Streptococcus suis Uptakes Carbohydrate Source from Host Glycoproteins by N-glycans Degradation System for Optimal Survival and Full Virulence during Infection
Abstract
:1. Introduction
2. Results
2.1. A Significantly Higher Proliferative Ability of SS2 Virulent Strains in Swine Serum than Low-virulent Strains
2.2. The endoss Gene Encoded within a Unique Insertion Region of SS2 Virulent Strains is Required for Optimal Proliferation in Host Serum
2.3. EndoSS and Its Upstream GH92 Are Required for the Full Virulence of SS2 in Animal Infection Models
2.4. Bioinformatics Analysis of an EndoSS-Related N-Glycans Degradation Gene Cluster Encoded within the Insertion Region
2.5. EndoSS and GH92 Can Hydrolyze the N-Glycans of RNase B Collaboratively via Different Cutting Sites
2.6. EndoSS Contributes to Optimal Growth of S. suis on a Glycoconjugate
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains, Plasmids and Growth Conditions
4.2. Swine Blood, Serum and Animals
4.3. DNA Manipulations and Plasmids Construction
4.4. Bioinformatics Identification of EndoSS-Related N-Glycans Degradation System
4.5. RNA Isolation and qRT-PCR Analysis
4.6. Bacterial Culture in Swine Serum in vitro
4.7. S. suis Growth Assays in Specific Mediums with Indicated Glycoproteins
4.8. Preparation of Recombinant EndoSS and GH92 Glycosyl Hydrolases
4.9. Analysis of Hydrolytic Activity of EndoSS and GH92 Enzymes
4.10. Animal Infection Assays
4.11. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goyette-Desjardins, G.; Auger, J.P.; Xu, J.; Segura, M.; Gottschalk, M. Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerg. Microbes Infect. 2014, 3, e45. [Google Scholar] [CrossRef] [PubMed]
- Segura, M. Streptococcus suis: An emerging human threat. J. Infect. Dis. 2009, 199, 4–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wertheim, H.F.; Nghia, H.D.; Taylor, W.; Schultsz, C. Streptococcus suis: An emerging human pathogen. Clin. Infect. Dis. 2009, 48, 617–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.; Zhang, H.; Wu, Z.; Wang, S.; Cao, M.; Hu, D.; Wang, C. Streptococcus suis infection: An emerging/reemerging challenge of bacterial infectious diseases? Virulence 2014, 5, 477–497. [Google Scholar] [CrossRef] [Green Version]
- Smith, H.E.; Buijs, H.; de Vries, R.; Wisselink, H.J.; Stockhofe-Zurwieden, N.; Smits, M.A. Environmentally regulated genes of Streptococcus suis: Identification by the use of iron-restricted conditions in vitro and by experimental infection of piglets. Microbiology 2001, 147 Pt 2, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; An, C.; Jiang, F.; Yao, H.; Logue, C.; Nolan, L.K.; Li, G. Extraintestinal pathogenic Escherichia coli increase extracytoplasmic polysaccharide biosynthesis for serum resistance in response to bloodstream signals. Mol. Microbiol. 2018, 110, 689–706. [Google Scholar] [CrossRef]
- Phan, M.D.; Peters, K.M.; Sarkar, S.; Lukowski, S.W.; Allsopp, L.P.; Gomes Moriel, D.; Achard, M.E.; Totsika, M.; Marshall, V.M.; Upton, M.; et al. The serum resistome of a globally disseminated multidrug resistant uropathogenic Escherichia coli clone. PLoS Genet. 2013, 9, e1003834. [Google Scholar] [CrossRef] [Green Version]
- Huja, S.; Oren, Y.; Biran, D.; Meyer, S.; Dobrindt, U.; Bernhard, J.; Becher, D.; Hecker, M.; Sorek, R.; Ron, E.Z. Fur is the master regulator of the extraintestinal pathogenic Escherichia coli response to serum. mBio 2014, 5, e0146014. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.; Zhu, H.; Lu, C. Use of in vivo-induced antigen technology (IVIAT) for the identification of Streptococcus suis serotype 2 in vivo-induced bacterial protein antigens. BMC Microbiol. 2009, 9, 201. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, E.D. Iron availability and infection. Biochim. Et Biophys. Acta 2009, 1790, 600–605. [Google Scholar] [CrossRef] [Green Version]
- Aranda, J.; Cortes, P.; Garrido, M.E.; Fittipaldi, N.; Llagostera, M.; Gottschalk, M.; Barbe, J. Contribution of the FeoB transporter to Streptococcus suis virulence. Int. Microbiol. 2009, 12, 137–143. [Google Scholar] [PubMed]
- Wichgers Schreur, P.J.; Rebel, J.M.; Smits, M.A.; van Putten, J.P.; Smith, H.E. TroA of Streptococcus suis is required for manganese acquisition and full virulence. J. Bacteriol. 2011, 193, 5073–5080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aranda, J.; Teixido, L.; Fittipaldi, N.; Cortes, P.; Llagostera, M.; Gottschalk, M.; Barbe, J. Inactivation of the gene encoding zinc-binding lipoprotein 103 impairs the infectivity of Streptococcus suis. Can. J. Vet. Res. Rev. Can. De Rech. Vet. 2012, 76, 72–76. [Google Scholar]
- Wilson, T.L.; Jeffers, J.; Rapp-Gabrielson, V.J.; Martin, S.; Klein, L.K.; Lowery, D.E.; Fuller, T.E. A novel signature-tagged mutagenesis system for Streptococcus suis serotype 2. Vet. Microbiol. 2007, 122, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Deutscher, J.; Ake, F.M.; Derkaoui, M.; Zebre, A.C.; Cao, T.N.; Bouraoui, H.; Kentache, T.; Mokhtari, A.; Milohanic, E.; Joyet, P. The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: Regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol. Mol. Biol. Rev. MMBR 2014, 78, 231–256. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Liu, L.; Qiu, D.; Chen, H.; Zhou, R. Identification of Streptococcus suis serotype 2 genes preferentially expressed in the natural host. Int. J. Med Microbiol. 2010, 300, 482–488. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, C.; Shao, J.; Zhu, Z.; Wang, W.; Zhang, W.; Tang, M.; Pei, N.; Fan, H.; Li, J.; et al. The Streptococcus suis transcriptional landscape reveals adaptation mechanisms in pig blood and cerebrospinal fluid. RNA 2014, 20, 882–898. [Google Scholar] [CrossRef] [Green Version]
- Reitsma, S.; Slaaf, D.W.; Vink, H.; van Zandvoort, M.A.; oude Egbrink, M.G. The endothelial glycocalyx: Composition, functions, and visualization. Pflug. Arch. Eur. J. Physiol. 2007, 454, 345–359. [Google Scholar] [CrossRef] [Green Version]
- Helenius, A.; Aebi, M. Intracellular functions of N-linked glycans. Science 2001, 291, 2364–2369. [Google Scholar] [CrossRef] [Green Version]
- Manfredi, P.; Renzi, F.; Mally, M.; Sauteur, L.; Schmaler, M.; Moes, S.; Jeno, P.; Cornelis, G.R. The genome and surface proteome of Capnocytophaga canimorsus reveal a key role of glycan foraging systems in host glycoproteins deglycosylation. Mol. Microbiol. 2011, 81, 1050–1060. [Google Scholar] [CrossRef]
- Jimenez-Munguia, I.; Pulzova, L.; Kanova, E.; Tomeckova, Z.; Majerova, P.; Bhide, K.; Comor, L.; Sirochmanova, I.; Kovac, A.; Bhide, M. Proteomic and bioinformatic pipeline to screen the ligands of S. pneumoniae interacting with human brain microvascular endothelial cells. Sci. Rep. 2018, 8, 5231. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Rocha, E.R.; Smith, C.J. Efficient utilization of complex N-linked glycans is a selective advantage for Bacteroides fragilis in extraintestinal infections. Proc. Natl. Acad. Sci. USA 2014, 111, 12901–12906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynskey, N.N.; Reglinski, M.; Calay, D.; Siggins, M.K.; Sriskandan, S. Multi-functional mechanisms of immune evasion by the streptococcal complement inhibitor C5a peptidase. PLoS Pathog. 2017, 13, e1006493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, L.; Zhao, J.; Lin, L.; Zhang, Q.; Xu, Z.; Han, L.; Xie, C.; Zhou, R.; Jin, M.; Zhang, A. Characterization of IgA1 protease as a surface protective antigen of Streptococcus suis serotype 2. Microbes Infect. 2015, 18, 285–289. [Google Scholar] [CrossRef]
- Nandakumar, K.S.; Collin, M.; Happonen, K.E.; Lundstrom, S.L.; Croxford, A.M.; Xu, B.; Zubarev, R.A.; Rowley, M.J.; Blom, A.M.; Kjellman, C.; et al. Streptococcal Endo-beta-N-Acetylglucosaminidase Suppresses Antibody-Mediated Inflammation In Vivo. Front. Immunol. 2018, 9, 1623. [Google Scholar] [CrossRef] [Green Version]
- Fairbanks, A.J. The ENGases: Versatile biocatalysts for the production of homogeneous N-linked glycopeptides and glycoproteins. Chem. Soc. Rev. 2017, 46, 5128–5146. [Google Scholar] [CrossRef] [Green Version]
- Shadnezhad, A.; Naegeli, A.; Sjogren, J.; Adamczyk, B.; Leo, F.; Allhorn, M.; Karlsson, N.G.; Jensen, A.; Collin, M. EndoSd: An IgG glycan hydrolyzing enzyme in Streptococcus dysgalactiae subspecies dysgalactiae. Future Microbiol. 2016, 11, 721–736. [Google Scholar] [CrossRef] [Green Version]
- Robb, M.; Hobbs, J.K.; Woodiga, S.A.; Shapiro-Ward, S.; Boraston, A.B. Molecular Characterization of N-glycan Degradation and Transport in Streptococcus pneumoniae and Its Contribution to Virulence. PLoS Pathog. 2017, 13, e1006090. [Google Scholar] [CrossRef]
- Dong, W.; Ma, J.; Zhu, Y.; Zhu, J.; Yuan, L.; Wang, Y.; Xu, J.; Pan, Z.; Wu, Z.; Zhang, W.; et al. Virulence genotyping and population analysis of Streptococcus suis serotype 2 isolates from China. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2015, 36, 483–489. [Google Scholar] [CrossRef]
- Cai, W.; Wannemuehler, Y.; Dell’anna, G.; Nicholson, B.; Barbieri, N.L.; Kariyawasam, S.; Feng, Y.; Logue, C.M.; Nolan, L.K.; Li, G. A novel two-component signaling system facilitates uropathogenic Escherichia coli’s ability to exploit abundant host metabolites. PLoS Pathog. 2013, 9, e1003428. [Google Scholar] [CrossRef] [Green Version]
- Neely, M.N.; Pfeifer, J.D.; Caparon, M. Streptococcus-zebrafish model of bacterial pathogenesis. Infect. Immun. 2002, 70, 3904–3914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; Zhang, W.; Lu, Y.; Lu, C. Transcriptome profiling of zebrafish infected with Streptococcus suis. Microb. Pathog. 2010, 48, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Higuchi, Y.; Kinoshita, T.; Mitani, A.; Eshima, Y.; Takegawa, K. Characterization of novel endo-beta-N-acetylglucosaminidases from Sphingobacterium species, Beauveria bassiana and Cordyceps militaris that specifically hydrolyze fucose-containing oligosaccharides and human IgG. Sci. Rep. 2018, 8, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, X.; Zhang, Y.; Zhu, Y.; Dong, W.; Ma, J.; Pan, Z.; Yao, H. Identification of an Autorepressing Two-Component Signaling System That Modulates Virulence in Streptococcus suis Serotype 2. Infect. Immun. 2019, 87, e0037719. [Google Scholar] [CrossRef] [Green Version]
- Rudd, P.M.; Scragg, I.G.; Coghill, E.; Dwek, R.A. Separation and analysis of the glycoform populations of ribonuclease B using capillary electrophoresis. Glycoconj. J. 1992, 9, 86–91. [Google Scholar] [CrossRef]
- Dalia, A.B.; Standish, A.J.; Weiser, J.N. Three surface exoglycosidases from Streptococcus pneumoniae, NanA, BgaA, and StrH, promote resistance to opsonophagocytic killing by human neutrophils. Infect. Immun. 2010, 78, 2108–2116. [Google Scholar] [CrossRef] [Green Version]
- Obert, C.; Sublett, J.; Kaushal, D.; Hinojosa, E.; Barton, T.; Tuomanen, E.I.; Orihuela, C.J. Identification of a Candidate Streptococcus pneumoniae core genome and regions of diversity correlated with invasive pneumococcal disease. Infect. Immun. 2006, 74, 4766–4777. [Google Scholar] [CrossRef] [Green Version]
- Gardy, J.L.; Laird, M.R.; Chen, F.; Rey, S.; Walsh, C.J.; Ester, M.; Brinkman, F.S. PSORTb v.2.0: Expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 2005, 21, 617–623. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Huang, N.; Sun, Z. SubLoc: A server/client suite for protein subcellular location based on SOAP. Bioinformatics 2006, 22, 376–377. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.K.; Kwon, O.; Lee, Y.M.; Oh, D.B.; Lee, J.M.; Kim, S.; Kim, E.H.; Le, T.N.; Rhee, D.K.; Kang, H.A. Characterization of the Streptococcus pneumoniae BgaC protein as a novel surface beta-galactosidase with specific hydrolysis activity for the Galbeta1-3GlcNAc moiety of oligosaccharides. J. Bacteriol. 2009, 191, 3011–3023. [Google Scholar] [CrossRef] [Green Version]
- Perez-Dorado, I.; Galan-Bartual, S.; Hermoso, J.A. Pneumococcal surface proteins: When the whole is greater than the sum of its parts. Mol. Oral Microbiol. 2012, 27, 221–245. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.R.; McNab, R.; Millsap, K.W.; Rohde, M.; Hammerschmidt, S.; Mawdsley, J.L.; Jenkinson, H.F. The pavA gene of Streptococcus pneumoniae encodes a fibronectin-binding protein that is essential for virulence. Mol. Microbiol. 2001, 41, 1395–1408. [Google Scholar] [CrossRef] [PubMed]
- Hirani, S.; Lambris, J.D.; Muller-Eberhard, H.J. Structural analysis of the asparagine-linked oligosaccharides of human complement component C3. Biochem. J. 1986, 233, 613–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takamatsu, D.; Osaki, M.; Sekizaki, T. Thermosensitive suicide vectors for gene replacement in Streptococcus suis. Plasmid 2001, 46, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Dong, W.; Ma, J.; Zhang, Y.; Pan, Z.; Yao, H. Utilization of the ComRS system for the rapid markerless deletion of chromosomal genes in Streptococcus suis. Future Microbiol. 2019, 14, 207–222. [Google Scholar] [CrossRef]
- Wei, Z.; Cheng, P.L. Immunoproteomics of extracellular proteins of Chinese virulent strains of Streptococcus suis type 2. Proteomics 2007, 7, 4468–4476. [Google Scholar]
- Ma, J.; Bao, Y.; Sun, M.; Dong, W.; Pan, Z.; Zhang, W.; Lu, C.; Yao, H. Two Functional Type VI Secretion Systems in Avian Pathogenic Escherichia coli Are Involved in Different Pathogenic Pathways. Infect. Immun. 2015, 83, 3867–3879. [Google Scholar] [CrossRef] [Green Version]
- Zaccaria, E.; Wels, M.; van Baarlen, P.; Wells, J.M. Temporal Regulation of the Transformasome and Competence Development in Streptococcus suis. Front. Microbiol. 2016, 7, 1922. [Google Scholar]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [Green Version]
- Kelley, L.A.; Sternberg, M.J.E. Protein structure prediction on the Web: A case study using the Phyre server. Nat. Protoc. 2009, 4, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Bingle, L.E.; Bailey, C.M.; Pallen, M.J. Type VI secretion: A beginner’s guide. Curr. Opin. Microbiol. 2008, 11, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.; Schmittgen, T. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCt Method. Methods 2000, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Kloosterman, G.T. To have neighbour’s fare: Extending the molecular toolbox for Streptococcus pneumoniae. Microbiology 2006, 152, 351–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Zhang, Y.; Ma, J.; Dong, W.; Zhong, X.; Pan, Z.; Yao, H. ICESsuHN105, a Novel Multiple Antibiotic Resistant ICE in Streptococcus suis Serotype 5 Strain HN105. Front. Microbiol. 2019, 10, 274. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Zhang, Z.; Pan, Z.; Bai, Q.; Zhong, X.; Zhu, Y.; Zhang, Y.; Wu, Z.; Liu, G.; Yao, H. Streptococcus suis Uptakes Carbohydrate Source from Host Glycoproteins by N-glycans Degradation System for Optimal Survival and Full Virulence during Infection. Pathogens 2020, 9, 387. https://doi.org/10.3390/pathogens9050387
Ma J, Zhang Z, Pan Z, Bai Q, Zhong X, Zhu Y, Zhang Y, Wu Z, Liu G, Yao H. Streptococcus suis Uptakes Carbohydrate Source from Host Glycoproteins by N-glycans Degradation System for Optimal Survival and Full Virulence during Infection. Pathogens. 2020; 9(5):387. https://doi.org/10.3390/pathogens9050387
Chicago/Turabian StyleMa, Jiale, Ze Zhang, Zihao Pan, Qiankun Bai, Xiaojun Zhong, Yinchu Zhu, Yue Zhang, Zongfu Wu, Guangjin Liu, and Huochun Yao. 2020. "Streptococcus suis Uptakes Carbohydrate Source from Host Glycoproteins by N-glycans Degradation System for Optimal Survival and Full Virulence during Infection" Pathogens 9, no. 5: 387. https://doi.org/10.3390/pathogens9050387
APA StyleMa, J., Zhang, Z., Pan, Z., Bai, Q., Zhong, X., Zhu, Y., Zhang, Y., Wu, Z., Liu, G., & Yao, H. (2020). Streptococcus suis Uptakes Carbohydrate Source from Host Glycoproteins by N-glycans Degradation System for Optimal Survival and Full Virulence during Infection. Pathogens, 9(5), 387. https://doi.org/10.3390/pathogens9050387