 1.5 | −0.97 | − | 3.40 × 10−7 | 0.54 |
L-Cysteine | 1.5 | −0.95 | − | 2.50 × 10−6 | 0.648 |
L-Alanine | 1.5 | −0.94 | − | 6.20 × 10−6 | 0.817 |
Ratio of 4-Hydroxyproline/L-Proline | 1.5 | −0.93 | − | 1.00 × 10−5 | 0.75 |
L-Arginine | 1.5 | −0.92 | − | 1.70 × 10−5 | 0.636 |
Methionine sulfoxide | 1.4 | −0.91 | − | 5.10 × 10−5 | 0.65 |
L-Alloisoleucine | 1.4 | −0.9 | − | 6.60 × 10−5 | 0.793 |
Glycine | 1.4 | −0.89 | − | 8.60 × 10−5 | 0.761 |
L-Threonine | 1.4 | −0.89 | − | 9.00 × 10−5 | 0.781 |
D-2-Hydroxyglutaric acid | 1.4 | −0.89 | − | 9.90 × 10−5 | 0.633 |
Ornithine | 1.4 | −0.87 | − | 2.10 × 10−4 | 0.759 |
3-Nitrotyrosine | 1.4 | −0.87 | − | 2.10 × 10−4 | 0.588 |
L-Serine | 1.4 | −0.86 | − | 2.90 × 10−4 | 0.788 |
L-Leucine | 1.4 | −0.86 | − | 2.90 × 10−4 | 0.793 |
4-Hydroxyproline | 1.3 | −0.83 | − | 8.80 × 10−4 | 0.727 |
L-Cystine | 1.3 | −0.81 | − | 1.40 × 10−3 | 0.516 |
L-Valine | 1.3 | −0.81 | − | 1.50 × 10−3 | 0.816 |
L-Methionine | 1.3 | −0.8 | − | 1.70 × 10−3 | 0.806 |
3-Oxoalanine | 1.2 | −0.74 | − | 5.70 × 10−3 | 0.478 |
Ratio of L-Glutamic acid/Pyroglutamic acid | 1.1 | −0.72 | − | 7.90 × 10−3 | 0.95 |
Citrulline | 1.1 | −0.7 | − | 1.10 × 10−2 | 0.838 |
Ratio of Citrulline/Ornithine | 1.1 | 0.68 | + | 1.50 × 10−2 | 1.104 |
Ratio of Ornithine/L-Arginine | 1.3 | 0.82 | + | 1.00 × 10−3 | 1.154 |
Ratio of Sarcosine/Glycine | 1.3 | 0.82 | + | 1.10 × 10−3 | 1.248 |
L-Lysine | 1.4 | 0.87 | + | 2.30 × 10−4 | 1.226 |
Ratio of Citrulline/L-Arginine | 1.6 | 0.99 | + | 2.20 × 10−9 | 1.338 |
GO Terms Level 1 | GO Terms Description | Down | Up | p-Value |
---|---|---|---|---|
Cellular Component | ribosome | 22 | 0 | 8.96 × 10−6 |
Cellular Component | cytoplasmic part | 34 | 1 | 2.77 × 10−4 |
Cellular Component | ribonucleoprotein complex | 22 | 0 | 3.87 × 10−4 |
Cellular Component | intracellular ribonucleoprotein complex | 22 | 0 | 3.87 × 10−4 |
Cellular Component | non-membrane-bounded organelle | 24 | 0 | 4.26 × 10−3 |
Cellular Component | intracellular non-membrane-bounded organelle | 24 | 0 | 4.26 × 10−3 |
Cellular Component | signal peptidase complex | 2 | 0 | 8.86 × 10−3 |
Cellular Component | endoplasmic reticulum membrane | 4 | 0 | 2.05 × 10−2 |
Molecular Function | structural constituent of ribosome | 22 | 1 | 5.66 × 10−9 |
Molecular Function | structural molecule activity | 22 | 0 | 1.07 × 10−7 |
Molecular Function | polysaccharide binding | 0 | 3 | 1.78 × 10−3 |
Molecular Function | pattern binding | 0 | 3 | 1.78 × 10−3 |
Molecular Function | hydrogen-translocating pyrophosphatase activity | 2 | 0 | 3.37 × 10−3 |
Molecular Function | cellulose binding | 0 | 2 | 3.37 × 10−3 |
Molecular Function | hydrolase activity, acting on glycosyl bonds | 2 | 5 | 1.75 × 10−2 |
Molecular Function | adenylate kinase activity | 0 | 2 | 1.87 × 10−2 |
Biological Process | peptide metabolic process | 24 | 0 | 4.39 × 10−5 |
Biological Process | peptide biosynthetic process | 22 | 0 | 2.25 × 10−4 |
Biological Process | amide biosynthetic process | 22 | 0 | 7.41 × 10−4 |
Biological Process | cellular macromolecule biosynthetic process | 25 | 2 | 1.85 × 10−3 |
Biological Process | glucan metabolic process | 1 | 2 | 1.21 × 10−2 |
Biological Process | cellular polysaccharide metabolic process | 1 | 2 | 1.21 × 10−2 |
Biological Process | cellular glucan metabolic process | 1 | 2 | 1.21 × 10−2 |
Biological Process | protein processing | 2 | 0 | 2.34 × 10−2 |
Biological Process | protein maturation | 2 | 0 | 2.34 × 10−2 |
Biological Process | cellular carbohydrate biosynthetic process | 1 | 2 | 4.85 × 10−2 |
KEGG Pathway | Down | Up | p-Value |
---|---|---|---|
Ribosome | 24 | 0 | 1.42 × 10−10 |
Protein export | 4 | 1 | 1.34 × 10−3 |
Tyrosine metabolism | 2 | 1 | 4.81 × 10−2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Zhang, M.; Khalid, A.R.; Li, L.; Chen, Y.; Dong, P.; Wang, H.; Ren, M. Ethylicin Prevents Potato Late Blight by Disrupting Protein Biosynthesis of Phytophthora infestans. Pathogens 2020, 9, 299. https://doi.org/10.3390/pathogens9040299
Zhang S, Zhang M, Khalid AR, Li L, Chen Y, Dong P, Wang H, Ren M. Ethylicin Prevents Potato Late Blight by Disrupting Protein Biosynthesis of Phytophthora infestans. Pathogens. 2020; 9(4):299. https://doi.org/10.3390/pathogens9040299
Chicago/Turabian StyleZhang, Shumin, Meiquan Zhang, A. Rehman Khalid, Linxuan Li, Yang Chen, Pan Dong, Hanyan Wang, and Maozhi Ren. 2020. "Ethylicin Prevents Potato Late Blight by Disrupting Protein Biosynthesis of Phytophthora infestans" Pathogens 9, no. 4: 299. https://doi.org/10.3390/pathogens9040299
APA StyleZhang, S., Zhang, M., Khalid, A. R., Li, L., Chen, Y., Dong, P., Wang, H., & Ren, M. (2020). Ethylicin Prevents Potato Late Blight by Disrupting Protein Biosynthesis of Phytophthora infestans. Pathogens, 9(4), 299. https://doi.org/10.3390/pathogens9040299