Antiretroviral Therapy in HTLV-1 Infection: An Updated Overview
Abstract
:1. Introduction
2. Pioneering Studies
3. Translational Approaches with Nucleoside/Nucleotide Reverse Transcriptase Inhibitors in HTLV-1 Infection: Preclinical and Clinical Studies
3.1. Neurological Diseases
3.2. Haematological Diseases
3.3. Haematological Diseases: Direct or Indirect Effect of AZT+IFNa?
3.4. Transplantation
4. Translational Approaches with Integrase and Protease Inhibitors in HTLV-1 Infection
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gallo, R.C.; Willems, L.; Tagaya, Y. Time to Go Back to the Original Name. Front. Microbiol. 2017, 8, 1800. [Google Scholar] [CrossRef] [PubMed]
- Poiesz, B.J.; Ruscetti, F.W.; Gazdar, A.F.; Bunn, P.A.; Minna, J.D.; Gallo, R.C. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc. Natl. Acad. Sci. USA 1980, 77, 7415–7419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gessain, A.; Cassar, O. Epidemiological Aspects and World Distribution of HTLV-1 Infection. Front. Microbiol. 2012, 3, 388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Einsiedel, L.; Woodman, R.J.; Flynn, M.; Wilson, K.; Cassar, O.; Gessain, A. Human T-Lymphotropic Virus type 1 infection in an Indigenous Australian population: Epidemiological insights from a hospital-based cohort study. BMC Public Health 2016, 16, 787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, F.; Taylor, G.P.; Jacobson, S. Inflammatory manifestations of HTLV-1 and their therapeutic options. Expert Rev. Clin. Immunol. 2014, 10, 1531–1546. [Google Scholar] [CrossRef] [PubMed]
- Bangham, C.R.; Cook, L.B.; Melamed, A. HTLV-1 clonality in adult T-cell leukaemia and non-malignant HTLV-1 infection. Semin. Cancer Biol. 2014, 26, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Nakashima, H.; Matsui, T.; Harada, S.; Kobayashi, N.; Matsuda, A.; Ueda, T.; Yamamoto, N. Inhibition of replication and cytopathic effect of human T cell lymphotropic virus type III/lymphadenopathy-associated virus by 3′-azido-3′-deoxythymidine in vitro. Antimicrob. Agents Chemother. 1986, 30, 933–937. [Google Scholar] [CrossRef] [Green Version]
- Matsushita, S.; Mitsuya, H.; Reitz, M.S.; Broder, S. Pharmacological inhibition of in vitro infectivity of human T lymphotropic virus type I. J. Clin. Investig. 1987, 80, 394–400. [Google Scholar] [CrossRef]
- Isono, T.; Ogawa, K.; Seto, A. Antiviral effect of zidovudine in the experimental model of adult T cell leukemia in rabbits. Leuk. Res. 1990, 14, 841–847. [Google Scholar] [CrossRef]
- Gout, O.; Gessain, A.; Iba-Zizen, M.; Kouzan, S.; Bolgert, F.; de The, G.; Lyon-Caen, O. The effect of zidovudine on chronic myelopathy associated with HTLV-1. J. Neurol. 1991, 238, 108–109. [Google Scholar] [CrossRef]
- Sheremata, W.A.; Benedict, D.; Squilacote, D.C.; Sazant, A.; DeFreitas, E. High-dose zidovudine induction in HTLV-I-associated myelopathy: Safety and possible efficacy. Neurology 1993, 43, 2125–2129. [Google Scholar] [CrossRef] [PubMed]
- Macchi, B.; Faraoni, I.; Zhang, J.; Grelli, S.; Favalli, C.; Mastino, A.; Bonmassar, E. AZT inhibits the transmission of human T cell leukaemia/lymphoma virus type I to adult peripheral blood mononuclear cells in vitro. J. Gen. Virol. 1997, 78 Pt 5, 1007–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, G.P.; Hall, S.E.; Navarrete, S.; Michie, C.A.; Davis, R.; Witkover, A.D.; Rossor, M.; Nowak, M.A.; Rudge, P.; Matutes, E.; et al. Effect of lamivudine on human T-cell leukemia virus type 1 (HTLV-1) DNA copy number, T-cell phenotype, and anti-tax cytotoxic T-cell frequency in patients with HTLV-1-associated myelopathy. J. Virol. 1999, 73, 10289–10295. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Lerma, J.G.; Nidtha, S.; Heneine, W. Susceptibility of human T cell leukemia virus type 1 to reverse-transcriptase inhibitors: Evidence for resistance to lamivudine. J. Infect. Dis. 2001, 184, 507–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balestrieri, E.; Forte, G.; Matteucci, C.; Mastino, A.; Macchi, B. Effect of lamivudine on transmission of human T-cell lymphotropic virus type 1 to adult peripheral blood mononuclear cells in vitro. Antimicrob. Agents Chemother. 2002, 46, 3080–3083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toro, C.; Rodes, B.; Mendoza, C.; Soriano, V. Lamivudine resistance in human T-cell leukemia virus type 1 may be due to a polymorphism at codon 118 (V-->I) of the reverse transcriptase. Antimicrob. Agents Chemother. 2003, 47, 1774–1775. [Google Scholar] [CrossRef] [Green Version]
- Hill, S.A.; Lloyd, P.A.; McDonald, S.; Wykoff, J.; Derse, D. Susceptibility of human T cell leukemia virus type I to nucleoside reverse transcriptase inhibitors. J. Infect. Dis. 2003, 188, 424–427. [Google Scholar] [CrossRef]
- Balestrieri, E.; Sciortino, M.T.; Mastino, A.; Macchi, B. Protective effect of the acyclic nucleoside phosphonate tenofovir toward human T-cell leukemia/lymphotropic virus type 1 infection of human peripheral blood mononuclear cells in vitro. Antivir. Res. 2005, 68, 154–162. [Google Scholar] [CrossRef]
- Taylor, G.P.; Goon, P.; Furukawa, Y.; Green, H.; Barfield, A.; Mosley, A.; Nose, H.; Babiker, A.; Rudge, P.; Usuku, K.; et al. Zidovudine plus lamivudine in Human T-Lymphotropic Virus type-I-associated myelopathy: A randomised trial. Retrovirology 2006, 3, 63. [Google Scholar] [CrossRef]
- Macchi, B.; Balestrieri, E.; Ascolani, A.; Hilburn, S.; Martin, F.; Mastino, A.; Taylor, G.P. Susceptibility of primary HTLV-1 isolates from patients with HTLV-1-associated myelopathy to reverse transcriptase inhibitors. Viruses 2011, 3, 469–483. [Google Scholar] [CrossRef] [Green Version]
- Hassan, S.; Amer, S.; Zervos, M. Tropical spastic paraparesis treated with Combivir (lamivudine-zidovudine). J. Clin. Neurosci. 2013, 20, 759–760. [Google Scholar] [CrossRef] [PubMed]
- Chiacchio, U.; Balestrieri, E.; Macchi, B.; Iannazzo, D.; Piperno, A.; Rescifina, A.; Romeo, R.; Saglimbeni, M.; Sciortino, M.T.; Valveri, V.; et al. Synthesis of phosphonated carbocyclic 2′-oxa-3′-aza-nucleosides: Novel inhibitors of reverse transcriptase. J. Med. Chem. 2005, 48, 1389–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balestrieri, E.; Matteucci, C.; Ascolani, A.; Piperno, A.; Romeo, R.; Romeo, G.; Chiacchio, U.; Mastino, A.; Macchi, B. Effect of phosphonated carbocyclic 2′-oxa-3′-aza-nucleoside on human T-cell leukemia virus type 1 infection in vitro. Antimicrob. Agents Chemother. 2008, 52, 54–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afonso, P.V.; Mekaouche, M.; Mortreux, F.; Toulza, F.; Moriceau, A.; Wattel, E.; Gessain, A.; Bangham, C.R.; Dubreuil, G.; Plumelle, Y.; et al. Highly active antiretroviral treatment against STLV-1 infection combining reverse transcriptase and HDAC inhibitors. Blood 2010, 116, 3802–3808. [Google Scholar] [CrossRef]
- Pasquier, A.; Alais, S.; Roux, L.; Thoulouze, M.I.; Alvarez, K.; Journo, C.; Dutartre, H.; Mahieux, R. How to Control HTLV-1-Associated Diseases: Preventing de Novo Cellular Infection Using Antiviral Therapy. Front. Microbiol. 2018, 9, 278. [Google Scholar] [CrossRef]
- Araujo, A.; Bangham, C.R.M.; Casseb, J.; Gotuzzo, E.; Jacobson, S.; Martin, F.; Penalva de Oliveira, A.; Puccioni-Sohler, M.; Taylor, G.P.; Yamano, Y. Management of HAM/TSP. Neurol. Clin. Pract. 2020, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gill, P.S.; Harrington, W., Jr.; Kaplan, M.H.; Ribeiro, R.C.; Bennett, J.M.; Liebman, H.A.; Bernstein-Singer, M.; Espina, B.M.; Cabral, L.; Allen, S.; et al. Treatment of adult T-cell leukemia-lymphoma with a combination of interferon alfa and zidovudine. N. Engl. J. Med. 1995, 332, 1744–1748. [Google Scholar] [CrossRef]
- Hermine, O.; Bouscary, D.; Gessain, A.; Turlure, P.; Leblond, V.; Franck, N.; Buzyn-Veil, A.; Rio, B.; Macintyre, E.; Dreyfus, F.; et al. Brief report: Treatment of adult T-cell leukemia-lymphoma with zidovudine and interferon alfa. N. Engl. J. Med. 1995, 332, 1749–1751. [Google Scholar] [CrossRef]
- Bazarbachi, A.; Nasr, R.; El-Sabban, M.E.; Mahe, A.; Mahieux, R.; Gessain, A.; Darwiche, N.; Dbaibo, G.; Kersual, J.; Zermati, Y.; et al. Evidence against a direct cytotoxic effect of alpha interferon and zidovudine in HTLV-I associated adult T cell leukemia/lymphoma. Leukemia 2000, 14, 716–721. [Google Scholar] [CrossRef] [Green Version]
- Matteucci, C.; Minutolo, A.; Marino-Merlo, F.; Grelli, S.; Frezza, C.; Mastino, A.; Macchi, B. Characterization of the enhanced apoptotic response to azidothymidine by pharmacological inhibition of NF-kB. Life Sci. 2015, 127, 90–97. [Google Scholar] [CrossRef]
- Matteucci, C.; Marino-Merlo, F.; Minutolo, A.; Balestrieri, E.; Valletta, E.; Macchi, B.; Mastino, A.; Grelli, S. Inhibition of IkappaBalpha phosphorylation potentiates regulated cell death induced by azidothymidine in HTLV-1 infected cells. Cell Death Discov. 2020, 6, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matutes, E.; Taylor, G.P.; Cavenagh, J.; Pagliuca, A.; Bareford, D.; Domingo, A.; Hamblin, M.; Kelsey, S.; Mir, N.; Reilly, J.T. Interferon alpha and zidovudine therapy in adult T-cell leukaemia lymphoma: Response and outcome in 15 patients. Br. J. Haematol. 2001, 113, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Kchour, G.; Makhoul, N.J.; Mahmoudi, M.; Kooshyar, M.M.; Shirdel, A.; Rastin, M.; Rafatpanah, H.; Tarhini, M.; Zalloua, P.A.; Hermine, O.; et al. Zidovudine and interferon-alpha treatment induces a high response rate and reduces HTLV-1 proviral load and VEGF plasma levels in patients with adult T-cell leukemia from North East Iran. Leuk. Lymphoma 2007, 48, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Bazarbachi, A.; Plumelle, Y.; Carlos Ramos, J.; Tortevoye, P.; Otrock, Z.; Taylor, G.; Gessain, A.; Harrington, W.; Panelatti, G.; Hermine, O. Meta-analysis on the use of zidovudine and interferon-alfa in adult T-cell leukemia/lymphoma showing improved survival in the leukemic subtypes. J. Clin. Oncol. 2010, 28, 4177–4183. [Google Scholar] [CrossRef]
- Hodson, A.; Crichton, S.; Montoto, S.; Mir, N.; Matutes, E.; Cwynarski, K.; Kumaran, T.; Ardeshna, K.M.; Pagliuca, A.; Taylor, G.P.; et al. Use of zidovudine and interferon alfa with chemotherapy improves survival in both acute and lymphoma subtypes of adult T-cell leukemia/lymphoma. J. Clin. Oncol. 2011, 29, 4696–4701. [Google Scholar] [CrossRef] [Green Version]
- Ramos, J.C.; Ruiz, P., Jr.; Ratner, L.; Reis, I.M.; Brites, C.; Pedroso, C.; Byrne, G.E., Jr.; Toomey, N.L.; Andela, V.; Harhaj, E.W.; et al. IRF-4 and c-Rel expression in antiviral-resistant adult T-cell leukemia/lymphoma. Blood 2007, 109, 3060–3068. [Google Scholar] [CrossRef] [Green Version]
- Nasr, R.; El Hajj, H.; Kfoury, Y.; de The, H.; Hermine, O.; Bazarbachi, A. Controversies in targeted therapy of adult T cell leukemia/lymphoma: ON target or OFF target effects? Viruses 2011, 3, 750–769. [Google Scholar] [CrossRef] [Green Version]
- Kinpara, S.; Kijiyama, M.; Takamori, A.; Hasegawa, A.; Sasada, A.; Masuda, T.; Tanaka, Y.; Utsunomiya, A.; Kannagi, M. Interferon-alpha (IFN-alpha) suppresses HTLV-1 gene expression and cell cycling, while IFN-alpha combined with zidovudine induces p53 signaling and apoptosis in HTLV-1-infected cells. Retrovirology 2013, 10, 52. [Google Scholar] [CrossRef] [Green Version]
- Macchi, B.; Balestrieri, E.; Frezza, C.; Grelli, S.; Valletta, E.; Marcais, A.; Marino-Merlo, F.; Turpin, J.; Bangham, C.R.; Hermine, O.; et al. Quantification of HTLV-1 reverse transcriptase activity in ATL patients treated with zidovudine and interferon-alpha. Blood Adv. 2017, 1, 748–752. [Google Scholar] [CrossRef] [Green Version]
- Cook, L.B.; Rowan, A.G.; Demontis, M.A.; Sagawe, S.; Gillet, N.A.; Melamed, A.; Greiller, C.; Witkover, A.; Bangham, C.R.M.; Taylor, G.P. Long-term clinical remission maintained after cessation of zidovudine and interferon-alpha therapy in chronic adult T-cell leukemia/lymphoma. Int. J. Hematol. 2018, 107, 378–382. [Google Scholar] [CrossRef]
- Kchour, G.; Tarhini, M.; Kooshyar, M.M.; El Hajj, H.; Wattel, E.; Mahmoudi, M.; Hatoum, H.; Rahimi, H.; Maleki, M.; Rafatpanah, H.; et al. Phase 2 study of the efficacy and safety of the combination of arsenic trioxide, interferon alpha, and zidovudine in newly diagnosed chronic adult T-cell leukemia/lymphoma (ATL). Blood 2009, 113, 6528–6532. [Google Scholar] [CrossRef] [PubMed]
- Marcais, A.; Cook, L.; Witkover, A.; Asnafi, V.; Avettand-Fenoel, V.; Delarue, R.; Cheminant, M.; Sibon, D.; Frenzel, L.; de The, H.; et al. Arsenic trioxide (As2O3) as a maintenance therapy for adult T cell leukemia/lymphoma. Retrovirology 2020, 17, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, L.B.; Fuji, S.; Hermine, O.; Bazarbachi, A.; Ramos, J.C.; Ratner, L.; Horwitz, S.; Fields, P.; Tanase, A.; Bumbea, H.; et al. Revised Adult T-Cell Leukemia-Lymphoma International Consensus Meeting Report. J. Clin. Oncol. 2019, 37, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Gout, O.; Baulac, M.; Gessain, A.; Semah, F.; Saal, F.; Peries, J.; Cabrol, C.; Foucault-Fretz, C.; Laplane, D.; Sigaux, F.; et al. Rapid development of myelopathy after HTLV-I infection acquired by transfusion during cardiac transplantation. N. Engl. J. Med. 1990, 322, 383–388. [Google Scholar] [CrossRef]
- Zarranz Imirizaldu, J.J.; Gomez Esteban, J.C.; Rouco Axpe, I.; Perez Concha, T.; Velasco Juanes, F.; Allue Susaeta, I.; Corral Carranceja, J.M. Post-transplantation HTLV-1 myelopathy in three recipients from a single donor. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1080–1084. [Google Scholar] [CrossRef] [Green Version]
- Ramanan, P.; Deziel, P.J.; Norby, S.M.; Yao, J.D.; Garza, I.; Razonable, R.R. Donor-transmitted HTLV-1-associated myelopathy in a kidney transplant recipient—Case report and literature review. Am. J. Transpl. 2014, 14, 2417–2421. [Google Scholar] [CrossRef] [Green Version]
- Govert, F.; Krumbholz, A.; Witt, K.; Hopfner, F.; Feldkamp, T.; Korn, K.; Knoll, A.; Jansen, O.; Deuschl, G.; Fickenscher, H. HTLV-1 associated myelopathy after renal transplantation. J. Clin. Virol. 2015, 72, 102–105. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Corbett, C.; Rowe, I.A.; Taylor, G.P.; Neuberger, J.M. HTLV-1 in solid-organ transplantation: Current challenges and future management strategies. Transplantation 2012, 94, 1075–1084. [Google Scholar] [CrossRef]
- Cook, L.B.; Melamed, A.; Demontis, M.A.; Laydon, D.J.; Fox, J.M.; Tosswill, J.H.; de Freitas, D.; Price, A.D.; Medcalf, J.F.; Martin, F.; et al. Rapid dissemination of human T-lymphotropic virus type 1 during primary infection in transplant recipients. Retrovirology 2016, 13, 3. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Ajona, D.; Yuste, J.R.; Martin, P.; Gallego Perez-Larraya, J. HTLV-1 myelopathy after renal transplant and antiviral prophylaxis: The need for screening. J. Neurovirol. 2018, 24, 523–525. [Google Scholar] [CrossRef]
- Gillette, M.A.; Shah, B.M.; Schafer, J.J.; DeSimone, J.A., Jr. Dolutegravir: A new integrase strand transfer inhibitor for the treatment of HIV—An alternative viewpoint. Pharmacotherapy 2014, 34, e173–e174. [Google Scholar] [CrossRef] [PubMed]
- Rabaaoui, S.; Zouhiri, F.; Lancon, A.; Leh, H.; d’Angelo, J.; Wattel, E. Inhibitors of strand transfer that prevent integration and inhibit human T-cell leukemia virus type 1 early replication. Antimicrob. Agents Chemother. 2008, 52, 3532–3541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seegulam, M.E.; Ratner, L. Integrase inhibitors effective against human T-cell leukemia virus type 1. Antimicrob. Agents Chemother. 2011, 55, 2011–2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barski, M.S.; Minnell, J.J.; Maertens, G.N. Inhibition of HTLV-1 Infection by HIV-1 First- and Second-Generation Integrase Strand Transfer Inhibitors. Front. Microbiol. 2019, 10, 1877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewan, M.Z.; Uchihara, J.N.; Terashima, K.; Honda, M.; Sata, T.; Ito, M.; Fujii, N.; Uozumi, K.; Tsukasaki, K.; Tomonaga, M.; et al. Efficient intervention of growth and infiltration of primary adult T-cell leukemia cells by an HIV protease inhibitor, ritonavir. Blood 2006, 107, 716–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fochi, S.; Ciminale, V.; Trabetti, E.; Bertazzoni, U.; D’Agostino, D.M.; Zipeto, D.; Romanelli, M.G. NF-kappaB and MicroRNA Deregulation Mediated by HTLV-1 Tax and HBZ. Pathogens 2019, 8, 290. [Google Scholar] [CrossRef] [Green Version]
- Schierhout, G.; McGregor, S.; Gessain, A.; Einsiedel, L.; Martinello, M.; Kaldor, J. Association between HTLV-1 infection and adverse health outcomes: A systematic review and meta-analysis of epidemiological studies. Lancet Infect. Dis. 2020, 20, 133–143. [Google Scholar] [CrossRef]
- Cook, L.B.M.; Taylor, G.P. HTLV-1: The silent impact revealed. Lancet Infect. Dis. 2020, 20, 12–14. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marino-Merlo, F.; Balestrieri, E.; Matteucci, C.; Mastino, A.; Grelli, S.; Macchi, B. Antiretroviral Therapy in HTLV-1 Infection: An Updated Overview. Pathogens 2020, 9, 342. https://doi.org/10.3390/pathogens9050342
Marino-Merlo F, Balestrieri E, Matteucci C, Mastino A, Grelli S, Macchi B. Antiretroviral Therapy in HTLV-1 Infection: An Updated Overview. Pathogens. 2020; 9(5):342. https://doi.org/10.3390/pathogens9050342
Chicago/Turabian StyleMarino-Merlo, Francesca, Emanuela Balestrieri, Claudia Matteucci, Antonio Mastino, Sandro Grelli, and Beatrice Macchi. 2020. "Antiretroviral Therapy in HTLV-1 Infection: An Updated Overview" Pathogens 9, no. 5: 342. https://doi.org/10.3390/pathogens9050342
APA StyleMarino-Merlo, F., Balestrieri, E., Matteucci, C., Mastino, A., Grelli, S., & Macchi, B. (2020). Antiretroviral Therapy in HTLV-1 Infection: An Updated Overview. Pathogens, 9(5), 342. https://doi.org/10.3390/pathogens9050342