Frequent Recombination Events in Leishmania donovani: Mining Population Data
Abstract
:1. Introduction
2. Results
2.1. Analysis of Leishmania donovani DNA-seq Data
2.2. Gradient of Putative Recombination Events Across Protein-Coding Genes
2.3. Analyis of B-Type Reads and Putative Adenylate Cyclase Proteins
2.4. Analysis of Sacharomyces cerevisiae
3. Discussion
4. Materials and Methods
4.1. Datasets
4.2. Data Binning and Filtering
4.3. Phylogenetic Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bruschi, F.; Gradoni, L. The Leishmaniases: Old Neglected Tropical Diseases; Springer: Cham, Switzerland, 2018; p. 245. [Google Scholar]
- Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet 2018, 392, 951–970. [Google Scholar] [CrossRef]
- Guerbouj, S.; Guizani, I.; Speybroeck, N.; Le Ray, D.; Dujardin, J.C. Genomic polymorphism of Leishmania infantum: A relationship with clinical pleomorphism? Infect. Genet. Evol. 2001, 1, 49–59. [Google Scholar] [CrossRef]
- Thakur, L.; Singh, K.K.; Shanker, V.; Negi, A.; Jain, A.; Matlashewski, G.; Jain, M. Atypical leishmaniasis: A global perspective with emphasis on the Indian subcontinent. PLoS Negl. Trop. Dis. 2018, 12, e0006659. [Google Scholar] [CrossRef] [PubMed]
- Quinnell, R.J.; Courtenay, O. Transmission, reservoir hosts and control of zoonotic visceral leishmaniasis. Parasitology 2009, 136, 1915–1934. [Google Scholar] [CrossRef] [PubMed]
- Ready, P.D. Epidemiology of visceral leishmaniasis. Clin. Epidemiol. 2014, 6, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Lukeš, J.; Mauricio, I.L.; Schonian, G.; Dujardin, J.C.; Soteriadou, K.; Dedet, J.P.; Kuhls, K.; Tintaya, K.W.; Jirků, M.; Chocholova, E.; et al. Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. Proc. Natl. Acad. Sci. USA 2007, 104, 9375–9380. [Google Scholar] [CrossRef] [Green Version]
- Leblois, R.; Kuhls, K.; Francois, O.; Schonian, G.; Wirth, T. Guns, germs and dogs: On the origin of Leishmania chagasi. Infect. Genet. Evol. 2011, 11, 1091–1095. [Google Scholar] [CrossRef]
- Zhang, W.W.; Ramasamy, G.; McCall, L.I.; Haydock, A.; Ranasinghe, S.; Abeygunasekara, P.; Sirimanna, G.; Wickremasinghe, R.; Myler, P.; Matlashewski, G. Genetic analysis of Leishmania donovani tropism using a naturally attenuated cutaneous strain. PLoS Pathog. 2014, 10, e1004244. [Google Scholar] [CrossRef] [Green Version]
- Laffitte, M.N.; Leprohon, P.; Papadopoulou, B.; Ouellette, M. Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance. F1000Research 2016, 5, 2350. [Google Scholar] [CrossRef] [Green Version]
- Sádlová, J.; Svobodová, M.; Volf, P. Leishmania major: Effect of repeated passages through sandfly vectors or murine hosts. Ann. Trop. Med. Parasitol. 1999, 93, 599–611. [Google Scholar] [CrossRef]
- Lypaczewski, P.; Hoshizaki, J.; Zhang, W.W.; McCall, L.I.; Torcivia-Rodriguez, J.; Simonyan, V.; Kaur, A.; Dewar, K.; Matlashewski, G. A complete Leishmania donovani reference genome identifies novel genetic variations associated with virulence. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Fiebig, M.; Kelly, S.; Gluenz, E. Comparative life cycle transcriptomics revises Leishmania mexicana genome annotation and links a chromosome duplication with parasitism of vertebrates. PLoS Pathog. 2015, 11, e1005186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rastrojo, A.; Garcia-Hernandez, R.; Vargas, P.; Camacho, E.; Corvo, L.; Imamura, H.; Dujardin, J.C.; Castanys, S.; Aguado, B.; Gamarro, F.; et al. Genomic and transcriptomic alterations in Leishmania donovani lines experimentally resistant to antileishmanial drugs. Int. J. Parasitol. Drugs Drug. Resist. 2018, 8, 246–264. [Google Scholar] [CrossRef]
- Dostálová, A.; Volf, P. Leishmania development in sand flies: Parasite-vector interactions overview. Parasit. Vectors 2012, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Forestier, C.L.; Gao, Q.; Boons, G.J. Leishmania lipophosphoglycan: How to establish structure-activity relationships for this highly complex and multifunctional glycoconjugate? Front. Cell. Infect. Microbiol. 2014, 4, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turco, S.J.; Spath, G.F.; Beverley, S.M. Is lipophosphoglycan a virulence factor? A surprising diversity between Leishmania species. Trends Parasitol. 2001, 17, 223–226. [Google Scholar] [CrossRef]
- Dobson, D.E.; Scholtes, L.D.; Valdez, K.E.; Sullivan, D.R.; Mengeling, B.J.; Cilmi, S.; Turco, S.J.; Beverley, S.M. Functional identification of galactosyltransferases (SCGs) required for species-specific modifications of the lipophosphoglycan adhesin controlling Leishmania major-sand fly interactions. J. Biol. Chem. 2003, 278, 15523–15531. [Google Scholar] [CrossRef] [Green Version]
- Dobson, D.E.; Mengeling, B.J.; Cilmi, S.; Hickerson, S.; Turco, S.J.; Beverley, S.M. Identification of genes encoding arabinosyltransferases (SCA) mediating developmental modifications of lipophosphoglycan required for sand fly transmission of Leishmania major. J. Biol. Chem. 2003, 278, 28840–28848. [Google Scholar] [CrossRef] [Green Version]
- Maslov, D.A.; Opperdoes, F.R.; Kostygov, A.Y.; Hashimi, H.; Lukeš, J.; Yurchenko, V. Recent advances in trypanosomatid research: Genome organization, expression, metabolism, taxonomy and evolution. Parasitology 2019, 146, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Lukeš, J.; Butenko, A.; Hashimi, H.; Maslov, D.A.; Votýpka, J.; Yurchenko, V. Trypanosomatids are much more than just trypanosomes: Clues from the expanded family tree. Trends Parasitol. 2018, 34, 466–480. [Google Scholar] [CrossRef] [Green Version]
- Butenko, A.; Vieira, T.D.S.; Frolov, A.O.; Opperdoes, F.R.; Soares, R.P.; Kostygov, A.Y.; Lukeš, J.; Yurchenko, V. Leptomonas pyrrhocoris: Genomic insight into parasite’s physiology. Curr. Genom. 2018, 19, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Manna, P.T.; Boehm, C.; Leung, K.F.; Natesan, S.K.; Field, M.C. Life and times: Synthesis, trafficking, and evolution of VSG. Trends Parasitol. 2014, 30, 251–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCulloch, R.; Rudenko, G.; Borst, P. Gene conversions mediating antigenic variation in Trypanosoma brucei can occur in variant surface glycoprotein expression sites lacking 70-base-pair repeat sequences. Mol. Cell. Biol. 1997, 17, 833–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, N.P.; Burman, N.; Melville, S.E.; Barry, J.D. Predominance of duplicative VSG gene conversion in antigenic variation in African trypanosomes. Mol. Cell. Biol. 1999, 19, 5839–5846. [Google Scholar] [CrossRef] [Green Version]
- Castro Neto, A.L.; Brito, A.; Rezende, A.M.; Magalhaes, F.B.; de Melo Neto, O.P. In silico characterization of multiple genes encoding the GP63 virulence protein from Leishmania braziliensis: Identification of sources of variation and putative roles in immune evasion. BMC Genom. 2019, 20, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Mauricio, I.L.; Gaunt, M.W.; Stothard, J.R.; Miles, M.A. Glycoprotein 63 (gp63) genes show gene conversion and reveal the evolution of Old World Leishmania. Int. J. Parasitol. 2007, 37, 565–576. [Google Scholar] [CrossRef]
- Mottram, J.C.; Frame, M.J.; Brooks, D.R.; Tetley, L.; Hutchison, J.E.; Souza, A.E.; Coombs, G.H. The multiple cpb cysteine proteinase genes of Leishmania mexicana encode isoenzymes that differ in their stage regulation and substrate preferences. J. Biol. Chem. 1997, 272, 14285–14293. [Google Scholar] [CrossRef] [Green Version]
- Folgueira, C.; Cañavate, C.; Chicharro, C.; Requena, J.M. Genomic organization and expression of the hsp70 locus in New and Old World Leishmania species. Parasitology 2007, 134, 369–377. [Google Scholar] [CrossRef]
- Jackson, A.P. The evolution of amastin surface glycoproteins in trypanosomatid parasites. Mol. Biol. Evol. 2010, 27, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.W.; Matlashewski, G. Characterization of the A2-A2rel gene cluster in Leishmania donovani: Involvement of A2 in visceralization during infection. Mol. MicroBiol. 2001, 39, 935–948. [Google Scholar] [CrossRef]
- Franssen, S.U.; Durrant, C.; Stark, O.; Moser, B.; Downing, T.; Imamura, H.; Dujardin, J.C.; Sanders, M.J.; Mauricio, I.; Miles, M.A.; et al. Global genome diversity of the Leishmania donovani complex. eLife 2020, 9, e51243. [Google Scholar] [CrossRef] [PubMed]
- Malone, R.E.; Bullard, S.; Lundquist, S.; Kim, S.; Tarkowski, T. A meiotic gene conversion gradient opposite to the direction of transcription. Nature 1992, 359, 154–155. [Google Scholar] [CrossRef] [PubMed]
- Detloff, P.; White, M.A.; Petes, T.D. Analysis of a gene conversion gradient at the his4 locus in Saccharomyces cerevisiae. Genetics 1992, 132, 113–123. [Google Scholar]
- Nicolas, A.; Petes, T.D. Polarity of meiotic gene conversion in fungi: Contrasting views. Experientia 1994, 50, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Kostygov, A.Y.; Yurchenko, V. Revised classification of the subfamily Leishmaniinae (Trypanosomatidae). Folia Parasitol. 2017, 64, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohta, T. On the evolution of multigene families. Theor. Popul. Biol. 1983, 23, 216–240. [Google Scholar] [CrossRef]
- Koop, B.F.; Miyamoto, M.M.; Embury, J.E.; Goodman, M.; Czelusniak, J.; Slightom, J.L. Nucleotide sequence and evolution of the orangutan epsilon globin gene region and surrounding Alu repeats. J. Mol. Evol. 1986, 24, 94–102. [Google Scholar] [CrossRef]
- Nei, M.; Rogozin, I.B.; Piontkivska, H. Purifying selection and birth-and-death evolution in the ubiquitin gene family. Proc. Natl. Acad. Sci. USA 2000, 97, 10866–10871. [Google Scholar] [CrossRef] [Green Version]
- Imamura, H.; Downing, T.; Van den Broeck, F.; Sanders, M.J.; Rijal, S.; Sundar, S.; Mannaert, A.; Vanaerschot, M.; Berg, M.; De Muylder, G.; et al. Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. eLife 2016, 5, e12613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eickbush, T.H.; Burke, W.D. The silkmoth late chorion locus. II. Gradients of gene conversion in two paired multigene families. J. Mol. Biol. 1986, 190, 357–366. [Google Scholar] [CrossRef]
- Alani, E.; Reenan, R.A.; Kolodner, R.D. Interaction between mismatch repair and genetic recombination in Saccharomyces cerevisiae. Genetics 1994, 137, 19–39. [Google Scholar] [PubMed]
- Dooner, H.K.; He, L. Polarized gene conversion at the bz locus of maize. Proc. Natl. Acad. Sci. USA 2014, 111, 13918–13923. [Google Scholar] [CrossRef] [Green Version]
- Palmer, S.; Schildkraut, E.; Lazarin, R.; Nguyen, J.; Nickoloff, J.A. Gene conversion tracts in Saccharomyces cerevisiae can be extremely short and highly directional. Nucleic. Acids. Res. 2003, 31, 1164–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Chen, Y. Phylogenomic analysis demonstrates a pattern of rare and long-lasting concerted evolution in prokaryotes. Commun. Biol. 2018, 1, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Perelygin, A.A.; Kondrashov, F.A.; Rogozin, I.B.; Brinton, M.A. Evolution of the mouse polyubiquitin-C gene. J. Mol. Evol. 2002, 55, 202–210. [Google Scholar] [CrossRef]
- Dover, G. Molecular drive: A cohesive mode of species evolution. Nature 1982, 299, 111–117. [Google Scholar] [CrossRef]
- Makin, L.; Gluenz, E. cAMP signalling in trypanosomatids: Role in pathogenesis and as a drug target. Trends Parasitol. 2015, 31, 373–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mony, B.M.; MacGregor, P.; Ivens, A.; Rojas, F.; Cowton, A.; Young, J.; Horn, D.; Matthews, K. Genome-wide dissection of the quorum sensing signalling pathway in Trypanosoma brucei. Nature 2014, 505, 681–685. [Google Scholar] [CrossRef] [Green Version]
- Imhof, S.; Knusel, S.; Gunasekera, K.; Vu, X.L.; Roditi, I. Social motility of African trypanosomes is a property of a distinct life-cycle stage that occurs early in tsetse fly transmission. PLoS Pathog. 2014, 10, e1004493. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, M.A.; Zeoli, D.; Klamo, E.M.; Kavanaugh, M.P.; Landfear, S.M. A family of putative receptor-adenylate cyclases from Leishmania donovani. J. Biol. Chem. 1995, 270, 17551–17558. [Google Scholar] [CrossRef] [Green Version]
- Downing, T.; Imamura, H.; Decuypere, S.; Clark, T.G.; Coombs, G.H.; Cotton, J.A.; Hilley, J.D.; de Doncker, S.; Maes, I.; Mottram, J.C.; et al. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res. 2011, 21, 2143–2156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Downing, T.; Stark, O.; Vanaerschot, M.; Imamura, H.; Sanders, M.; Decuypere, S.; de Doncker, S.; Maes, I.; Rijal, S.; Sundar, S.; et al. Genome-wide SNP and microsatellite variation illuminate population-level epidemiology in the Leishmania donovani species complex. Infect. Genet. Evol. 2012, 12, 149–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khromov-Borisov, N.N.; Rogozin, I.B.; Pegas Henriques, J.A.; de Serres, F.J. Similarity pattern analysis in mutational distributions. Mutat. Res. 1999, 430, 55–74. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Kostygov, A.Y.; Grybchuk-Ieremenko, A.; Malysheva, M.N.; Frolov, A.O.; Yurchenko, V. Molecular revision of the genus Wallaceina. Protist 2014, 165, 594–604. [Google Scholar] [CrossRef]
Read Types | Overlap with Protein-Coding Region (Fraction) | No Overlaps with Protein-Coding Region (Fraction) |
---|---|---|
B | 489 (35%) | 927 (65%) |
C | 117 (27%) | 308 (73%) |
D | 125 (21%) | 473 (79%) |
S | 513 (36%) | 901 (64%) |
Read Types | C | D | S |
---|---|---|---|
B | 0.0068 | 6.9 × 10–10 | 0.3460 |
C | 0.0168 | 0.0009 | |
D | 5.3 × 10−12 |
Read Types | Overlap with Protein-Coding Region | No Overlaps with Protein-Coding Region |
---|---|---|
B | 1 | 21 |
C | 1 | 12 |
D | 2 | 17 |
S | 14 | 45 |
Read Types | Overlap with Protein-Coding Region | No Overlaps with Protein-Coding Region |
---|---|---|
B | 0 | 0 |
C | 0 | 3 |
D | 1 | 0 |
S | 0 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogozin, I.B.; Charyyeva, A.; Sidorenko, I.A.; Babenko, V.N.; Yurchenko, V. Frequent Recombination Events in Leishmania donovani: Mining Population Data. Pathogens 2020, 9, 572. https://doi.org/10.3390/pathogens9070572
Rogozin IB, Charyyeva A, Sidorenko IA, Babenko VN, Yurchenko V. Frequent Recombination Events in Leishmania donovani: Mining Population Data. Pathogens. 2020; 9(7):572. https://doi.org/10.3390/pathogens9070572
Chicago/Turabian StyleRogozin, Igor B., Arzuv Charyyeva, Ivan A. Sidorenko, Vladimir N. Babenko, and Vyacheslav Yurchenko. 2020. "Frequent Recombination Events in Leishmania donovani: Mining Population Data" Pathogens 9, no. 7: 572. https://doi.org/10.3390/pathogens9070572
APA StyleRogozin, I. B., Charyyeva, A., Sidorenko, I. A., Babenko, V. N., & Yurchenko, V. (2020). Frequent Recombination Events in Leishmania donovani: Mining Population Data. Pathogens, 9(7), 572. https://doi.org/10.3390/pathogens9070572