A Thickness-Mode High-Frequency Underwater Acoustic Transducer with a Low Sidelobe Level
Abstract
:1. Introduction
2. Thickness Vibration Mode
2.1. Theoretical Calculation of Vibration Frequency
2.2. Sidelobe Level of Conventional Piezoelectric Ceramic Disc Transducer
3. Vibration Mode Optimization of Thickness Transducer with a Center Hole
3.1. Influence of Center Hole Variation on Thickness Vibration Frequency
3.2. Piezoelectric Disc Transduce with a Center Hole
4. Experimental Verification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, P.R.; Liu, Z.J.; Wang, Y.; Yue, Y.T. A high frequency underwater transducer curved array. Tech. Acoust. 2012, 31, 628–630. [Google Scholar]
- Li, H.; Deng, Z.D.; Carlson, T.J. Piezoelectric Materials Used in Underwater Acoustic Transducers. Sens. Lett. 2012, 10, 679–697. [Google Scholar] [CrossRef] [Green Version]
- Mariello, M.; Fachechi, L.; Guido, F.; De Vittorio, M. Multifunctional sub-100 µm thickness flexible piezo/triboelectric hybrid water energy harvester based on biocompatible AlN and soft parylene C-PDMS-Ecoflex™. Nano Energy 2021, 83, 105811. [Google Scholar] [CrossRef]
- Mariello, M.; Guido, F.; Mastronardi, V.M.; Todaro, M.T.; Desmaële, D.; De Vittorio, M. Nanogenerators for harvesting mechanical energy conveyed by liquids. Nano Energy 2019, 57, 141–156. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, T.; Li, K.; Ma, S.; Chen, M.; Lu, P.; Wei, L. Flexible Piezoelectric Fibers for Acoustic Sensing and Positioning. Adv. Electron. Mater. 2017, 3, 1600449. [Google Scholar] [CrossRef]
- Mo, X. Research Progress and Opportunities of Underwater Acoustic Transducer Technology in China. Progress and Opportunities of Underwater Transducers in China. Chin. Acad. Sci. 2019, 34, 272–282. [Google Scholar]
- Zhou, L.; Hu, Q. Review of Hydroacoustic Emission Transducer Technology. J. Harbin Eng. Univ. 2010, 7, 120–125. [Google Scholar]
- Zhang, P.; Zhang, Z. Piezoelectric Measurement; National Defence Industry Press: Beijing, China, 1983. [Google Scholar]
- Mori, E.; Iton, K.; Imamura, A. Analysis of a short column vibrator by Apparent Elasticity Method and its Application. Proc. Ultrason. Int. 1977, 36, 262–266. [Google Scholar]
- Lin, S.; Zhang, F. Multimode coupled vibration of piezoelectric ceramic disc oscillators. Acta Electron. Sin. 1994, 12, 64–69. [Google Scholar]
- Feng, F.; Shen, J.; Deng, J. Research on Two-dimensional Equivalent Circuit of Diameter-thickness Coupling Vibration of Piezoelectric Vibrator. Piezoelectr. Acousto-Opt. 2006, 28, 357–359. [Google Scholar]
- Li, M.; Zhang, H.; Ying, C. Analysis of voltage characteristics of thickness mode piezoelectric transducer. Acta Acoust. 1981, 5, 3–13. [Google Scholar]
- Guo, N.; Cawley, P. The finite element analgsis of the vibration characteristics of piezoelectric dics. J. Vib. 1992, 159, 115–138. [Google Scholar] [CrossRef]
- Kocbach, J. Finite Element Modeling of Ultrasonic Piezoelectric Transducers. Influence of Geometry and Material Parameters on Vibration, Response Functions and Radiated Field. Ph.D. Thesis, University of Bergen, Bergen, Norway, 2000. [Google Scholar]
- Lee, P.C.; Edwards, N.P.; Lin, W.S.; Syngellakis, S. Second-order theories for extensional vibrations of piezoelectric crystal plates and strips. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2002, 49, 1497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kybartas, D.; Lukoševičius, A. Analysis of coupled vibration modes in piezoelectric disks. Ultragarsas 2014, 53, 31–36. [Google Scholar]
- Hu, J.; Wang, C.; Li, J. The radiant properties of the coupled ultrasonic vibration system. J. Shaanxi Norm. Univ. 2015, 43, 30–35. [Google Scholar]
- Lee, H.; Singh, R. Comparison of two analytical methods used to calculate sound radiation from radial vibration modes of a thick annular disk. J. Sound Vib. 2005, 285, 1210–1216. [Google Scholar] [CrossRef]
- Storheim, E.; Lunde, P.; Vestrheim, M. Vibration of a baffled piezoelectric ceramic circular disk in lower radial modes, with near- and farfield sound radiation. Acoust. Soc. Am. J. 2017, 141, 3835–3836. [Google Scholar] [CrossRef]
- Chillara, V.K.; Davis, E.S.; Pantea, C.; Sinha, D.N. Ultrasonic Bessel beam generation from radial modes of piezoelectric discs. Ultrasonics 2019, 96, 140–148. [Google Scholar] [CrossRef] [PubMed]
fr0 (kHz) | fr1 (kHz) | fr2 (kHz) | fx1 (kHz) | fr3 (kHz) | ft0 (kHz) | |
---|---|---|---|---|---|---|
Formula results | 37.3 | 98.3 | 156.3 | 213.8 | 199.1 | |
FEM Simulation results | 38.5 | 94.3 | 131 | 168 | 200.1 | 212.5 |
2b/2a | Coupled Mode 1 | Coupled Mode 2 | Coupled Mode 3 | Coupled Mode 4 | Coupled Mode 5 | Coupled Mode 6 |
---|---|---|---|---|---|---|
0 | 0.80 | 0.91 | 0.93 | 1.00 | 1.06 | 1.09 |
1.67% | 0.80 | 0.91 | 0.93 | 1.00 | 1.05 | 1.09 |
3.33% | 0.80 | 0.90 | 0.93 | 0.99 | 1.04 | 1.09 |
4.17% | 0.80 | 0.90 | 0.93 | 0.99 | 1.03 | 1.10 |
6.67% | 0.80 | 0.86 | 0.93 | 0.98 | 1.01 | 1.10 |
8.33% | 0.80 | 0.84 | 0.93 | 0.98 | 1.01 | 1.11 |
10.00% | 0.80 | 0.81 | 0.94 | 0.98 | 1.01 | 1.12 |
13.33% | 0.81 | 0.78 | 0.95 | 0.99 | 1.01 | 1.14 |
15.00% | 0.81 | 0.77 | 0.95 | 1.00 | 1.00 | 1.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Li, H.; Wang, Y.; Liu, Z.; Bian, J.; Chen, J. A Thickness-Mode High-Frequency Underwater Acoustic Transducer with a Low Sidelobe Level. Actuators 2021, 10, 226. https://doi.org/10.3390/act10090226
Zhao H, Li H, Wang Y, Liu Z, Bian J, Chen J. A Thickness-Mode High-Frequency Underwater Acoustic Transducer with a Low Sidelobe Level. Actuators. 2021; 10(9):226. https://doi.org/10.3390/act10090226
Chicago/Turabian StyleZhao, Hui, Haisen Li, Yan Wang, Zhenjun Liu, Jiacong Bian, and Jianguo Chen. 2021. "A Thickness-Mode High-Frequency Underwater Acoustic Transducer with a Low Sidelobe Level" Actuators 10, no. 9: 226. https://doi.org/10.3390/act10090226
APA StyleZhao, H., Li, H., Wang, Y., Liu, Z., Bian, J., & Chen, J. (2021). A Thickness-Mode High-Frequency Underwater Acoustic Transducer with a Low Sidelobe Level. Actuators, 10(9), 226. https://doi.org/10.3390/act10090226