Core–Shell Droplet Generation Device Using a Flexural Bolt-Clamped Langevin-Type Ultrasonic Transducer †
Abstract
:1. Introduction
2. Design and Fabrication
2.1. Droplets Generation Principle
2.2. Structure
2.3. Vibration Characteristics
3. Results
3.1. System Configuration
3.2. Experiments with Varying Voltage
3.3. Experiments with Varying Pressure
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, C. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Adv. Drug Deliv. Rev. 2013, 65, 1420–1446. [Google Scholar] [CrossRef]
- Chen, P.W.; Erb, R.M.; Studart, A.R. Designer Polymer-Based Microcapsules Made Using Microfluidics. Langmuir 2012, 28, 144–152. [Google Scholar] [CrossRef]
- Zhu, Z.; Si, T.; Xu, R.X. Microencapsulation of indocyanine green for potential applications in image-guided drug delivery. Lab Chip 2015, 15, 646–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vericella, J.J.; Baker, S.E.; Stolaroff, J.K.; Duoss, E.B.; Iv, J.O.H.; Lewicki, J.; Glogowski, E.; Floyd, W.C.; Valdez, C.A.; Smith, W.L.; et al. Encapsulated liquid sorbents for carbon dioxide capture. Nat. Commun. 2015, 6, 6124. [Google Scholar] [CrossRef] [PubMed]
- Zou, M.; Wang, J.; Yu, Y.; Sun, L.; Wang, H.; Xu, H.; Zhao, Y. Composite Multifunctional Micromotors from Droplet Micro-fluidics. ACS Appl. Mater. Interfaces 2018, 10, 34618–34624. [Google Scholar] [CrossRef]
- Nakashima, T.; Shimizu, M.; Kukizaki, M. Particle Control of Emulsion by Membrane Emulsification and its Applications. Adv. Drug Deliv. Rev. 2000, 45, 47–56. [Google Scholar] [CrossRef]
- Utada, A.S.; Lorenceau, E.; Link, D.R.; Kaplan, P.D.; Stone, H.A.; Weitz, D.A. Monodisperse Double Emulsions Generated from a Microcapillary Device. Science 2005, 308, 537–541. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.-X.; Chen, D.; Hui, Y.; Weitz, D.A.; Middelberg, A.P.J. Controlled Generation of Ultrathin-Shell Double Emulsions and Studies on Their Stability. ChemPhysChem 2017, 18, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabavi, S.A.; Vladisavljević, G.T.; Gu, S.; Ekanem, E.E. Double Emulsion Production in Glass Capillary Microfluidic Device Parametric Investigation of Droplet Generation Behavior. Chem. Eng. Sci. 2015, 130, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Levenstein, M.A.; Bawazer, L.A.; Nally, C.S.M.; Marchant, W.J.; Gong, X.; Meldrum, F.C.; Kapur, N. A reproducible approach to the assembly of microcapillaries for double emulsion production. Microfluid. Nanofluid. 2016, 20, 143. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Didier, J.E.; Ingber, D.E.; Weitz, D.A. Collective Shape Actuation of Polymer Double Emulsions by Solvent Evaporation. ACS Appl. Mater. Interfaces 2018, 10, 31865–31869. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.; Shi, M. Hydrodynamics of double emulsion droplet in shear flow. Appl. Phys. Lett. 2013, 102, 051609. [Google Scholar] [CrossRef]
- Chang, F.; Su, Y. Controlled double emulsification utilizing 3D PDMS microchannels. J. Micromech. Microeng. 2008, 18, 065018. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.; Levin, A.; Toprakcioglu, Z.; Xu, Y.; Gang, H.; Ye, R.; Mu, B.-Z.; Knowles, T.P.J. Lipid-Stabilized Double Emulsions Generated in Planar Microfluidic Devices. Langmuir 2020, 36, 2349–2356. [Google Scholar] [CrossRef]
- Chang, Z.; Serra, C.A.; Bouquey, M.; Prat, L.; Hadziioannou, G. Co-axial capillaries microfluidic device for synthesizing size-and morphology-controlled polymer core-polymer shell particles. Lab Chip 2009, 9, 3007–3011. [Google Scholar] [CrossRef]
- Zhu, Z.; Huang, F.; Yang, C.; Si, T.; Xu, R.X. On-Demand Generation of Double Emulsions Based on Interface Shearing for Controlled Ultrasound Activation. ACS Appl. Mater. Interfaces 2019, 11, 40932–40943. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Shum, H.C. Monodisperse w/w/w Double Emulsion Induced by Phase Separation. Langmuir 2012, 28, 12054–12059. [Google Scholar] [CrossRef] [PubMed]
- Harada, T.; Ishikawa, N.; Kanda, T.; Suzumori, K.; Yamada, Y.; Sotowa, K.I. Droplet generation using a torsional Langevin-type transducer and a micropore plate. Sens. Actuators A Phys. 2009, 155, 168–174. [Google Scholar] [CrossRef]
- Kishi, T.; Kiyama, Y.; Kanda, T.; Suzumori, K.; Seno, N. Microdroplet Generation Using an Ultrasonic Torsional Transducer Which has a Micropore with a Tapered Nozzle. Arch. Appl. Mech. 2016, 82, 1751–1762. [Google Scholar] [CrossRef]
- Murakami, T.; Tominaga, Y.; Kanda, T.; Suzumori, K. Droplets Generation in the Flowing Ambient Liquid by Using an Ultrasonic Torsional Transducer. In Proceedings of the 2012 IEEE International Ultrasonics Symposium, Dresden, Germany, 7–10 October 2012; pp. 281–284. [Google Scholar]
- Kiyama, Y.; Tominaga, Y.; Kanda, T.; Suzumori, K.; Kishi, T.; Yamada, Y.; Seno, N. Evaluation of Generated Micro Droplets Using Micropore Plates Oscillated by Ultrasonic Torsional Transducers. Sens. Actuators A 2012, 185, 92–100. [Google Scholar] [CrossRef]
- Fujimoto, N.; Kanda, T.; Katsuta, M.; Sakata, Y.; Yamada, Y.; Seno, N.; Nakazaki, Y.; Otoyama, T. Nanoparticles generation using monodisperse droplets by an ultrasonic transducer. Electron. Commun. Jpn. 2020, 103, 49–55. [Google Scholar] [CrossRef]
Applied voltage [Vp-p] | 0 | 6 | 7 | 100 |
Vibration velocity [mm/s] | 0 | 0.12 | 0.13 | 8.2 |
Average droplet diameter [μm] | 207.3 | 221.2 | 209.4 | 207.7 |
Coefficient of variation [%] | 14 | 9.7 | 4.7 | 1.6 |
Applied pressure [kPa] | 160 | 170 | 200 | 320 | 330 |
Average droplet diameter [μm] | 209.8 | 205.4 | 207.7 | 209.7 | 202.8 |
Coefficient of variation [%] | 10.4 | 1.6 | 1.6 | 1.4 | 10.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omori, K.; Fujimoto, N.; Kanda, T.; Wakimoto, S.; Seno, N. Core–Shell Droplet Generation Device Using a Flexural Bolt-Clamped Langevin-Type Ultrasonic Transducer. Actuators 2021, 10, 55. https://doi.org/10.3390/act10030055
Omori K, Fujimoto N, Kanda T, Wakimoto S, Seno N. Core–Shell Droplet Generation Device Using a Flexural Bolt-Clamped Langevin-Type Ultrasonic Transducer. Actuators. 2021; 10(3):55. https://doi.org/10.3390/act10030055
Chicago/Turabian StyleOmori, Kentaro, Nozomu Fujimoto, Takefumi Kanda, Shuichi Wakimoto, and Norihisa Seno. 2021. "Core–Shell Droplet Generation Device Using a Flexural Bolt-Clamped Langevin-Type Ultrasonic Transducer" Actuators 10, no. 3: 55. https://doi.org/10.3390/act10030055
APA StyleOmori, K., Fujimoto, N., Kanda, T., Wakimoto, S., & Seno, N. (2021). Core–Shell Droplet Generation Device Using a Flexural Bolt-Clamped Langevin-Type Ultrasonic Transducer. Actuators, 10(3), 55. https://doi.org/10.3390/act10030055