An Optimized Most Probable Number (MPN) Method to Assess the Number of Thermophilic Free-Living Amoebae (FLA) in Water Samples
Abstract
:1. Introduction
2. Results
2.1. Optimization of the MPN Method
2.2. Assessment of the Time and Storage Temperature of Water Samples, Prior to Processing
3. Discussion
4. Materials and Methods
4.1. Water Samples and Amoeba Isolation
4.2. The Most Probable Number (MPN) Methods
4.2.1. Classical MPN Method
4.2.2. Optimized MPN Method
4.3. Amoeba Identification and Counting
4.4. Assessment of Storage Temperature and Delay of Delivery of Water Samples
4.5. Statistical Analyses
Author Contributions
Funding
Conflicts of Interest
References
- Adamska, M.; Leonska-Duniec, A.; Lanocha, N.; Skotarczak, B. Thermophilic potentially pathogenic amoebae isolated from natural water bodies in Poland and their molecular characterization. Acta Parasitol. 2014, 59, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Tyndall, R.L.; Ironside, K.S.; Metler, P.L.; Tan, E.L.; Hazen, T.C.; Fliermans, C.B. Effect of thermal additions on the density and distribution of thermophilic amoebae and pathogenic Naegleria fowleri in a newly created cooling lake. Appl. Environ. Microbiol. 1989, 55, 722–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheid, P. Free-Living Amoebae as Human Parasites and Hosts for Pathogenic Microorganisms. Proceedings 2018, 2, 692. [Google Scholar] [CrossRef] [Green Version]
- Latifi, A.R.; Niyyati, M.; Lorenzo-Morales, J.; Haghighi, A.; Seyyed Tabaei, S.J.; Lasjerdi, Z. Presence of Balamuthia mandrillaris in hot springs from Mazandaran province, northern Iran. Epidemiol. Infect. 2016, 144, 2456–2461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visvesvara, G.S.; Moura, H.; Schuster, F.L. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol. Med. Microbiol. 2007, 50, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niyyati, M.; Latifi, A. Free Living Amoeba Belonging to Vannella Spp. Isolated from a Hotspring in Amol City, Northern Iran. Nov. Biomed. 2017, 5, 85–88. [Google Scholar]
- Delafont, V.; Rodier, M.-H.; Maisonneuve, E.; Cateau, E. Vermamoeba vermiformis: A Free-Living Amoeba of Interest. Microb. Ecol. 2018, 76, 991–1001. [Google Scholar] [CrossRef]
- Walochnik, J. Amoebae. In Parasitic Protozoa of Farm Animals and Pets; Springer International Publishing: Cham, Switzerland, 2018; pp. 389–412. ISBN 9783319701325. [Google Scholar]
- Scheid, P.L. Vermamoeba vermiformis—A Free-Living Amoeba with Public Health and Environmental Health Significance. Open Parasitol. J. 2019, 7, 40–47. [Google Scholar] [CrossRef]
- Scheid, P.L.; Lâm, T.-T.; Sinsch, U.; Balczun, C. Vermamoeba vermiformis as etiological agent of a painful ulcer close to the eye. Parasitol. Res. 2019, 118, 1999–2004. [Google Scholar] [CrossRef]
- Moussa, M.; Tissot, O.; Guerlotté, J.; De Jonckheere, J.F.; Talarmin, A. Soil is the origin for the presence of Naegleria fowleri in the thermal recreational waters. Parasitol. Res. 2015, 114, 311–315. [Google Scholar] [CrossRef]
- Moussa, M.; De Jonckheere, J.F.; Guerlotté, J.; Richard, V.; Bastaraud, A.; Romana, M.; Talarmin, A. Survey of Naegleria fowleri in Geothermal Recreational Waters of Guadeloupe (French West Indies). PLoS ONE 2013, 8, e54414. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas-Zúñiga, R.; Martínez-Castillo, M.; Shibayama, M.; Serrano-Luna, J.; Debnath, A.; Coronado-Velázquez, D. Naegleria fowleri after 50 years: Is it a neglected pathogen? J. Med. Microbiol. 2016, 65, 885–896. [Google Scholar]
- Siddiqui, R.; Ali, I.K.M.; Cope, J.R.; Khan, N.A. Biology and pathogenesis of Naegleria fowleri. Acta Trop. 2016, 164, 375–394. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, M.; De Jonckheere, J.F.; Pernin, P.; Bataille, H.; Le Bris, V.; Herrmann-Storck, C. Molecular diagnosis of a fatal primary amoebic meningoencephalitis in Guadeloupe (French West Indies). Bull. Soc. Pathol. Exot. 2010, 103, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Behets, J.; Declerck, P.; Delaedt, Y.; Verelst, L.; Ollevier, F. A duplex real-time PCR assay for the quantitative detection of Naegleria fowleri in water samples. Water Res. 2007, 41, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Pernin, P.; Pélandakis, M.; Rouby, Y.; Faure, A.; Siclet, F. Comparative recoveries of Naegleria fowleri amoebae from seeded river water by filtration and centrifugation. Appl. Environ. Microbiol. 1998, 64, 955–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabanes, P.A.; Wallet, F.; Pringuez, E.; Pernin, P. Assessing the Risk of Primary Amoebic Meningoencephalitis from Swimming in the Presence of Environmental Naegleria fowleri. Appl. Environ. Microbiol. 2001, 67, 2927–2931. [Google Scholar] [CrossRef] [Green Version]
- Percival, S.; Chalmers, R.; Embrey, M.; Hunter, P.; Sellwood, J.; Wyn-Jones, P. Naegleria fowleri. Microbiol. Waterborne Dis. 2004, 35, 319–324. [Google Scholar]
- Maciver, S.K.; Piñero, J.E.; Lorenzo-Morales, J. Is Naegleria fowleri an Emerging Parasite? Trends Parasitol. 2020, 36, 19–28. [Google Scholar] [CrossRef]
- Mahittikorn, A.; Mori, H.; Popruk, S.; Roobthaisong, A.; Sutthikornchai, C.; Koompapong, K.; Siri, S.; Sukthana, Y.; Nacapunchai, D. Development of a Rapid, Simple Method for Detecting Naegleria fowleri Visually in Water Samples by Loop-Mediated Isothermal Amplification (LAMP). PLoS ONE 2015, 10, e0120997. [Google Scholar] [CrossRef] [Green Version]
- Le Calvez, T.; Trouilhé, M.-C.; Humeau, P.; Moletta-Denat, M.; Frère, J.; Héchard, Y. Detection of free-living amoebae by using multiplex quantitative PCR. Mol. Cell. Probes 2012, 26, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Flores, B.M.; Garcia, C.A.; Stamm, W.E.; Torian, B.E. Differentiation of Naegleria fowleri from Acanthamoeba species by using monoclonal antibodies and flow cytometry. J. Clin. Microbiol. 1990, 28, 1999–2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, P.E.; Deromedi, A.J.; Lebaron, P.; Catala, P.; Havens, C.; Pougnard, C. High throughput, real-time detection of Naegleria lovaniensis in natural river water using LED-illuminated Fountain Flow Cytometry. J. Appl. Microbiol. 2007, 103, 700–710. [Google Scholar] [CrossRef] [PubMed]
- Pougnard, C.; Catala, P.; Drocourt, J.L.; Legastelois, S.; Pernin, P.; Pringuez, E.; Lebaron, P. Rapid detection and enumeration of Naegleria fowleri in surface waters by solid-phase cytometry. Appl. Environ. Microbiol. 2002, 68, 3102–3107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Organization for Standardization. International Organization for Standardization: ISO 8199:2005. Water Quality—General Guidance on the Enumeration of Micro-Organisms by Culture; International Organization for Standardization: Geneva, Switzerland, 2005. [Google Scholar]
- Lares-Villa, F.; Hernández-Peña, C. Concentration of Naegleria fowleri in natural waters used for recreational purposes in Sonora, Mexico (November 2007–October 2008). Exp. Parasitol. 2010, 126, 33–36. [Google Scholar] [CrossRef]
- Beattie, T.K.; Seal, D.V.; Tomlinson, A.; McFadyen, A.K.; Grimason, A.M. Determination of Amoebicidal Activities of Multipurpose Contact Lens Solutions by Using a Most Probable Number Enumeration Technique. J. Clin. Microbiol. 2003, 41, 2992–3000. [Google Scholar] [CrossRef] [Green Version]
- Dietersdorfer, E.; Cervero-Aragó, S.; Sommer, R.; Kirschner, A.K.; Walochnik, J. Optimized methods for Legionella pneumophila release from its Acanthamoeba hosts. BMC Microbiol. 2016, 16, 74. [Google Scholar] [CrossRef] [Green Version]
- Page, F.C. A revised classification of the Gymnamoebia (Protozoa: Sarcodina). Zool. J. Linn. Soc. 1976, 61–77. [Google Scholar] [CrossRef]
- Edagawa, A.; Kimura, A.; Kawabuchi-Kurata, T.; Kusuhara, Y.; Karanis, P. Isolation and genotyping of potentially pathogenic Acanthamoeba and Naegleria species from tap-water sources in Osaka, Japan. Parasitol. Res. 2009, 105, 1109–1117. [Google Scholar] [CrossRef]
- Page, F.C. A New Key to Freshwater and Soil Gymnamoebae with Instruction for Culture; Freshwater Biological Association: Ambleside, UK, 1988; 122p. [Google Scholar]
- De Jonckheere, J.F. Sequence Variation in the Ribosomal Internal Transcribed Spacers, Including the 5.8S rDNA, of Naegleria spp. Protist 1998, 149, 221–228. [Google Scholar] [CrossRef]
- Champsaur, H. Méthodes générales d’examen bactériologique des eaux. In L’analyse de L’eau; Rodier, J., Ed.; Dunod: Paris, France, 1996; pp. 755–756. [Google Scholar]
Thermophilic FLA | Naegleria fowleri | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Samples | Classical MPN Method | Modified MPN Method | Classical MPN Method | Modified MPN Method | ||||||||
Positive Petri Boxes | MPN Number (FLA/L) | Positive Filter Pieces | MPN Number (FLA /L) | Positive Petri Boxes | MPN Number Nf/L | Positive Filter Pieces | MPN Number Nf/L | |||||
100 mL | 10 mL | 100 mL | 10 mL | 100 mL | 10 mL | 100 mL | 10 mL | |||||
1 | 10 | 3 | 86 (39–191) | 9 | 6 | 80 (37–175) | 3 | 0 | 7 (3–20) | 1 | 2 | 6 (2–19) |
2 | 3 | 3 | 14 (6–31) | 5 | 3 | 21 (10–43) | 0 | 0 | <2 | 0 | 0 | <2 |
3 | 10 | 10 | >461 | 10 | 10 | >461 | 0 | 0 | <2 | 0 | 0 | <2 |
4 | 1 | 0 | 2 (1–14) | 1 | 0 | 2 (1–14) | 0 | 0 | <2 | 0 | 0 | <2 |
5 | 0 | 0 | <2 | 0 | 0 | <2 | 0 | 0 | <2 | 0 | 0 | <2 |
6 | 10 | 10 | >461 | 10 | 10 | >461 | 0 | 0 | <2 | 0 | 0 | <2 |
7 | 10 | 8 | 321(150–696) | 10 | 7 | 241 (110–529) | 0 | 0 | <2 | 0 | 0 | <2 |
8 | 1 | 0 | 2 (1–14) | 2 | 0 | 5 (1–16) | 0 | 0 | <2 | 1 | 0 | 2 (1–14) |
9 | 0 | 0 | <2 | 0 | 0 | <2 | 0 | 0 | <2 | 0 | 0 | <2 |
10 | 1 | 0 | 2 (1–14) | 1 | 0 | 2 (1–14) | 0 | 0 | <2 | 0 | 0 | <2 |
11 | 3 | 0 | 7 (3–20) | 0 | 0 | <2 | 0 | 0 | <2 | 0 | 0 | <2 |
12 | 7 | 0 | 21(10–43) | 4 | 1 | 12(5–28) | 0 | 0 | <2 | 0 | 0 | <2 |
13 | 7 | 0 | 21(10–43) | 7 | 4 | 35 (18–70) | 1 | 0 | 2 (1–14) | 1 | 0 | 2 (1–14) |
14 | 10 | 7 | 241 (110–529) | 10 | 10 | >461 | 0 | 0 | <2 | 1 | 1 | 4 (1–16) |
15 | 4 | 0 | 10(4–25) | 7 | 0 | 13 (6–30) | 0 | 0 | <2 | 1 | 0 | 2 (1–14) |
16 | 2 | 0 | 5 (1–16) | 5 | 0 | 13 (6–30) | 0 | 0 | <2 | 0 | 0 | <2 |
17 | 0 | 0 | <2 | 0 | 0 | <2 | 0 | 0 | <2 | 0 | 0 | <2 |
18 | 4 | 1 | 12 (5–28) | 5 | 0 | 13 (6–30) | 0 | 0 | <2 | 0 | 0 | <2 |
19 | 10 | 10 | >461 | 10 | 4 | 109 (47–253) | 0 | 0 | <2 | 1 | 0 | 2 (1–14) |
20* | 8 | 0 | 26 (13–54) | 9 | 0 | 35 (18–69) | ||||||
21* | 8 | 0 | 26 (13–54) | 9 | 0 | 35 (18–69) | ||||||
22* | 4 | 1 | 12 (5–28) | 6 | 0 | 16 (8–36) | ||||||
23* | 3 | 0 | 7 (3–20) | 4 | 0 | 10 (4–25) | ||||||
24* | 1 | 0 | 2 (1–14) | 2 | 0 | 5 (1–16) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moussa, M.; Marcelino, I.; Richard, V.; Guerlotté, J.; Talarmin, A. An Optimized Most Probable Number (MPN) Method to Assess the Number of Thermophilic Free-Living Amoebae (FLA) in Water Samples. Pathogens 2020, 9, 409. https://doi.org/10.3390/pathogens9050409
Moussa M, Marcelino I, Richard V, Guerlotté J, Talarmin A. An Optimized Most Probable Number (MPN) Method to Assess the Number of Thermophilic Free-Living Amoebae (FLA) in Water Samples. Pathogens. 2020; 9(5):409. https://doi.org/10.3390/pathogens9050409
Chicago/Turabian StyleMoussa, Mirna, Isabel Marcelino, Vincent Richard, Jérôme Guerlotté, and Antoine Talarmin. 2020. "An Optimized Most Probable Number (MPN) Method to Assess the Number of Thermophilic Free-Living Amoebae (FLA) in Water Samples" Pathogens 9, no. 5: 409. https://doi.org/10.3390/pathogens9050409
APA StyleMoussa, M., Marcelino, I., Richard, V., Guerlotté, J., & Talarmin, A. (2020). An Optimized Most Probable Number (MPN) Method to Assess the Number of Thermophilic Free-Living Amoebae (FLA) in Water Samples. Pathogens, 9(5), 409. https://doi.org/10.3390/pathogens9050409