Clinical Outcomes of a Zika Virus Mother–Child Pair Cohort in Spain
Abstract
:1. Introduction
2. Results
2.1. Epidemiological and Clinical Characteristics of the Participants
2.2. Laboratory Confirmation of Maternal Infection
2.3. Ultrasound and MRI Results during Pregnancies
2.4. Maternal, Fetal, and Neonatal Outcomes
3. Discussion
4. Materials and Methods
4.1. Enrolment Criteria
4.2. Cohort Follow-Up and Endpoints
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Waldorf, K.A.; Nelson, B.R.; Stencel-Baerenwald, J.E.; Studholme, C.; Kapur, R.P.; Armistead, B.; Walker, C.L.; Merillat, S.; Vornhagen, J.; Tisoncik-Go, J.; et al. Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nat. Med. 2018, 24, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Schuler-Faccini, L.; Ribeiro, E.M.; Feitosa, I.M.; Horovitz, D.D.; Cavalcanti, D.P.; Pessoa, A.; Doriqui, M.J.R.; Neri, J.I.; de Pina Neto, J.M.; Wanderley, H.Y.; et al. Possible Association Between Zika Virus Infection and Microcephaly—Brazil, 2015. MMWR Morb. Mortal Wkly. Rep. 2016, 65, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Saad, T.; PennaeCosta, A.A.; De Góes, F.V.; De Freitas, M.; De Almeida, J.V.; Ignêz, L.J.D.S.; Amancio, A.P.; Alvim, R.J.; Kramberger, L.A.A. Neurological manifestations of congenital Zika virus infection. Childs Nerv. Syst. 2018, 34, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Del Campo, M.; Feitosa, I.M.L.; Ribeiro, E.M.; Horovitz, D.D.G.; Pessoa, A.L.S.; De França, G.V.A.; García-Alix, A.; Doriqui, M.J.R.; Wanderley, H.Y.C.; Sanseverino, M.V.T.; et al. The phenotypic spectrum of congenital Zika syndrome. Am. J. Med. Genet. A 2017, 173, 841–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcez, P.P.; Loiola, E.C.; Da Costa, R.M.; Higa, L.M.; Trindade, P.; DelVecchio, R.; Nascimento, J.; Brindeiro, R.; Tanuri, A.; Rehen, S.K. Zika virus impairs growth in human neurospheres and brain organoids. Science 2016, 352, 816–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arandes, A.S.; Calle, I.R.; Nastouli, E.; Espiau, M.; A Frick, M.; Alarcon, A.; Martinón-Torres, F. What we know and what we don’t know about perinatal Zika virus infection: A systematic review. Expert Rev. Anti Infect. Ther. 2018, 16, 243–254. [Google Scholar] [CrossRef]
- Gulland, A. Zika virus is a global public health emergency, declares WHO. BMJ 2016, 352, i657. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, A.C. Development of Infants with Congenital Zika Syndrome: What Do We Know and What Can We Expect? Pediatrics 2018, 141 (Suppl. 2), S154–S160. [Google Scholar] [CrossRef] [Green Version]
- Brasil, P.; Pereira, J.P., Jr.; Moreira, M.E.; Ribeiro Nogueira, R.M.; Damasceno, L.; Wakimoto, M.; Rabello, R.S.; Valderramos, S.G.; Halai, U.A.; Salles, T.S.; et al. Zika Virus Infection in Pregnant Women in Rio de Janeiro. N. Engl. J. Med. 2016, 375, 2321–2334. [Google Scholar] [CrossRef]
- Pomar, L.; Vouga, M.; Lambert, V.; Pomar, C.; Hcini, N.; Jolivet, A.; Benoist, G.; Rousset, D.; Matheus, S.; Malinger, G.; et al. Maternal-fetal transmission and adverse perinatal outcomes in pregnant women infected with Zika virus: Prospective cohort study in French Guiana. BMJ 2018, 363, k4431. [Google Scholar] [CrossRef] [Green Version]
- Hoen, B.; Schaub, B.; Funk, A.L.; Ardillon, V.; Boullard, M.; Cabié, A.; Callier, C.; Carles, G.; Cassadou, S.; Césaire, R.; et al. Pregnancy Outcomes after ZIKV Infection in French Territories in the Americas. N. Engl. J. Med. 2018, 378, 985–994. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, M.L.; Júnior, N.N.; Estofolete, C.F.; Terzian, A.B.; Guimarães, G.; Zini, N.; Da Silva, R.A.; Silva, G.D.; Franco, L.J.; Rahal, P.; et al. Adverse birth outcomes associated with Zika virus exposure during pregnancy in Sao Jose do Rio Preto, Brazil. Clin. Microbiol. Infect. 2018, 24, 646–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conners, E.E.; Lee, E.H.; Thompson, C.N.; McGibbon, E.; Rakeman, J.L.; Iwamoto, M.; Cooper, H.; Vora, N.M.; Limberger, R.J.; Fine, A.D.; et al. Zika Virus Infection Among Pregnant Women and Their Neonates in New York City, January 2016-June 2017. Obstet. Gynecol. 2018, 132, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Rodo, C.; Suy, A.; Sulleiro, E.; Arandes, A.S.; Maiz, N.; García-Ruiz, I.; Arévalo, S.; Rando, A.; Anton, A.; Méndez Élida, V.; et al. Pregnancy outcomes after maternal Zika virus infection in a non-endemic region: Prospective cohort study. Clin. Microbiol. Infect. 2019, 25. [Google Scholar] [CrossRef]
- Bailey, D.B., Jr.; Ventura, L.O. The Likely Impact of Congenital Zika Syndrome on Families: Considerations for Family Supports and Services. Pediatrics 2018, 141 (Suppl. 2), S180–S187. [Google Scholar] [CrossRef] [Green Version]
- Costello, A.; Dua, T.; Duran, P.; Gülmezoglu, M.; Oladapo, O.T.; Perea, W.; Pires, J.; Ramon-Pardo, P.; Rollins, N.; Saxena, S. Defining the syndrome associated with congenital Zika virus infection. Bull. World Health Organ. 2016, 94, 406-A. [Google Scholar] [CrossRef]
- Moore, C.A.; Staples, J.E.; Dobyns, W.B.; Pessoa, A.; Ventura, C.; Da Fonseca, E.B.; Ribeiro, E.M.; Ventura, L.V.; Neto, N.N.; Arena, J.F.; et al. Characterizing the Pattern of Anomalies in Congenital Zika Syndrome for Pediatric Clinicians. JAMA Pediatr. 2017, 171, 288–295. [Google Scholar] [CrossRef] [Green Version]
- Werner, H.; Daltro, P.; Fazecas, T.; Zare Mehrjardi, M.; Araujo Junior, E. Neuroimaging Findings of Congenital Toxoplasmosis, Cytomegalovirus, and Zika Virus Infections: A Comparison of Three Cases. J. Obstet. Gynaecol. Can. 2017, 39, 1150–1155. [Google Scholar] [CrossRef]
- Procedimiento de Manejo de la Infecion por Virus ZIKA Durante el Embarazo y en Recien Nacidos; Ministerio de Sanidad SSeI: Madrid, Spain, 2017.
- Nielsen-Saines, K.; Brasil, P.; Kerin, T.; Vasconcelos, Z.; Gabaglia, C.R.; Damasceno, L.; Pone, M.; De Carvalho, L.M.A.; Pone, S.M.; Zin, A.A.; et al. Delayed childhood neurodevelopment and neurosensory alterations in the second year of life in a prospective cohort of ZIKV-exposed children. Nat. Med. 2019, 25, 1213–1217. [Google Scholar] [CrossRef]
- Adhikari, E.; Nelson, D.B.; Johnson, K.A.; Jacobs, S.; Rogers, V.L.; Roberts, S.W.; Sexton, T.; McIntire, D.; Casey, B.M. Infant outcomes among women with Zika virus infection during pregnancy: Results of a large prenatal Zika screening program. Am. J. Obstet. Gynecol. 2017, 216, 292.e1–e8. [Google Scholar] [CrossRef] [Green Version]
- Escobar-Ipuz, F.A.; Soria-Bretones, C.; Garcia-Jimenez, M.A.; Cueto, E.M.; Torres Aranda, A.M.; Sotos, J.M. Early detection of neonatal hearing loss by otoacoustic emissions and auditory brainstem response over 10 years of experience. Int. J. Pediatr. Otorhinolaryngol. 2019, 127, 109647. [Google Scholar] [CrossRef] [PubMed]
- Marco, J.; Mateu, S. Libro Blanco sobre Hipoacusia. Detección Precoz de la Hipoacusia en Recién Nacidos; Ministerio de Sanidad y Consumo: Madrid, Spain, 2003. [Google Scholar]
- Bermejo, E.; Cuevas, L.; Mendioroz, J. Frecuencia de Anomalías Congénitas en España: Vigilancia Epidemiológica en el ECEMC en el período 1980–2007. Revista de Dismorfología y Epidemiología 2008, 7, 58–87, ISSN: 0210-3893. [Google Scholar]
- Honein, M.A.; Dawson, A.L.; Petersen, E.E.; Jones, A.M.; Lee, E.H.; Yazdy, M.; Ahmad, N.; Macdonald, J.; Evert, N.; Bingham, A.; et al. Birth Defects Among Fetuses and Infants of US Women with Evidence of Possible Zika Virus Infection During Pregnancy. JAMA 2017, 317, 59–68. [Google Scholar] [CrossRef]
- Musso, D.; Ko, A.I.; Baud, D. Zika Virus Infection—After the Pandemic. N. Engl. J. Med. 2019, 381, 1444–1457. [Google Scholar] [CrossRef] [PubMed]
- REDCap-Org. REDCap. 2019. Available online: https://www.project-redcap.org (accessed on 1 April 2020).
RT-PCR | IgG | IgM | PRNT | |
---|---|---|---|---|
Confirmed | Positive | |||
Negative or not done | Positive | Positive | Positive | |
Probable | Negative or not done | Positive | Negative | Positive |
Negative or not done | Positive | Positive | Negative | |
No evidence of Zika | Negative or not done | Positive | Negative | Negative |
Negative or not done | Negative | Negative | Not done |
Confirmed Infection | Probable Infection | Total | |
---|---|---|---|
n=24 | n=139 | n=163 | |
n (%) or median [IQR] | |||
Age at delivery (n = 157) | 29 (24–35) | 27 (23–32) | 28 (23–32) |
Total number of previous pregnancies (n = 162) | |||
0 | 11 (46) | 62 (45) | 73 (45) |
1 | 7 (29) | 37 (27) | 44 (27) |
2 | 1 (4) | 18 (13) | 19 (12) |
>=3 | 5 (21) | 21 (15) | 26 (16) |
Total number of previous live births (n = 162) | |||
0 | 13 (54) | 78 (57) | 91 (56) |
1 | 7 (29) | 37 (27) | 44 (27) |
2 | 3 (13) | 12 (9) | 15 (9) |
>=3 | 1 (4) | 11 (8) | 12 (7) |
Country of ZIKV exposure (n=163) | |||
Dominican Republic | 6 (25) | 45 (32) | 51 (31) |
Honduras | 4 (17) | 34 (24) | 38 (23) |
Venezuela | 0 (0) | 17 (12) | 17 (10) |
Ecuador | 3 (13) | 11 (8) | 14 (9) |
Colombia | 6 (25) | 7 (5) | 13 (8) |
Bolivia | 3 (13) | 7 (5) | 10 (6) |
Other | 2 (8) | 18 (13) | 20 (12) |
Gestational age at screening (completed weeks) (n = 162) | 19 (11–25) | 22 (15–31) | 21 (14–30) |
Clinical signs or symptoms (n = 161) | |||
No | 4 (17) | 108 (78) | 112 (70) |
Yes* | 20 (83) | 29 (21) | 49 (30) |
Unknown | 0 (0) | 2 (1) | 2 (1) |
Fever (n = 49) | 13 (68) | 18 (67) | 31 (67) |
Rash (n = 49) | 17 (85) | 21 (72) | 38 (78) |
Arthralgia (n = 49) | 12 (63) | 16 (64) | 28 (64) |
Conjunctival hyperaemia (n = 49) | 4 (22) | 6 (24) | 10 (23) |
Guillain–Barre syndrome (n = 49) | 1 (6) | 1 (4) | 2 (4) |
Focal neurological signs (n = 49) | 1 (6) | 1 (4) | 2 (4) |
Other signs and symptoms (n = 49) | 6 (33) | 6 (23) | 12 (27) |
Screening sample <15 days after arrival in Spain from endemic area (n = 141) | |||
No | 14 (58) | 104 (89) | 118 (84) |
Yes | 10 (42) | 13 (11) | 23 (16) |
ZIKV IgM (n = 163) | |||
Negative | 7 (29) | 139 (100) | 146 (90) |
Positive | 17 (71) | 0 (0) | 17 (10) |
ZIKV IgG (n = 163) | |||
Positive | 24 (100) | 139 (100) | 163 (100) |
Amniocentesis performed (n = 159) | |||
No | 8 (33) | 121 (90) | 129 (81) |
Yes | 16 (67) | 14 (10) | 30 (19) |
Confirmed Infection | Probable Infection | Total | p-Value | |
---|---|---|---|---|
n = 19 | n = 124 | n = 143 | ||
n (%) or Median [IQR] | ||||
Gestational age at delivery (completed weeks) (n = 143) | 39 (37–40) | 39 (39–40) | 39 (38–40) | |
Preterm/term delivery (completed weeks) (n = 143) | 0.305 | |||
<34 weeks (very preterm) | 1 (5) | 1 (1) | 2 (1) | |
34–36 weeks (moderate preterm) | 1 (5) | 7 (6) | 8 (6) | |
>=37 weeks (term) | 17 (89) | 116 (94) | 133 (93) | |
Sex (n = 141) | 0.475 | |||
Female | 13 (68) | 73 (60) | 86 (61) | |
Male | 6 (32) | 49 (40) | 55 (39) | |
Birth weight (g) (n = 140) | 0.598 | |||
1500–2499 | 0 (0) | 7 (6) | 7 (5) | |
>=2500 | 17 (100) | 116 (94) | 133 (95) | |
Birth weight z-score (n = 138) | 0.004 | |||
>=0 | 5 (29) | 82 (68) | 87 (63) | |
−2-<0 | 12 (71) | 38 (31) | 50 (36) | |
<−2 | 0 (0) | 1 (1) | 1 (1) | |
Head circumference at birth z-score (n = 129) | 0.054 | |||
>=0 | 9 (60) | 85 (75) | 94 (73) | |
<0 & >=−2 | 4 (27) | 28 (25) | 32 (25) | |
<-2 | 2 (13) | 1 (1) | 3 (2) | |
Length at birth z-score (n = 127) | 0.514 | |||
>=0 | 8 (57) | 76 (67) | 84 (66) | |
−2-<0 | 6 (43) | 35 (31) | 41 (32) | |
<−2 | 0 (0) | 2 (2) | 2 (2) | |
Type of delivery (n = 141) | 1.000 | |||
Spontaneous | 15 (79) | 90 (74) | 105 (74) | |
Assisted | 1 (5) | 6 (5) | 7 (5) | |
Emergency Caesarean | 0 (0) | 5 (4) | 5 (4) | |
Elective Caesarean | 3 (16) | 21 (17) | 24 (17) | |
Child’s 1 minute Apgar score (n = 131) | 0.014 | |||
=<3 | 0 (0) | 1 (1) | 1 (1) | |
4–6 | 2 (13) | 0 (0) | 2 (2) | |
=>7 | 14 (88) | 114 (99) | 128 (98) | |
Child’s 5 minute Apgar score (n = 131) | 0.122 | |||
4–6 | 1 (6) | 0 (0) | 1 (1) | |
=>7 | 15 (94) | 115 (100) | 130 (99) | |
Congenital microcephaly (n = 131) | 3 (16) | 2 (2) | 5 (4) | 0.021 |
Cranial/facial disproportion (n = 131) | 3 (16) | 0 (0) | 3 (2) | 0.002 |
Arthrogryposis (n = 130) | 1 (5) | 0 (0) | 1 (1) | 0.146 |
Biparietal depression (n = 131) | 2 (11) | 1 (1) | 3 (2) | 0.009 |
Excess nuchal skin (n = 131) | 2 (11) | 0 (0) | 2 (2) | 0.054 |
Adverse outcomes related to Zika (n = 143) | 0.001 | |||
Congenital Zika Syndrome | 3 (16) | 0 (0) | 3 (2) | |
Other possible Zika-related outcomes | 0 (0) | 11 (9) | 11 (8) | |
Asymptomatic | 16 (84) | 113 (91) | 129 (90) |
Case | Mother’s Country of Exposure | Week of Gestation at Diagnosis | Maternal Symptom | Method Diagnosis for Mother | Type of Maternal Infection | Week of Gestation at First US | Abnormal Prenatal Findings | Week of Gestationat Birth | Abnormal Physical Findings at Birth | Abnormal Findings at Follow-up |
---|---|---|---|---|---|---|---|---|---|---|
CZS cases | ||||||||||
1 | Colombia | 11 | Yes | PCR-ZIKV (+) in serum, urine and amniotic fluid | confirmed | 12 | Yes (compatible with CZS) | 37 | Yes (compatible with CZS): congenital microcephaly (−5.1 z-score), craniofacial disproportion, biparietal depression, excess nuchal skin, and neurological abnormalities | CZS (congenital microcephaly, collapsed skull, craniofacial disproportion, arthrogryposis, hyperexcitability, hyperreflexia, abnormal mobility) Abnormal cerebral MRI findings (microcephaly with cortical atrophy affecting frontal lobes with pachygyria pattern in both cerebral hemispheres, delayed myelination pattern, microcalcifications in parieto-occipital regions, global thinning of the corpus callosum, and moderate supratentorial dysmorphic ventriculomegaly) |
2 | Ecuador | 13 | No | PCR-ZIKV (+) in serum, and amniotic fluid | confirmed | 13 | Yes (compatible with CZS) | 22 | Stillbirth (necropsy pathological findings were compatible with CZS): microcephaly (168mm; reference for this gestational age is 196 +/- 13mm), cortical atrophy, ventriculomegaly, bilateral polymicrogyria, leptomeningeal glioneuronal heterotopia, frequent calcifications in both hemispheres | CZS (microcephaly, partially collapsed skull, cranio-facial disproportion, and arthrogryposis) PCR-ZIKV was (+) in brain, CSF, placenta, thyroid, trachea, heart, quadriceps muscle, and bone marrow |
3 | Brazil | 12 | Yes | PCR-ZIKV (+) in urine, IgG-ZIKV (+), and IgM-ZIKV (+) | confirmed | 29 | Yes (compatible with CZS) | 38 | Yes (compatible with CZS): congenital microcephaly (-3.5 z-score), craniofacial disproportion, biparietal depression, excess nuchal skin, and neurological abnormalities | CZS (congenital microcephaly, collapsed skull, craniofacial disproportion, hyperexcitability, hyperreflexia, abnormal mobility) Abnormal cerebral MRI findings (microcephaly with cortical atrophy affecting frontal lobes with pachygyria pattern in both cerebral hemispheres, abnormal migration neuronal pattern, calcifications in brain parenchyma, basal ganglia and periventricular regions, dysgenesis of the corpus callosum, cisterna magna enlargement, and ventriculomegaly) |
Hearing loss findings | ||||||||||
4 | Dominican Republic | 14 | Yes | IgG-ZIKV (+) plus PRNT-ZIKV (+) | probable | 14 | No | 40 | No | Mild bilateral HL (abnormal AABR test at 10-m-old) LTFU after 10-m-old |
5* | Dominican Republic | 10 | No | IgG-ZIKV (+) plus PRNT-ZIKV (+) | probable | 12 | No | 39 | Disproportion moderate microcephaly (−2.1 z-score below mean for age and sex) | Mild right HL (abnormal AABR test at 5-m-old) No microcephaly during follow-up time |
6 | Honduras | 29 | No | IgG-ZIKV (+) plus PRNT-ZIKV (+) | probable | 34 | No | 40 | No | Mild left HL (abnormal AABR test at 15-m-old) Normal cerebral MRI Language impairment |
7 | Bolivia | 30 | Yes | IgG-ZIKV (+) plus PRNT-ZIKV (+) | probable | 31 | No | 39 | No | Mild left HL (abnormal AABR test at 14-m-old) |
8 | Nicaragua | 10 | No | IgG-ZIKV (+) plus PRNT-ZIKV (+) | probable | 12 | No | 39 | No | Mild right HL (abnormal AABR test at 12-m-old) |
Abnormal postnatal cerebral MRI or head ultrasonographic findings in non CZS cases | ||||||||||
9 | Colombia | 27 | No | IgG-ZIKV (+) plus PRNT-ZIKV (+) | probable | 34 | No | 38 | No | Postnatal U/S: Bilateral lenticulostriate vasculopathy Postnatal cerebral MRI: left anterior arachnoid cyst |
10 | Dominican Republic | 15 | Yes | IgG-ZIKV (+) plus PRNT-ZIKV (+) | probable | 21 | No | 35 | No | Postnatal U/S: Hyper echogenicity of the bilateral periventricular white matter LTFU at 12-m-old |
11** | Dominican Republic | 21 | Yes | IgG-ZIKV (+) plus PRNT-ZIKV (+) | probable | 22 | Yes (intrauterine growth retardation) | 34 | No | Postnatal U/S: hemorrhage of bilateral germinal matrix Postnatal cerebral MRI: Ventriculomegaly with intraventricular hemorrhage, ependymal and cisternae siderosis, loss of volume of bilateral cerebral white matter and thinned corpus callosum |
12 | Ecuador | 39 | Yes | IgG-ZIKV (+) plus PRNT-ZIKV (+) | probable | 34 | No | 39 | No | Postnatal U/S: lenticulostriate vasculopathy in right basal ganglia |
13*** | Dominican Republic | 18 | No | IgG-ZIKV (+) plus PRNT-ZIKV (+) | probable | 18 | No | 40 | No | Progressive microcephaly and postnatal growth retardation Postnatal cerebral MRI: craniofacial disproportion |
14**** | Honduras | 36 | No | IgG-ZIKV (+) plus PRNT-ZIKV (+) | probable | 38 | No | 40 | Yes (complex seizures) | Postnatal U/S: asymmetry of the germinal matrix Postnatal cerebral MRI: acute cortical-subcortical parietal and occipital bilateral ischemic lesions (left > right) due to probable embolic cause |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soriano-Arandes, A.; Frick, M.A.; García López-Hortelano, M.; Sulleiro, E.; Rodó, C.; Sánchez-Seco, M.P.; Cabrera-Lafuente, M.; Suy, A.; De la Calle, M.; Santos, M.; et al. Clinical Outcomes of a Zika Virus Mother–Child Pair Cohort in Spain. Pathogens 2020, 9, 352. https://doi.org/10.3390/pathogens9050352
Soriano-Arandes A, Frick MA, García López-Hortelano M, Sulleiro E, Rodó C, Sánchez-Seco MP, Cabrera-Lafuente M, Suy A, De la Calle M, Santos M, et al. Clinical Outcomes of a Zika Virus Mother–Child Pair Cohort in Spain. Pathogens. 2020; 9(5):352. https://doi.org/10.3390/pathogens9050352
Chicago/Turabian StyleSoriano-Arandes, Antoni, Marie Antoinette Frick, Milagros García López-Hortelano, Elena Sulleiro, Carlota Rodó, María Paz Sánchez-Seco, Marta Cabrera-Lafuente, Anna Suy, María De la Calle, Mar Santos, and et al. 2020. "Clinical Outcomes of a Zika Virus Mother–Child Pair Cohort in Spain" Pathogens 9, no. 5: 352. https://doi.org/10.3390/pathogens9050352
APA StyleSoriano-Arandes, A., Frick, M. A., García López-Hortelano, M., Sulleiro, E., Rodó, C., Sánchez-Seco, M. P., Cabrera-Lafuente, M., Suy, A., De la Calle, M., Santos, M., Antolin, E., Viñuela, M. d. C., Espiau, M., Salazar, A., Guarch-Ibáñez, B., Vázquez, A., Navarro-Morón, J., Ramos-Amador, J. -T., Martin-Nalda, A., ... Soler-Palacín, P. (2020). Clinical Outcomes of a Zika Virus Mother–Child Pair Cohort in Spain. Pathogens, 9(5), 352. https://doi.org/10.3390/pathogens9050352