Preclinical Models of Nontuberculous Mycobacteria Infection for Early Drug Discovery and Vaccine Research
Abstract
:1. Introduction
2. Extracellular Susceptibility Testing: The High-Throughput Way for Early Drug Discovery
3. Static Intracellular Infection Models
3.1. Immortalized and Primary Cells for In Vitro Intracellular Assays
3.2. Models Resembling In Vivo Pathological Conditions
3.3. Methods to Estimate Mycobacterial Killing
4. Flow-Cytometry-Based Drug Susceptibility Testing
- Obtaining sensitive and reproducible results within a few hours of drug exposure;
- Testing the susceptibility of the whole population, including viable but not culturable mycobacteria. These microorganisms cannot be cultivated on agar. As a result, the conventional methods can underestimate the enumeration of cells within a bacterial population;
- Discerning the way novel antibiotics work by distinctive patterns of fluorescence;
- Screening for new drugs against intracellular pathogens using imaging flow cytometry in combination with dedicated software. This methodology represents a powerful new approach to investigate host cell-pathogen interaction, including bacterial internalization and localization [91].
5. Dynamic Cellular Infection Models
- The inhibitory sigmoid maximum kill (Emax) in relation to the known pharmacokinetics achieved in the lungs;
- The exposure associated with suppression of resistance emergence;
- The optimal bacterial kill based on PK/PD index obtained by performing dose-fractionation studies [93].
6. Anti-Biofilm Drug Development
7. Animal Models in Preclinical Drug Development
7.1. Nonmammalian Models
7.2. Mammalian Models
8. In Vivo Preclinical Models in Vaccine Research
9. Concluding Comments
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Silva, P.D.; Miyata, M.; Sato, D.N.; Santos, A.C.B.; Mendes, N.H.; Leite, C.Q.F. Rhodococcus equi isolation from sputum of patients with suspected tuberculosis. Memórias Inst. Oswaldo Cruz 2010, 105, 199–202. [Google Scholar] [CrossRef]
- Johnson, M.M.; Odell, J.A. Nontuberculous mycobacterial pulmonary infections. J. Thorac. Dis. 2014, 6, 210–220. [Google Scholar]
- Hoefsloot, W.; van Ingen, J.; Andrejak, C.; Angeby, K.; Bauriaud, R.; Bemer, P.; Beylis, N.; Boeree, M.J.; Cacho, J.; Chihota, V.; et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: An NTM-NET collaborative study. Eur. Respir. J. 2013, 42, 1604–1613. [Google Scholar] [CrossRef]
- Lemarie, S.L. Mycobacterial Dermatitis. Vet. Clin. N. Am. Small Anim. Pract. 1999, 29, 1291–1301. [Google Scholar] [CrossRef]
- Franco-Paredes, C.; Marcos, L.A.; Henao-Martínez, A.F.; Rodríguez-Morales, A.J.; Villamil-Gómez, W.E.; Gotuzzo, E.; Bonifaz, A. Cutaneous Mycobacterial Infections. Clin. Microbiol. Rev. 2018, 32. [Google Scholar] [CrossRef] [Green Version]
- Winthrop, K.L.; Marras, T.K.; Adjemian, J.; Zhang, H.; Wang, P.; Zhang, Q. Incidence and Prevalence of Nontuberculous Mycobacterial Lung Disease in a Large U.S. Managed Care Health Plan, 2008–2015. Ann. Am. Thorac. Soc. 2020, 17, 178–185. [Google Scholar] [CrossRef]
- Prevots, D.R.; Marras, T.K. Epidemiology of human pulmonary infection with nontuberculous mycobacteria: A review. Clin. Chest Med. 2015, 36, 13–34. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.-C.; Kim, J.; Kang, W.; Jang, Y.; Kim, Y. Systemic infection of Mycobacterium avium subspecies hominissuis and fungus in a pet dog. J. Vet. Med. Sci. 2016, 78, 157–160. [Google Scholar] [CrossRef]
- Biet, F.; Boschiroli, M.L.; Thorel, M.F.; Guilloteau, L.A. Zoonotic aspects of Mycobacterium bovis and Mycobacterium avium-intracellulare complex (MAC). Vet. Res. 2005, 36, 411–436. [Google Scholar] [CrossRef] [Green Version]
- Pavlik, I.; Jahn, P.; Dvorska, L.; Bartos, M.; Novotny, L.; Halouzka, R. Mycobacterial infections in horses: A review of the literature. Vet. Med. 2004, 49, 427–440. [Google Scholar] [CrossRef] [Green Version]
- Pekkarinen, H.; Airas, N.; Savolainen, L.E.; Rantala, M.; Kilpinen, S.; Miuku, O.; Speeti, M.; Karkamo, V.; Malkamäki, S.; Vaara, M.; et al. Non-tuberculous Mycobacteria can Cause Disseminated Mycobacteriosis in Cats. J. Comp. Pathol. 2018, 160, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Fanta, C.H. Non-tuberculous mycobacterial pulmonary infection in the immunocompetent host. QJM 2013, 106, 307–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute (CLSI). Susceptibility Testing of Mycobacteria, Nocardia spp., and Other Aerobic Actinomycetes, 3rd ed.; CLSI Standard M24; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Susceptibility Testing of Mycobacteria, Nocardia spp., and Other Aerobic Actinomycetes; CLSI Supplement M62; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Brown-Elliott, B.A.; Nash, K.A.; Wallace, R.J. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin. Microbiol. Rev. 2012, 25, 545–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litvinov, V.; Makarova, M.; Galkina, K.; Khachaturiants, E.; Krasnova, M.; Guntupova, L.; Safonova, S. Drug susceptibility testing of slowly growing non-tuberculous mycobacteria using slomyco test-system. PLoS ONE 2018, 13, e0203108. [Google Scholar] [CrossRef] [PubMed]
- Lucke, K.; Hombach, M.; Friedel, U.; Ritter, C.; Böttger, E.C. Automated quantitative drug susceptibility testing of non-tuberculous mycobacteria using MGIT 960/EpiCenter TB eXiST. J. Antimicrob. Chemother. 2012, 67, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Flauta, V.; Osterhout, G.; Ellis, B.; Grayson, M.; Sasser, M.; Cohen, S.; Sander, M.; Dionne, K.; Carroll, K.; Parrish, N. Use of the “RAM” susceptibility testing method for rapid detection of clarithromycin resistance in the Mycobacterium avium complex. Diagn. Microbiol. Infect. Dis. 2010, 67, 47–51. [Google Scholar] [CrossRef]
- Howell, M.; Wirz, D.; Daniels, A.U.; Braissant, O. Application of a Microcalorimetric Method for Determining Drug Susceptibility in Mycobacterium Species. J. Clin. Microbiol. 2012, 50, 16–20. [Google Scholar] [CrossRef] [Green Version]
- Vanitha, J.D.; Paramasivan, C.N. Evaluation of microplate Alamar blue assay for drug susceptibility testing of Mycobacterium avium complex isolates. Diagn. Microbiol. Infect. Dis. 2004, 49, 179–182. [Google Scholar] [CrossRef]
- Tsukatani, T.; Suenaga, H.; Shiga, M.; Ikegami, T.; Ishiyama, M.; Ezoe, T.; Matsumoto, K. Rapid susceptibility testing for slowly growing nontuberculous mycobacteria using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium WST-1. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1965–1973. [Google Scholar] [CrossRef]
- Jadaun, G.P.S.; Agarwal, C.; Sharma, H.; Ahmed, Z.; Upadhyay, P.; Faujdar, J.; Gupta, A.K.; Das, R.; Gupta, P.; Chauhan, D.S.; et al. Determination of ethambutol MICs for Mycobacterium tuberculosis and Mycobacterium avium isolates by resazurin microtitre assay. J. Antimicrob. Chemother. 2007, 60, 152–155. [Google Scholar] [CrossRef]
- Singh, U.; Akhtar, S.; Mishra, A.; Sarkar, D. A novel screening method based on menadione mediated rapid reduction of tetrazolium salt for testing of anti-mycobacterial agents. J. Microbiol. Methods 2011, 84, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Berube, B.J.; Castro, L.; Russell, D.; Ovechkina, Y.; Parish, T. Novel Screen to Assess Bactericidal Activity of Compounds Against Non-replicating Mycobacterium abscessus. Front. Microbiol. 2018, 9, 2417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrow, W.W. Processing of mycobacterial lipids and effects on host responsiveness. Front. Biosci. 1997, 2, d387–d400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, S.J.; Neville, M.E.; Gupta, R.; Bermudez, L.E. Delivery of aerosolized liposomal amikacin as a novel approach for the treatment of nontuberculous mycobacteria in an experimental model of pulmonary infection. PLoS ONE 2014, 9, e108703. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.-R.; Britigan, B.E.; Switzer, B.; Hoke, T.; Moran, D.; Narayanasamy, P. In Vitro Efficacy of Free and Nanoparticle Formulations of Gallium(III) meso-Tetraphenylporphyrine against Mycobacterium avium and Mycobacterium abscessus and Gallium Biodistribution in Mice. Mol. Pharm. 2018, 15, 1215–1225. [Google Scholar] [CrossRef]
- Blanchard, J.D.; Elias, V.; Cipolla, D.; Gonda, I.; Bermudez, L.E. Effective Treatment of Mycobacterium avium subsp. hominissuis and Mycobacterium abscessus Species Infections in Macrophages, Biofilm, and Mice by Using Liposomal Ciprofloxacin. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, A.-L.; Dubée, V.; Cortes, M.; Dorchêne, D.; Arthur, M.; Mainardi, J.-L. Bactericidal and intracellular activity of β-lactams against Mycobacterium abscessus. J. Antimicrob. Chemother. 2016, 71, 1556–1563. [Google Scholar] [CrossRef] [Green Version]
- Bermudez, L.E.; Kolonoski, P.; Wu, M.; Aralar, P.A.; Inderlied, C.B.; Young, L.S. Mefloquine is active in vitro and in vivo against Mycobacterium avium complex. Antimicrob. Agents Chemother. 1999, 43, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Theus, S.A.; Cave, M.D.; Eisenach, K.D. Activated THP-1 Cells: An Attractive Model for the Assessment of Intracellular Growth Rates of Mycobacterium tuberculosis Isolates. Infect. Immun. 2004, 72, 1169–1173. [Google Scholar] [CrossRef] [Green Version]
- Mendoza-Coronel, E.; Castañón-Arreola, M. Comparative evaluation of in vitro human macrophage models for mycobacterial infection study. Pathog. Dis. 2016, 74. [Google Scholar] [CrossRef] [Green Version]
- Kohro, T.; Tanaka, T.; Murakami, T.; Wada, Y.; Aburatani, H.; Hamakubo, T.; Kodama, T. A comparison of differences in the gene expression profiles of phorbol 12-myristate 13-acetate differentiated THP-1 cells and human monocyte-derived macrophage. J. Atheroscler. Thromb. 2004, 11, 88–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daigneault, M.; Preston, J.A.; Marriott, H.M.; Whyte, M.K.B.; Dockrell, D.H. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS ONE 2010, 5, e8668. [Google Scholar] [CrossRef] [PubMed]
- Madhvi, A.; Mishra, H.; Leisching, G.; Mahlobo, P.; Baker, B. Comparison of human monocyte derived macrophages and THP1-like macrophages as in vitro models for M. tuberculosis infection. Comp. Immunol. Microbiol. Infect. Dis. 2019, 67, 101355. [Google Scholar] [CrossRef] [PubMed]
- Tomioka, H.; Sato, K.; Sano, C.; Sano, K.; Shimizu, T. Intramacrophage passage of Mycobacterium tuberculosis and M. avium complex alters the drug susceptibilities of the organisms as determined by intracellular susceptibility testing using macrophages and type II alveolar epithelial cells. Antimicrob. Agents Chemother. 2002, 46, 519–521. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Tomioka, H. Antimicrobial activities of benzoxazinorifamycin (KRM-1648) and clarithromycin against Mycobacterium avium-intracellulare complex within murine peritoneal macrophages, human macrophage-like cells and human alveolar epithelial cells. J. Antimicrob. Chemother. 1999, 43, 351–357. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Tomioka, H.; Akaki, T.; Kawahara, S. Antimicrobial activities of levofloxacin, clarithromycin, and KRM-1648 against Mycobacterium tuberculosis and Mycobacterium avium complex replicating within Mono Mac 6 human macrophage and A-549 type II alveolar cell lines. Int. J. Antimicrob. Agents 2000, 16, 25–29. [Google Scholar] [CrossRef]
- Parish, T. In vitro drug discovery models for Mycobacterium tuberculosis relevant for host infection. Expert Opin. Drug Discov. 2020, 15, 349–358. [Google Scholar] [CrossRef]
- Das, S.; Garg, T.; Chopra, S.; Dasgupta, A. Repurposing disulfiram to target infections caused by non-tuberculous mycobacteria. J. Antimicrob. Chemother. 2019, 74, 1317–1322. [Google Scholar] [CrossRef]
- Gupta, A.; Bhakta, S. An integrated surrogate model for screening of drugs against Mycobacterium tuberculosis. J. Antimicrob. Chemother. 2012, 67, 1380–1391. [Google Scholar] [CrossRef] [Green Version]
- Zaru, M.; Sinico, C.; De Logu, A.; Caddeo, C.; Lai, F.; Manca, M.L.; Fadda, A.M. Rifampicin-loaded liposomes for the passive targeting to alveolar macrophages: In vitro and in vivo evaluation. J. Liposome Res. 2009, 19, 68–76. [Google Scholar] [CrossRef]
- Franklin, R.K.; Marcus, S.A.; Talaat, A.M.; KuKanich, B.K.; Sullivan, R.; Krugner-Higby, L.A.; Heath, T.D. A Novel Loading Method for Doxycycline Liposomes for Intracellular Drug Delivery: Characterization of In Vitro and In Vivo Release Kinetics and Efficacy in a J774A.1 Cell Line Model of Mycobacterium smegmatis Infection. Drug Metab. Dispos. 2015, 43, 1236–1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiratsuchi, H.; Jacobs, M.R.; Pearson, A.J.; Venkataprasad, N.; Klopman, G.; Ellner, J.J. Comparison of the activity of fluoroquinolones against Mycobacterium avium in cell-free systems and a human monocyte in-vitro infection model. J. Antimicrob. Chemother. 1996, 37, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Nozawa, R.T.; Kato, H.; Yokota, T.; Sugi, H. Susceptibility of intra- and extracellular Mycobacterium avium-intracellulare to cephem antibiotics. Antimicrob. Agents Chemother. 1985, 27, 132–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perronne, C.; Gikas, A.; Truffot-Pernot, C.; Grosset, J.; Pocidalo, J.J.; Vilde, J.L. Activities of clarithromycin, sulfisoxazole, and rifabutin against Mycobacterium avium complex multiplication within human macrophages. Antimicrob. Agents Chemother. 1990, 34, 1508–1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perronne, C.; Gikas, A.; Truffot-Pernot, C.; Grosset, J.; Vilde, J.L.; Pocidalo, J.J. Activities of sparfloxacin, azithromycin, temafloxacin, and rifapentine compared with that of clarithromycin against multiplication of Mycobacterium avium complex within human macrophages. Antimicrob. Agents Chemother. 1991, 35, 1356–1359. [Google Scholar] [CrossRef] [Green Version]
- Onyeji, C.O.; Nightingale, C.H.; Nicolau, D.P.; Quintiliani, R. Efficacies of liposome-encapsulated clarithromycin and ofloxacin against Mycobacterium avium-M. intracellulare complex in human macrophages. Antimicrob. Agents Chemother. 1994, 38, 523–527. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.S.; Choe, J.H.; Kim, Y.J.; Yang, C.-S.; Kwon, H.-J.; Jeong, J.; Kim, G.; Park, D.E.; Jo, E.-K.; Cho, Y.-L.; et al. Activity of LCB01-0371, a Novel Oxazolidinone, against Mycobacterium abscessus. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- Skinner, P.S.; Furney, S.K.; Jacobs, M.R.; Klopman, G.; Ellner, J.J.; Orme, I.M. A bone marrow-derived murine macrophage model for evaluating efficacy of antimycobacterial drugs under relevant physiological conditions. Antimicrob. Agents Chemother. 1994, 38, 2557–2563. [Google Scholar] [CrossRef] [Green Version]
- Saito, H.; Tomioka, H.; Sato, K.; Emori, M.; Yamane, T.; Yamashita, K.; Hosoe, K.; Hidaka, T. In vitro antimycobacterial activities of newly synthesized benzoxazinorifamycins. Antimicrob. Agents Chemother. 1991, 35, 542–547. [Google Scholar] [CrossRef] [Green Version]
- Tomioka, H.; Saito, H.; Sato, K. Comparative antimycobacterial activities of the newly synthesized quinolone AM-1155, sparfloxacin, and ofloxacin. Antimicrob. Agents Chemother. 1993, 37, 1259–1263. [Google Scholar] [CrossRef] [Green Version]
- Fejer, G.; Wegner, M.D.; Györy, I.; Cohen, I.; Engelhard, P.; Voronov, E.; Manke, T.; Ruzsics, Z.; Dölken, L.; Prazeres da Costa, O.; et al. Nontransformed, GM-CSF-dependent macrophage lines are a unique model to study tissue macrophage functions. Proc. Natl. Acad. Sci. USA 2013, 110, E2191–E2198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, M.; Wood, C.; Kwon, D.; Park, K.-H.P.; Fejer, G.; Delorme, V. Mycobacterium tuberculosis Infection and Innate Responses in a New Model of Lung Alveolar Macrophages. Front. Immunol. 2018, 9, 438. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, S.; Finney John, S.; Nusbaum, R.J.; Ferguson, M.R.; Cirillo, J.D.; Olaleye, O.; Endsley, J.J. In vitro model of mycobacteria and HIV-1 co-infection for drug discovery. Tuberculosis (Edinb) 2013, 93, S66–S70. [Google Scholar] [CrossRef]
- Ghassemi, M.; Andersen, B.R.; Reddy, V.M.; Gangadharam, P.R.; Spear, G.T.; Novak, R.M. Human immunodeficiency virus and Mycobacterium avium complex coinfection of monocytoid cells results in reciprocal enhancement of multiplication. J. Infect. Dis. 1995, 171, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Vance, J.; Santos, A.; Sadofsky, L.; Morice, A.; Cervantes, J. Effect of High Glucose on Human Alveolar Macrophage Phenotype and Phagocytosis of Mycobacteria. Lung 2019, 197, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Meylan, P.R.; Richman, D.D.; Kornbluth, R.S. Reduced intracellular growth of mycobacteria in human macrophages cultivated at physiologic oxygen pressure. Am. Rev. Respir. Dis. 1992, 145, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Crouser, E.D.; White, P.; Caceres, E.G.; Julian, M.W.; Papp, A.C.; Locke, L.W.; Sadee, W.; Schlesinger, L.S. A Novel In Vitro Human Granuloma Model of Sarcoidosis and Latent Tuberculosis Infection. Am. J. Respir. Cell Mol. Biol. 2017, 57, 487–498. [Google Scholar] [CrossRef]
- Puissegur, M.-P.; Botanch, C.; Duteyrat, J.-L.; Delsol, G.; Caratero, C.; Altare, F. An in vitro dual model of mycobacterial granulomas to investigate the molecular interactions between mycobacteria and human host cells. Cell. Microbiol. 2004, 6, 423–433. [Google Scholar] [CrossRef]
- Rice, J.H.; McDaniel, M.M.; Holland, A.; Eda, S. Modelling Bovine Granuloma Formation In Vitro upon Infection with Mycobacterium Avium Subspecies Paratuberculosis. Vet. Sci. 2019, 6, 80. [Google Scholar] [CrossRef] [Green Version]
- Larsson, M.C.; Lerm, M.; Ängeby, K.; Nordvall, M.; Juréen, P.; Schön, T. A luciferase-based assay for rapid assessment of drug activity against Mycobacterium tuberculosis including monitoring of macrophage viability. J. Microbiol. Methods 2014, 106, 146–150. [Google Scholar] [CrossRef]
- Andreu, N.; Fletcher, T.; Krishnan, N.; Wiles, S.; Robertson, B.D. Rapid measurement of antituberculosis drug activity in vitro and in macrophages using bioluminescence. J. Antimicrob. Chemother. 2012, 67, 404–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batalha, I.L.; Bernut, A.; Schiebler, M.; Ouberai, M.M.; Passemar, C.; Klapholz, C.; Kinna, S.; Michel, S.; Sader, K.; Castro-Hartmann, P.; et al. Polymeric nanobiotics as a novel treatment for mycobacterial infections. J. Control. Release 2019, 314, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Halaas, O.; Steigedal, M.; Haug, M.; Awuh, J.A.; Ryan, L.; Brech, A.; Sato, S.; Husebye, H.; Cangelosi, G.A.; Akira, S.; et al. Intracellular Mycobacterium avium intersect transferrin in the Rab11(+) recycling endocytic pathway and avoid lipocalin 2 trafficking to the lysosomal pathway. J. Infect. Dis. 2010, 201, 783–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majumdar, S.; Flasher, D.; Friend, D.S.; Nassos, P.; Yajko, D.; Hadley, W.K.; Düzgüneş, N. Efficacies of liposome-encapsulated streptomycin and ciprofloxacin against Mycobacterium avium-M. intracellulare complex infections in human peripheral blood monocyte/macrophages. Antimicrob. Agents Chemother. 1992, 36, 2808–2815. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Flores, R.; Hsia, R.; Tamez-Guerra, R.; Mehta, R.T. Enhanced intramacrophage activity of resorcinomycin A against Mycobacterium avium-Mycobacterium intracellulare complex after liposome encapsulation. Antimicrob. Agents Chemother. 1996, 40, 2545–2549. [Google Scholar] [CrossRef] [Green Version]
- Oh, Y.K.; Nix, D.E.; Straubinger, R.M. Formulation and efficacy of liposome-encapsulated antibiotics for therapy of intracellular Mycobacterium avium infection. Antimicrob. Agents Chemother. 1995, 39, 2104–2111. [Google Scholar] [CrossRef] [Green Version]
- Salem, I.I.; Düzgünes, N. Efficacies of cyclodextrin-complexed and liposome-encapsulated clarithromycin against Mycobacterium avium complex infection in human macrophages. Int. J. Pharm. 2003, 250, 403–414. [Google Scholar] [CrossRef]
- Anversa Dimer, F.; de Souza Carvalho-Wodarz, C.; Goes, A.; Cirnski, K.; Herrmann, J.; Schmitt, V.; Pätzold, L.; Abed, N.; De Rossi, C.; Bischoff, M.; et al. PLGA nanocapsules improve the delivery of clarithromycin to kill intracellular Staphylococcus aureus and Mycobacterium abscessus. Nanomed.-Nanotechnol. Biol. Med. 2020, 24, 102125. [Google Scholar] [CrossRef]
- Guedj, A.-S.; Kell, A.J.; Barnes, M.; Stals, S.; Gonçalves, D.; Girard, D.; Lavigne, C. Preparation, characterization, and safety evaluation of poly(lactide-co-glycolide) nanoparticles for protein delivery into macrophages. Int. J. Nanomed. 2015, 10, 5965–5979. [Google Scholar]
- Machado, D.; Cannalire, R.; Santos Costa, S.; Manfroni, G.; Tabarrini, O.; Cecchetti, V.; Couto, I.; Viveiros, M.; Sabatini, S. Boosting Effect of 2-Phenylquinoline Efflux Inhibitors in Combination with Macrolides against Mycobacterium smegmatis and Mycobacterium avium. ACS Infect. Dis. 2015, 1, 593–603. [Google Scholar] [CrossRef]
- Felicetti, T.; Machado, D.; Cannalire, R.; Astolfi, A.; Massari, S.; Tabarrini, O.; Manfroni, G.; Barreca, M.L.; Cecchetti, V.; Viveiros, M.; et al. Modifications on C6 and C7 Positions of 3-Phenylquinolone Efflux Pump Inhibitors Led to Potent and Safe Antimycobacterial Treatment Adjuvants. ACS Infect. Dis. 2019, 5, 982–1000. [Google Scholar] [CrossRef] [PubMed]
- De Logu, A.; Saddi, M.; Onnis, V.; Sanna, C.; Congiu, C.; Borgna, R.; Cocco, M.T. In vitro antimycobacterial activity of newly synthesised S-alkylisothiosemicarbazone derivatives and synergistic interactions in combination with rifamycins against Mycobacterium avium. Int. J. Antimicrob. Agents 2005, 26, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Norden, M.A.; Kurzynski, T.A.; Bownds, S.E.; Callister, S.M.; Schell, R.F. Rapid susceptibility testing of Mycobacterium tuberculosis (H37Ra) by flow cytometry. J. Clin. Microbiol. 1995, 33, 1231–1237. [Google Scholar] [CrossRef] [Green Version]
- Kirk, S.M.; Schell, R.F.; Moore, A.V.; Callister, S.M.; Mazurek, G.H. Flow cytometric testing of susceptibilities of Mycobacterium tuberculosis isolates to ethambutol, isoniazid, and rifampin in 24 h. J. Clin. Microbiol. 1998, 36, 1568–1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeCoster, D.J.; Vena, R.M.; Callister, S.M.; Schell, R.F. Susceptibility testing of Mycobacterium tuberculosis: Comparison of the BACTEC TB-460 method and flow cytometric assay with the proportion method. Clin. Microbiol. Infect. 2005, 11, 372–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bownds, S.E.; Kurzynski, T.A.; Norden, M.A.; Dufek, J.L.; Schell, R.F. Rapid susceptibility testing for nontuberculosis mycobacteria using flow cytometry. J. Clin. Microbiol. 1996, 34, 1386–1390. [Google Scholar] [CrossRef] [Green Version]
- Moore, A.V.; Kirk, S.M.; Callister, S.M.; Mazurek, G.H.; Schell, R.F. Safe determination of susceptibility of Mycobacterium tuberculosis to antimycobacterial agents by flow cytometry. J. Clin. Microbiol. 1999, 37, 479–483. [Google Scholar] [CrossRef] [Green Version]
- Fredricks, B.A.; DeCoster, D.J.; Kim, Y.; Sparks, N.; Callister, S.M.; Schell, R.F. Rapid pyrazinamide susceptibility testing of Mycobacterium tuberculosis by flow cytometry. J. Microbiol. Methods 2006, 67, 266–272. [Google Scholar] [CrossRef]
- Vena, R.M.; Munson, E.L.; DeCoster, D.J.; Croke, C.L.; Fett, D.B.; Callister, S.M.; Schell, R.F. Flow cytometric testing of susceptibilities of Mycobacterium avium to amikacin, ciprofloxacin, clarithromycin and rifabutin in 24 h. Clin. Microbiol. Infect. 2000, 6, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Pina-Vaz, C.; Costa-de-Oliveira, S.; Rodrigues, A.G. Safe susceptibility testing of Mycobacterium tuberculosis by flow cytometry with the fluorescent nucleic acid stain SYTO 16. J. Med. Microbiol. 2005, 54, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, P.; Whiteley, A.S.; Barer, M.R. SYTO16 labelling and flow cytometry of Mycobacterium avium. Lett. Appl. Microbiol. 1997, 25, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Soejima, T.; Iida, K.; Qin, T.; Taniai, H.; Yoshida, S. Discrimination of live, anti-tuberculosis agent-injured, and dead Mycobacterium tuberculosis using flow cytometry. FEMS Microbiol. Lett. 2009, 294, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Hendon-Dunn, C.L.; Doris, K.S.; Thomas, S.R.; Allnutt, J.C.; Marriott, A.A.N.; Hatch, K.A.; Watson, R.J.; Bottley, G.; Marsh, P.D.; Taylor, S.C.; et al. A Flow Cytometry Method for Rapidly Assessing Mycobacterium tuberculosis Responses to Antibiotics with Different Modes of Action. Antimicrob. Agents Chemother. 2016, 60, 3869–3883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, C.; Nguyen, B.T.; Sullivan, S.J. Rapid assay for mycobacterial growth and antibiotic susceptibility using gel microdrop encapsulation. J. Clin. Microbiol. 1995, 33, 1720–1726. [Google Scholar] [CrossRef] [Green Version]
- Akselband, Y.; Cabral, C.; Shapiro, D.S.; McGrath, P. Rapid mycobacteria drug susceptibility testing using Gel Microdrop (GMD) Growth Assay and flow cytometry. J. Microbiol. Methods 2005, 62, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Piuri, M.; Jacobs, W.R., Jr.; Hatfull, G.F. Fluoromycobacteriophages for Rapid, Specific, and Sensitive Antibiotic Susceptibility Testing of Mycobacterium tuberculosis. PLoS ONE 2009, 4, e4870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rondón, L.; Piuri, M.; Jacobs, W.R.; de Waard, J.; Hatfull, G.F.; Takiff, H.E. Evaluation of fluoromycobacteriophages for detecting drug resistance in Mycobacterium tuberculosis. J. Clin. Microbiol. 2011, 49, 1838–1842. [Google Scholar] [CrossRef] [Green Version]
- Urdániz, E.; Rondón, L.; Martí, M.A.; Hatfull, G.F.; Piuri, M. Rapid Whole-Cell Assay of Antitubercular Drugs Using Second-Generation Fluoromycobacteriophages. Antimicrob. Agents Chemother. 2016, 60, 3253–3256. [Google Scholar] [CrossRef] [Green Version]
- Haridas, V.; Ranjbar, S.; Vorobjev, I.A.; Goldfeld, A.E.; Barteneva, N.S. Imaging flow cytometry analysis of intracellular pathogens. Methods 2017, 112, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, D.; Srivastava, S.; Meek, C.; Leff, R.; Gumbo, T. Ethambutol optimal clinical dose and susceptibility breakpoint identification by use of a novel pharmacokinetic-pharmacodynamic model of disseminated intracellular Mycobacterium avium. Antimicrob. Agents Chemother. 2010, 54, 1728–1733. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, D.; Srivastava, S.; Gumbo, T. A programme to create short-course chemotherapy for pulmonary Mycobacterium avium disease based on pharmacokinetics/pharmacodynamics and mathematical forecasting. J. Antimicrob. Chemother. 2017, 72, i54–i60. [Google Scholar] [CrossRef] [PubMed]
- Ferro, B.E.; Srivastava, S.; Deshpande, D.; Sherman, C.M.; Pasipanodya, J.G.; van Soolingen, D.; Mouton, J.W.; van Ingen, J.; Gumbo, T. Amikacin Pharmacokinetics/Pharmacodynamics in a Novel Hollow-Fiber Mycobacterium abscessus Disease Model. Antimicrob. Agents Chemother. 2015, 60, 1242–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, S.; Pasipanodya, J.; Sherman, C.M.; Meek, C.; Leff, R.; Gumbo, T. Rapid drug tolerance and dramatic sterilizing effect of moxifloxacin monotherapy in a novel hollow-fiber model of intracellular Mycobacterium kansasii disease. Antimicrob. Agents Chemother. 2015, 59, 2273–2279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, S.; Deshpande, D.; Sherman, C.M.; Gumbo, T. A “shock and awe” thioridazine and moxifloxacin combination-based regimen for pulmonary Mycobacterium avium-intracellulare complex disease. J. Antimicrob. Chemother. 2017, 72, i43–i47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drusano, G.L.; Sgambati, N.; Eichas, A.; Brown, D.L.; Kulawy, R.; Louie, A. The Combination of Rifampin plus Moxifloxacin Is Synergistic for Suppression of Resistance but Antagonistic for Cell Kill of Mycobacterium tuberculosis as Determined in a Hollow-Fiber Infection Model. MBio 2010, 1. [Google Scholar] [CrossRef] [Green Version]
- European Medicines Agency. Final Qualification Opinion 2015. Available online: https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/qualification-opinion-vitro-hollow-fibre-system-model-tuberculosis-hfs-tb_en.pdf (accessed on 30 June 2020).
- Gumbo, T.; Pasipanodya, J.G.; Nuermberger, E.; Romero, K.; Hanna, D. Correlations between the Hollow Fiber Model of Tuberculosis and Therapeutic Events in Tuberculosis Patients: Learn and Confirm. Clin. Infect. Dis. 2015, 61, S18–S24. [Google Scholar] [CrossRef] [Green Version]
- Gumbo, T.; Pasipanodya, J.G.; Romero, K.; Hanna, D.; Nuermberger, E. Forecasting Accuracy of the Hollow Fiber Model of Tuberculosis for Clinical Therapeutic Outcomes. Clin. Infect. Dis. 2015, 61, S25–S31. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, D.; Srivastava, S.; Pasipanodya, J.G.; Lee, P.S.; Gumbo, T. A novel ceftazidime/avibactam, rifabutin, tedizolid and moxifloxacin (CARTM) regimen for pulmonary Mycobacterium avium disease. J. Antimicrob. Chemother. 2017, 72, i48–i53. [Google Scholar] [CrossRef]
- Deshpande, D.; Srivastava, S.; Chapagain, M.L.; Lee, P.S.; Cirrincione, K.N.; Pasipanodya, J.G.; Gumbo, T. The discovery of ceftazidime/avibactam as an anti-Mycobacterium avium agent. J. Antimicrob. Chemother. 2017, 72, i36–i42. [Google Scholar] [CrossRef]
- Srivastava, S.; Deshpande, D.; Gumbo, T. Failure of the azithromycin and ethambutol combination regimen in the hollow-fibre system model of pulmonary Mycobacterium avium infection is due to acquired resistance. J. Antimicrob. Chemother. 2017, 72, i20–i23. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, D.; Srivastava, S.; Pasipanodya, J.G.; Gumbo, T. Linezolid as treatment for pulmonary Mycobacterium avium disease. J. Antimicrob. Chemother. 2017, 72, i24–i29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruth, M.M.; Magombedze, G.; Gumbo, T.; Bendet, P.; Sangen, J.J.N.; Zweijpfenning, S.; Hoefsloot, W.; Pennings, L.; Koeken, V.A.C.M.; Wertheim, H.F.L.; et al. Minocycline treatment for pulmonary Mycobacterium avium complex disease based on pharmacokinetics/pharmacodynamics and Bayesian framework mathematical models. J. Antimicrob. Chemother. 2019, 74, 1952–1961. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, D.; Srivastava, S.; Meek, C.; Leff, R.; Hall, G.S.; Gumbo, T. Moxifloxacin Pharmacokinetics/Pharmacodynamics and Optimal Dose and Susceptibility Breakpoint Identification for Treatment of Disseminated Mycobacterium avium Infection. Antimicrob. Agents Chemother. 2010, 54, 2534–2539. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, D.; Srivastava, S.; Pasipanodya, J.G.; Lee, P.S.; Gumbo, T. Tedizolid is highly bactericidal in the treatment of pulmonary Mycobacterium avium complex disease. J. Antimicrob. Chemother. 2017, 72, i30–i35. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, D.; Srivastava, S.; Musuka, S.; Gumbo, T. Thioridazine as Chemotherapy for Mycobacterium avium Complex Diseases. Antimicrob. Agents Chemother. 2016, 60, 4652–4658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferro, B.E.; Srivastava, S.; Deshpande, D.; Pasipanodya, J.G.; van Soolingen, D.; Mouton, J.W.; van Ingen, J.; Gumbo, T. Failure of the Amikacin, Cefoxitin, and Clarithromycin Combination Regimen for Treating Pulmonary Mycobacterium abscessus Infection. Antimicrob. Agents Chemother. 2016, 60, 6374–6376. [Google Scholar] [CrossRef] [Green Version]
- Ferro, B.E.; Srivastava, S.; Deshpande, D.; Pasipanodya, J.G.; van Soolingen, D.; Mouton, J.W.; van Ingen, J.; Gumbo, T. Moxifloxacin’s Limited Efficacy in the Hollow-Fiber Model of Mycobacterium abscessus Disease. Antimicrob. Agents Chemother. 2016, 60, 3779–3785. [Google Scholar] [CrossRef] [Green Version]
- Ferro, B.E.; Srivastava, S.; Deshpande, D.; Pasipanodya, J.G.; van Soolingen, D.; Mouton, J.W.; van Ingen, J.; Gumbo, T. Tigecycline Is Highly Efficacious against Mycobacterium abscessus Pulmonary Disease. Antimicrob. Agents Chemother. 2016, 60, 2895–2900. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, S.; Gumbo, T. Clofazimine for the Treatment of Mycobacterium kansasii. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- Esteban, J.; García-Coca, M. Mycobacterium Biofilms. Front. Microbiol. 2018, 8, 2651. [Google Scholar] [CrossRef] [Green Version]
- Zambrano, M.M.; Kolter, R. Mycobacterial biofilms: A greasy way to hold it together. Cell 2005, 123, 762–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojha, A.; Anand, M.; Bhatt, A.; Kremer, L.; Jacobs, W.R.; Hatfull, G.F. GroEL1: A dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 2005, 123, 861–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falkinham, J.O. Challenges of NTM Drug Development. Front. Microbiol. 2018, 9, 1613. [Google Scholar] [CrossRef] [PubMed]
- Carter, G.; Wu, M.; Drummond, D.C.; Bermudez, L.E. Characterization of biofilm formation by clinical isolates of Mycobacterium avium. J. Med. Microbiol. 2003, 52, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Danelishvili, L.; Wu, M.; Hidaka, E.; Katsuyama, T.; Stang, B.; Petrofsky, M.; Bildfell, R.; Bermudez, L.E. The ability to form biofilm influences Mycobacterium avium invasion and translocation of bronchial epithelial cells. Cell. Microbiol. 2006, 8, 806–814. [Google Scholar] [CrossRef]
- Carter, G.; Young, L.S.; Bermudez, L.E. A subinhibitory concentration of clarithromycin inhibits Mycobacterium avium biofilm formation. Antimicrob. Agents Chemother. 2004, 48, 4907–4910. [Google Scholar] [CrossRef] [Green Version]
- Greendyke, R.; Byrd, T.F. Differential antibiotic susceptibility of Mycobacterium abscessus variants in biofilms and macrophages compared to that of planktonic bacteria. Antimicrob. Agents Chemother. 2008, 52, 2019–2026. [Google Scholar] [CrossRef] [Green Version]
- McNabe, M.; Tennant, R.; Danelishvili, L.; Young, L.; Bermudez, L.E. Mycobacterium avium ssp. hominissuis biofilm is composed of distinct phenotypes and influenced by the presence of antimicrobials. Clin. Microbiol. Infect. 2011, 17, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Ortíz-Pérez, A.; Martín-de-Hijas, N.; Alonso-Rodríguez, N.; Molina-Manso, D.; Fernández-Roblas, R.; Esteban, J. Importance of antibiotic penetration in the antimicrobial resistance of biofilm formed by non-pigmented rapidly growing mycobacteria against amikacin, ciprofloxacin and clarithromycin. Enferm. Infecc. Microbiol. Clin. 2011, 29, 79–84. [Google Scholar] [CrossRef]
- Rose, S.J.; Bermudez, L.E. Mycobacterium avium biofilm attenuates mononuclear phagocyte function by triggering hyperstimulation and apoptosis during early infection. Infect. Immun. 2014, 82, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Fennelly, K.P.; Ojano-Dirain, C.; Yang, Q.; Liu, L.; Lu, L.; Progulske-Fox, A.; Wang, G.P.; Antonelli, P.; Schultz, G. Biofilm Formation by Mycobacterium abscessus in a Lung Cavity. Am. J. Respir. Crit. Care Med. 2016, 193, 692–693. [Google Scholar] [CrossRef] [PubMed]
- Qvist, T.; Eickhardt, S.; Kragh, K.N.; Andersen, C.B.; Iversen, M.; Høiby, N.; Bjarnsholt, T. Chronic pulmonary disease with Mycobacterium abscessus complex is a biofilm infection. Eur. Respir. J. 2015, 46, 1823–1826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceri, H.; Olson, M.E.; Stremick, C.; Read, R.R.; Morck, D.; Buret, A. The Calgary Biofilm Device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol. 1999, 37, 1771–1776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardouniotis, E.; Huddleston, W.; Ceri, H.; Olson, M.E. Characterization of biofilm growth and biocide susceptibility testing of Mycobacterium phlei using the MBEC assay system. FEMS Microbiol. Lett. 2001, 203, 263–267. [Google Scholar] [CrossRef]
- Clary, G.; Sasindran, S.J.; Nesbitt, N.; Mason, L.; Cole, S.; Azad, A.; McCoy, K.; Schlesinger, L.S.; Hall-Stoodley, L. Mycobacterium abscessus Smooth and Rough Morphotypes Form Antimicrobial-Tolerant Biofilm Phenotypes but Are Killed by Acetic Acid. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Sevilla, G.; Crabbé, A.; García-Coca, M.; Aguilera-Correa, J.J.; Esteban, J.; Pérez-Jorge, C. Antimicrobial Treatment Provides a Competitive Advantage to Mycobacterium abscessus in a Dual-Species Biofilm with Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2019, 63, e01547-19. [Google Scholar]
- Muñoz-Egea, M.-C.; García-Pedrazuela, M.; Mahillo, I.; Esteban, J. Effect of ciprofloxacin in the ultrastructure and development of biofilms formed by rapidly growing mycobacteria. BMC Microbiol. 2015, 15, 18. [Google Scholar] [CrossRef] [Green Version]
- Yam, Y.-K.; Alvarez, N.; Go, M.-L.; Dick, T. Extreme Drug Tolerance of Mycobacterium abscessus “Persisters”. Front. Microbiol. 2020, 11, 359. [Google Scholar] [CrossRef] [Green Version]
- Aung, T.T.; Yam, J.K.H.; Lin, S.; Salleh, S.M.; Givskov, M.; Liu, S.; Lwin, N.C.; Yang, L.; Beuerman, R.W. Biofilms of Pathogenic Nontuberculous Mycobacteria Targeted by New Therapeutic Approaches. Antimicrob. Agents Chemother. 2016, 60, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Egea, M.-C.; García-Pedrazuela, M.; Mahillo-Fernandez, I.; Esteban, J. Effect of Antibiotics and Antibiofilm Agents in the Ultrastructure and Development of Biofilms Developed by Nonpigmented Rapidly Growing Mycobacteria. Microb. Drug Resist. 2016, 22, 1–6. [Google Scholar] [CrossRef]
- Rose, S.J.; Babrak, L.M.; Bermudez, L.E. Mycobacterium avium Possesses Extracellular DNA that Contributes to Biofilm Formation, Structural Integrity, and Tolerance to Antibiotics. PLoS ONE 2015, 10, e0128772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falkinham, J.O.; Williams, M.D.; Kwait, R.; Lande, L. Methylobacterium spp. as an indicator for the presence or absence of Mycobacterium spp. Int. J. Mycobacteriol. 2016, 5, 240–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Coca, M.; Rodríguez-Sevilla, G.; Pérez-Domingo, A.; Aguilera-Correa, J.-J.; Esteban, J.; Muñoz-Egea, M.-C. Inhibition of Mycobacterium abscessus, M. chelonae, and M. fortuitum biofilms by Methylobacterium sp. J. Antibiot. 2020, 73, 40–47. [Google Scholar]
- Adékambi, T.; Ben Salah, S.; Khlif, M.; Raoult, D.; Drancourt, M. Survival of environmental mycobacteria in Acanthamoeba polyphaga. Appl. Environ. Microbiol. 2006, 72, 5974–5981. [Google Scholar] [CrossRef] [Green Version]
- Miltner, E.C.; Bermudez, L.E. Mycobacterium avium grown in Acanthamoeba castellanii is protected from the effects of antimicrobials. Antimicrob. Agents Chemother. 2000, 44, 1990–1994. [Google Scholar] [CrossRef] [Green Version]
- Eichinger, L. Revamp a model-status and prospects of the Dictyostelium genome project. Curr. Genet. 2003, 44, 59–72. [Google Scholar] [CrossRef]
- Kicka, S.; Trofimov, V.; Harrison, C.; Ouertatani-Sakouhi, H.; McKinney, J.; Scapozza, L.; Hilbi, H.; Cosson, P.; Soldati, T. Establishment and Validation of Whole-Cell Based Fluorescence Assays to Identify Anti-Mycobacterial Compounds Using the Acanthamoeba castellanii-Mycobacterium marinum Host-Pathogen System. PLoS ONE 2014, 9, e87834. [Google Scholar] [CrossRef] [Green Version]
- Trofimov, V.; Kicka, S.; Mucaria, S.; Hanna, N.; Ramon-Olayo, F.; Del Peral, L.V.-G.; Lelièvre, J.; Ballell, L.; Scapozza, L.; Besra, G.S.; et al. Antimycobacterial drug discovery using Mycobacteria-infected amoebae identifies anti-infectives and new molecular targets. Sci. Rep. 2018, 8, 1–15. [Google Scholar] [CrossRef]
- Richter, A.; Shapira, T.; Av-Gay, Y. THP-1 and Dictyostelium Infection Models for Screening and Characterization of Anti-Mycobacterium abscessus Hit Compounds. Antimicrob. Agents Chemother. 2019, 64, e01601-19. [Google Scholar] [CrossRef]
- Solomon, J.M.; Leung, G.S.; Isberg, R.R. Intracellular Replication of Mycobacterium marinum within Dictyostelium discoideum: Efficient Replication in the Absence of Host Coronin. Infect. Immun. 2003, 71, 3578–3586. [Google Scholar] [CrossRef] [Green Version]
- Oh, C.-T.; Moon, C.; Jeong, M.S.; Kwon, S.-H.; Jang, J. Drosophila melanogaster model for Mycobacterium abscessus infection. Microbes Infect. 2013, 15, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Oh, C.-T.; Moon, C.; Park, O.K.; Kwon, S.-H.; Jang, J. Novel drug combination for Mycobacterium abscessus disease therapy identified in a Drosophila infection model. J. Antimicrob. Chemother. 2014, 69, 1599–1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pushkaran, A.C.; Vinod, V.; Vanuopadath, M.; Nair, S.S.; Nair, S.V.; Vasudevan, A.K.; Biswas, R.; Mohan, C.G. Combination of Repurposed Drug Diosmin with Amoxicillin-Clavulanic acid Causes Synergistic Inhibition of Mycobacterial Growth. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, C.-T.; Moon, C.; Choi, T.H.; Kim, B.S.; Jang, J. Mycobacterium marinum infection in Drosophila melanogaster for antimycobacterial activity assessment. J. Antimicrob. Chemother. 2013, 68, 601–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meir, M.; Grosfeld, T.; Barkan, D. Establishment and Validation of Galleria mellonella as a Novel Model Organism to Study Mycobacterium abscessus Infection, Pathogenesis, and Treatment. Antimicrob. Agents Chemother. 2018, 62, e02539-17. [Google Scholar] [CrossRef] [Green Version]
- Entwistle, F.M.; Coote, P.J. Evaluation of greater wax moth larvae, Galleria mellonella, as a novel in vivo model for non-tuberculosis Mycobacteria infections and antibiotic treatments. J. Med. Microbiol. 2018, 67, 585–597. [Google Scholar] [CrossRef]
- Zapata, A.; Amemiya, C.T. Phylogeny of Lower Vertebrates and Their Immunological Structures. In Origin and Evolution of the Vertebrate Immune System; Du Pasquier, L., Litman, G.W., Eds.; Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2000; pp. 67–107. [Google Scholar]
- Trede, N.S.; Zon, L.I. Development of t-cells during fish embryogenesis. Dev. Comp. Immunol. 1998, 22, 253–263. [Google Scholar] [CrossRef]
- Herbomel, P.; Thisse, B.; Thisse, C. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 1999, 126, 3735–3745. [Google Scholar]
- Danilova, N.; Steiner, L.A. B cells develop in the zebrafish pancreas. Proc. Natl. Acad. Sci. USA 2002, 99, 13711–13716. [Google Scholar] [CrossRef] [Green Version]
- Prouty, M.G.; Correa, N.E.; Barker, L.P.; Jagadeeswaran, P.; Klose, K.E. Zebrafish-Mycobacterium marinum model for mycobacterial pathogenesis. FEMS Microbiol. Lett. 2003, 225, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Veneman, W.J.; Marín-Juez, R.; de Sonneville, J.; Ordas, A.; Jong-Raadsen, S.; Meijer, A.H.; Spaink, H.P. Establishment and optimization of a high throughput setup to study Staphylococcus epidermidis and Mycobacterium marinum infection as a model for drug discovery. J. Vis. Exp. 2014, e51649. [Google Scholar] [CrossRef] [PubMed]
- Sridevi, J.P.; Anantaraju, H.S.; Kulkarni, P.; Yogeeswari, P.; Sriram, D. Optimization and validation of Mycobacterium marinum-induced adult zebrafish model for evaluation of oral anti-tuberculosis drugs. Int. J. Mycobacteriol. 2014, 3, 259–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalton, J.P.; Uy, B.; Okuda, K.S.; Hall, C.J.; Denny, W.A.; Crosier, P.S.; Swift, S.; Wiles, S. Screening of anti-mycobacterial compounds in a naturally infected zebrafish larvae model. J. Antimicrob. Chemother. 2017, 72, 421–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vibe, C.B.; Fenaroli, F.; Pires, D.; Wilson, S.R.; Bogoeva, V.; Kalluru, R.; Speth, M.; Anes, E.; Griffiths, G.; Hildahl, J. Thioridazine in PLGA nanoparticles reduces toxicity and improves rifampicin therapy against mycobacterial infection in zebrafish. Nanotoxicology 2016, 10, 680–688. [Google Scholar] [CrossRef]
- Samala, G.; Devi, P.B.; Saxena, S.; Meda, N.; Yogeeswari, P.; Sriram, D. Design, synthesis and biological evaluation of imidazo[2,1-b]thiazole and benzo[d]imidazo[2,1-b]thiazole derivatives as Mycobacterium tuberculosis pantothenate synthetase inhibitors. Bioorg. Med. Chem. 2016, 24, 1298–1307. [Google Scholar] [CrossRef]
- Kim, T.H.; Hanh, B.T.B.; Kim, G.; Lee, D.-G.; Park, J.-W.; Lee, S.E.; Kim, J.-S.; Kim, B.S.; Ryoo, S.; Jo, E.-K.; et al. Thiostrepton: A Novel Therapeutic Drug Candidate for Mycobacterium abscessus Infection. Molecules 2019, 24, 4511. [Google Scholar] [CrossRef] [Green Version]
- Bernut, A.; Le Moigne, V.; Lesne, T.; Lutfalla, G.; Herrmann, J.-L.; Kremer, L. In vivo assessment of drug efficacy against Mycobacterium abscessus using the embryonic zebrafish test system. Antimicrob. Agents Chemother. 2014, 58, 4054–4063. [Google Scholar] [CrossRef] [Green Version]
- Dubée, V.; Bernut, A.; Cortes, M.; Lesne, T.; Dorchene, D.; Lefebvre, A.-L.; Hugonnet, J.-E.; Gutmann, L.; Mainardi, J.-L.; Herrmann, J.-L.; et al. β-Lactamase inhibition by avibactam in Mycobacterium abscessus. J. Antimicrob. Chemother. 2015, 70, 1051–1058. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, A.-L.; Le Moigne, V.; Bernut, A.; Veckerlé, C.; Compain, F.; Herrmann, J.-L.; Kremer, L.; Arthur, M.; Mainardi, J.-L. Inhibition of the β-Lactamase BlaMab by Avibactam Improves the In Vitro and In Vivo Efficacy of Imipenem against Mycobacterium abscessus. Antimicrob. Agents Chemother. 2017, 61, e02440-16. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.T.; Doerr, K.M.; Whipps, C.M. Antibiotic treatment of zebrafish mycobacteriosis: Tolerance and efficacy of treatments with tigecycline and clarithromycin. J. Fish Dis. 2017, 40, 1473–1485. [Google Scholar] [CrossRef]
- Bouz, G.; Al Hasawi, N. The zebrafish model of tuberculosis-no lungs needed. Crit. Rev. Microbiol. 2018, 44, 779–792. [Google Scholar] [CrossRef] [PubMed]
- Adams, K.N.; Takaki, K.; Connolly, L.E.; Wiedenhoft, H.; Winglee, K.; Humbert, O.; Edelstein, P.H.; Cosma, C.L.; Ramakrishnan, L. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 2011, 145, 39–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenaroli, F.; Westmoreland, D.; Benjaminsen, J.; Kolstad, T.; Skjeldal, F.M.; Meijer, A.H.; van der Vaart, M.; Ulanova, L.; Roos, N.; Nyström, B.; et al. Nanoparticles as drug delivery system against tuberculosis in zebrafish embryos: Direct visualization and treatment. ACS Nano 2014, 8, 7014–7026. [Google Scholar] [CrossRef]
- Trousil, J.; Syrová, Z.; Dal, N.-J.K.; Rak, D.; Konefał, R.; Pavlova, E.; Matějková, J.; Cmarko, D.; Kubíčková, P.; Pavliš, O.; et al. Rifampicin Nanoformulation Enhances Treatment of Tuberculosis in Zebrafish. Biomacromolecules 2019, 20, 1798–1815. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.D.; Bai, X.; Ordway, D.J.; Verma, D. Animal Models of Non-Tuberculous Mycobacterial Infections. Mycobact. Dis. 2016, 6, 216. [Google Scholar] [CrossRef] [Green Version]
- Bernut, A.; Herrmann, J.-L.; Ordway, D.; Kremer, L. The Diverse Cellular and Animal Models to Decipher the Physiopathological Traits of Mycobacterium abscessus Infection. Front. Cell. Infect. Microbiol. 2017, 7, 100. [Google Scholar] [CrossRef] [Green Version]
- Ordway, D.J.; Orme, I.M. Animal Models of Mycobacteria Infection. Curr. Protoc. Immunol. 2001, 94. [Google Scholar] [CrossRef] [Green Version]
- DeStefano, M.S.; Shoen, C.M.; Cynamon, M.H. Therapy for Mycobacterium kansasii Infection: Beyond 2018. Front. Microbiol. 2018, 9, 2271. [Google Scholar] [CrossRef]
- Bolz, M.; Ruf, M.T. Buruli Ulcer in Animals and Experimental Infection Models. In Buruli Ulcer: Mycobacterium Ulcerans Disease; Pluschke, G., Röltgen, K., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 159–181. [Google Scholar]
- Begg, D.J.; Whittington, R.J. Experimental animal infection models for Johne’s disease, an infectious enteropathy caused by Mycobacterium avium subsp. paratuberculosis. Vet. J. 2008, 176, 129–145. [Google Scholar] [CrossRef]
- Obregón-Henao, A.; Arnett, K.A.; Henao-Tamayo, M.; Massoudi, L.; Creissen, E.; Andries, K.; Lenaerts, A.J.; Ordway, D.J. Susceptibility of Mycobacterium abscessus to antimycobacterial drugs in preclinical models. Antimicrob. Agents Chemother. 2015, 59, 6904–6912. [Google Scholar] [CrossRef] [Green Version]
- Ordway, D.; Henao-Tamayo, M.; Smith, E.; Shanley, C.; Harton, M.; Troudt, J.; Bai, X.; Basaraba, R.J.; Orme, I.M.; Chan, E.D. Animal model of Mycobacterium abscessus lung infection. J. Leukoc. Biol. 2008, 83, 1502–1511. [Google Scholar] [CrossRef] [PubMed]
- Rottman, M.; Catherinot, E.; Hochedez, P.; Emile, J.-F.; Casanova, J.-L.; Gaillard, J.-L.; Soudais, C. Importance of T cells, gamma interferon, and tumor necrosis factor in immune control of the rapid grower Mycobacterium abscessus in C57BL/6 mice. Infect. Immun. 2007, 75, 5898–5907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Groote, M.A.; Johnson, L.; Podell, B.; Brooks, E.; Basaraba, R.; Gonzalez-Juarrero, M. GM-CSF knockout mice for preclinical testing of agents with antimicrobial activity against Mycobacterium abscessus. J. Antimicrob. Chemother. 2014, 69, 1057–1064. [Google Scholar] [CrossRef] [Green Version]
- Dick, T.; Shin, S.J.; Koh, W.-J.; Dartois, V.; Gengenbacher, M. Rifabutin Is Active against Mycobacterium abscessus in Mice. Antimicrob. Agents Chemother. 2020, 64, e01943-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bénard, A.; Sala, C.; Pluschke, G. Mycobacterium ulcerans Mouse Model Refinement for Pre-Clinical Profiling of Vaccine Candidates. PLoS ONE 2016, 11, e0167059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bannantine, J.P.; Everman, J.L.; Rose, S.J.; Babrak, L.; Katani, R.; Barletta, R.G.; Talaat, A.M.; Gröhn, Y.T.; Chang, Y.-F.; Kapur, V.; et al. Evaluation of eight live attenuated vaccine candidates for protection against challenge with virulent Mycobacterium avium subspecies paratuberculosis in mice. Front. Cell. Infect. Microbiol. 2014, 4, 88. [Google Scholar] [CrossRef] [Green Version]
- Andréjak, C.; Almeida, D.V.; Tyagi, S.; Converse, P.J.; Ammerman, N.C.; Grosset, J.H. Characterization of mouse models of Mycobacterium avium complex infection and evaluation of drug combinations. Antimicrob. Agents Chemother. 2015, 59, 2129–2135. [Google Scholar] [CrossRef] [Green Version]
- Gomes, M.S.; Flórido, M.; Pais, T.F.; Appelberg, R. Improved clearance of Mycobacterium avium upon disruption of the inducible nitric oxide synthase gene. J. Immunol. 1999, 162, 6734–6739. [Google Scholar]
- Lousada, S.; Flórido, M.; Appelberg, R. Regulation of granuloma fibrosis by nitric oxide during Mycobacterium avium experimental infection. Int. J. Exp. Pathol. 2006, 87, 307–315. [Google Scholar] [CrossRef]
- Flórido, M.; Gonçalves, A.S.; Silva, R.A.; Ehlers, S.; Cooper, A.M.; Appelberg, R. Resistance of virulent Mycobacterium avium to gamma interferon-mediated antimicrobial activity suggests additional signals for induction of mycobacteriostasis. Infect. Immun. 1999, 67, 3610–3618. [Google Scholar] [CrossRef] [Green Version]
- Maggioncalda, E.C.; Story-Roller, E.; Mylius, J.; Illei, P.; Basaraba, R.J.; Lamichhane, G. A mouse model of pulmonary Mycobacteroides abscessus infection. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.; Stapleton, M.; Gadwa, J.; Vongtongsalee, K.; Schenkel, A.R.; Chan, E.D.; Ordway, D. Mycobacterium avium Infection in a C3HeB/FeJ Mouse Model. Front. Microbiol. 2019, 10, 693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, F.; He, L.; Luo, Y.; Huang, S.; Pan, J.; Wang, J.; Wu, R.; Zhang, L.; Chen, M. Dynamics of Immune Responses during Experimental Mycobacterium kansasii Infection of Cynomolgus Monkeys (Macaca fascicularis). Mediat. Inflamm. 2018, 2018, 8354902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winthrop, K.; Rivera, A.; Engelmann, F.; Rose, S.; Lewis, A.; Ku, J.; Bermudez, L.; Messaoudi, I. A Rhesus Macaque Model of Pulmonary Nontuberculous Mycobacterial Disease. Am. J. Respir. Cell Mol. Biol. 2016, 54, 170–176. [Google Scholar] [CrossRef]
- Banaschewski, B.; Verma, D.; Pennings, L.J.; Zimmerman, M.; Ye, Q.; Gadawa, J.; Dartois, V.; Ordway, D.; van Ingen, J.; Ufer, S.; et al. Clofazimine inhalation suspension for the aerosol treatment of pulmonary nontuberculous mycobacterial infections. J. Cyst. Fibros. 2019, 18, 714–720. [Google Scholar] [CrossRef]
- Gong, W.; Liang, Y.; Wu, X. Animal Models of Tuberculosis Vaccine Research: An Important Component in the Fight against Tuberculosis. Biomed. Res. Int. 2020, 2020, 4263079. [Google Scholar] [CrossRef]
- Baldwin, S.L.; Larsen, S.E.; Ordway, D.; Cassell, G.; Coler, R.N. The complexities and challenges of preventing and treating nontuberculous mycobacterial diseases. PLoS Negl. Trop. Dis. 2019, 13, e0007083. [Google Scholar] [CrossRef]
- Orme, I.M.; Collins, F.M. Prophylactic effect in mice of BCG vaccination against non-tuberculous mycobacterial infections. Tubercle 1985, 66, 117–120. [Google Scholar] [CrossRef]
- Poyntz, H.C.; Stylianou, E.; Griffiths, K.L.; Marsay, L.; Checkley, A.M.; McShane, H. Non-tuberculous mycobacteria have diverse effects on BCG efficacy against Mycobacterium tuberculosis. Tuberculosis (Edinb) 2014, 94, 226–237. [Google Scholar] [CrossRef] [Green Version]
- Abate, G.; Hamzabegovic, F.; Eickhoff, C.S.; Hoft, D.F. BCG Vaccination Induces M. avium and M. abscessus Cross-Protective Immunity. Front. Immunol. 2019, 10, 234. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.-J.; Kim, B.-R.; Kook, Y.-H.; Kim, B.-J. A temperature sensitive Mycobacterium paragordonae induces enhanced protective immune responses against mycobacterial infections in the mouse model. Sci. Rep. 2017, 7, 15230. [Google Scholar] [CrossRef] [PubMed]
- Le Moigne, V.; Belon, C.; Goulard, C.; Accard, G.; Bernut, A.; Pitard, B.; Gaillard, J.-L.; Kremer, L.; Herrmann, J.-L.; Blanc-Potard, A.-B. MgtC as a Host-Induced Factor and Vaccine Candidate against Mycobacterium abscessus Infection. Infect. Immun. 2016, 84, 2895–2903. [Google Scholar] [CrossRef] [Green Version]
- Kwon, B.-E.; Ahn, J.-H.; Park, E.-K.; Jeong, H.; Lee, H.-J.; Jung, Y.-J.; Shin, S.J.; Jeong, H.-S.; Yoo, J.S.; Shin, E.; et al. B Cell-Based Vaccine Transduced With ESAT6-Expressing Vaccinia Virus and Presenting α-Galactosylceramide Is a Novel Vaccine Candidate Against ESAT6-Expressing Mycobacterial Diseases. Front. Immunol. 2019, 10, 2542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Converse, P.J.; Almeida, D.V.; Nuermberger, E.L.; Grosset, J.H. BCG-mediated protection against Mycobacterium ulcerans infection in the mouse. PLoS Negl. Trop. Dis. 2011, 5, e985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, S.; Sato, M.; Taniguchi, T.; Yokomizo, Y. Histopathological and morphometrical comparison of granulomatous lesions in BALB/c and C3H/HeJ mice inoculated with Mycobacterium paratuberculosis. J. Comp. Pathol. 1994, 110, 381–388. [Google Scholar] [CrossRef]
- Frelier, P.F.; Templeton, J.W.; Estes, M.; Whitford, H.W.; Kienle, R.D. Genetic regulation of Mycobacterium paratuberculosis infection in recombinant inbred mice. Vet. Pathol. 1990, 27, 362–364. [Google Scholar] [CrossRef]
- Ghosh, P.; Shippy, D.C.; Talaat, A.M. Superior protection elicited by live-attenuated vaccines in the murine model of paratuberculosis. Vaccine 2015, 33, 7262–7270. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.-W.; Faisal, S.M.; Chandra, S.; McDonough, S.P.; Moreira, M.A.S.; Scaria, J.; Chang, C.-F.; Bannantine, J.P.; Akey, B.; Chang, Y.-F. Immunogenicity and protective efficacy of the Mycobacterium avium subsp. paratuberculosis attenuated mutants against challenge in a mouse model. Vaccine 2012, 30, 3015–3025. [Google Scholar] [CrossRef]
- Scandurra, G.M.; de Lisle, G.W.; Cavaignac, S.M.; Young, M.; Kawakami, R.P.; Collins, D.M. Assessment of Live Candidate Vaccines for Paratuberculosis in Animal Models and Macrophages. Infect. Immun. 2010, 78, 1383–1389. [Google Scholar] [CrossRef] [Green Version]
- Arrazuria, R.; Molina, E.; Garrido, J.M.; Pérez, V.; Juste, R.A.; Elguezabal, N. Vaccination sequence effects on immunological response and tissue bacterial burden in paratuberculosis infection in a rabbit model. Vet. Res. 2016, 47, 77. [Google Scholar] [CrossRef] [Green Version]
Species | Reported Tropism | Host |
---|---|---|
Mycobacterium avium complex Mycobacterium kansasii Mycobacterium xenopi Mycobacterium malmoense Mycobacterium smegmatis | Lungs, lymph nodes, skin and soft tissues, bone and joint, nervous system, disseminated disease | Human Occasionally, varied wild and domestic animals |
Mycobacterium avium subsp. paratuberculosis | Gastroenteritis | Wild and domestic ruminants |
Mycobacterium ulcerans | Skin and soft tissues | Human Occasionally, varied wild and domestic animals |
Mycobacterium marinum | Skin and soft tissues | Fish Human Rarely, other wild and domestic animals |
Mycobacteroides abscessus complex | Lungs, skin and soft tissues, bone and joint, lymph nodes, nervous system, ocular infections, disseminated disease | Human Occasionally, varied wild and domestic animals |
Mycolicibacterium fortuitum | Skin and soft tissues, bone and joint, lungs, lymph nodes, nervous system, disseminated disease | Human Occasionally, varied wild and domestic animals |
Assay | Culture Condition | Bacteria | Length (Days) | Read-Out | Reference |
---|---|---|---|---|---|
Microdilution | 37 °C; enriched CAMHB | SGM | 7–14 | Visible growth | [13] |
Microdilution | 30 ± 2 °C; CAMHB | RGM | 2–5 | Visible growth | [13] |
MGIT 960 | 37 °C; enriched 7H9B | SGM | Within 15 | Fluorometric | [17] |
Alamar blue | 37 °C; enriched 7H9B | SGM | 8 | Colorimetric | [20] |
Alamar blue | Nutrient starvation | RGM | 7 | Fluorometric | [24] |
Resazurin | 37 °C; 7H9B | SGM | 9 | Colorimetric | [22] |
Tetrazolium | 37 °C; enriched 7H9B | SGM | 3–9 | Colorimetric | [21] |
Cell Type | PMA | Bacteria | MOI | Reference |
---|---|---|---|---|
Human THP-1 | 60–500 ng/mL for 24–48 h | MAC | 10 for 1 h | [26,27] |
Mycobacteroides abscessus | 1 or 10 for 1–3 h | [26,27,29] | ||
Human U937 | 1 µg/mL for 24 h | MAC | 5 for 4 h | [30] |
Human A549 | NA | MAC | 10 for 2 h | [38] |
NA | MAC | 10 or 20 for 2–3 h | [36,37] | |
Murine J774 | NA | Mycobacterium smegmatis | 1 for 3 h | [43] |
NA | MAC | 5 for 4 h or 20 for 3 h | [40,42,74] | |
NA | Mycobacteroides abscessus | 5 for 4 h | [40] | |
Murine RAW264.7 | NA | Mycobacteroides abscessus | 10 for 2 h | [41] |
BMDMs | NA | MAC | 1 for 4–5 h | [50] |
NA | Mycobacteroides abscessus | 3 for 4 h | [49] |
Infection Model | Drugs Tested in the Hollow-Fiber Model | Reference |
---|---|---|
Mycobacterium avium subsp. hominissuis (ATCC 700898) | Azithromycin plus ethambutol and rifabutin | [101] |
CARTM 1 regimen | [101] | |
Ceftaroline Ceftazidime plus avibactam | [102] | |
Ethambutol | [92] | |
Ethambutol plus azithromycin | [96,103] | |
Linezolid | [104] | |
Minocycline | [105] | |
Moxifloxacin | [106] | |
Tedizolid | [107] | |
Thioridazine | [108] | |
Thioridazine plus azithromycin | [96] | |
Thioridazine plus moxifloxacin | [96] | |
Mycobacteroides abscessus (ATCC 19977) | Amikacin | [94] |
Amikacin plus cefoxitin and clarithromycin | [109] | |
Moxifloxacin | [110] | |
Tigecycline | [111] | |
Mycobacterium kansasii (ATCC 12478) | Clofazimine | [112] |
Clofazimine plus an efflux pump blocker | [112] | |
Isoniazid plus rifampin and ethambutol | [95,112] | |
Moxifloxacin | [95] | |
Moxifloxacin plus an efflux pump blocker | [95] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rampacci, E.; Stefanetti, V.; Passamonti, F.; Henao-Tamayo, M. Preclinical Models of Nontuberculous Mycobacteria Infection for Early Drug Discovery and Vaccine Research. Pathogens 2020, 9, 641. https://doi.org/10.3390/pathogens9080641
Rampacci E, Stefanetti V, Passamonti F, Henao-Tamayo M. Preclinical Models of Nontuberculous Mycobacteria Infection for Early Drug Discovery and Vaccine Research. Pathogens. 2020; 9(8):641. https://doi.org/10.3390/pathogens9080641
Chicago/Turabian StyleRampacci, Elisa, Valentina Stefanetti, Fabrizio Passamonti, and Marcela Henao-Tamayo. 2020. "Preclinical Models of Nontuberculous Mycobacteria Infection for Early Drug Discovery and Vaccine Research" Pathogens 9, no. 8: 641. https://doi.org/10.3390/pathogens9080641
APA StyleRampacci, E., Stefanetti, V., Passamonti, F., & Henao-Tamayo, M. (2020). Preclinical Models of Nontuberculous Mycobacteria Infection for Early Drug Discovery and Vaccine Research. Pathogens, 9(8), 641. https://doi.org/10.3390/pathogens9080641