Simulation Optimization and Experimental Study of the Working Performance of a Vertical Rotary Tiller Based on the Discrete Element Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Vertical Rotary Tiller
2.1.1. Overall Structure Design
2.1.2. Rotary Tiller Design
2.2. Discrete Element Simulation Modeling
2.2.1. Discrete Element Modeling of Soils
2.2.2. Discrete Element Model for Vertical Rotary Tiller
2.3. Contact Model and Parameter Setting
2.3.1. Contact Model
2.3.2. Parameter Setting
2.4. Discrete Element Simulation
2.5. Simulation Test Index Acquisition
2.5.1. Crushed Soil Effect Collection Method
2.5.2. Power Consumption Collection Method
2.6. Soil Trough Test
2.6.1. Soil Tank Test Conditions
2.6.2. Soil Tank Test Plan
- Plowing depth
- 2.
- Crushed soil effect
- 3.
- Power consumption
3. Results and Analysis
3.1. Single-Factor Simulation Test Analysis
3.1.1. Influence of Tool Structure Parameters on Test Indexes
3.1.2. Influence of Operational Parameters on Test Indexes
3.2. Multifactor Simulation Test Analysis
3.2.1. Orthogonal Experimental Design
3.2.2. Analysis of Orthogonal Test Results
3.3. Soil Tank Test Results and Analysis
4. Conclusions
- Simulation results show that the distribution of vertical rotary tillage knives has a significant effect on the operating effect; the operating effect of four knives was increased by up to 10.6% under the same conditions for soil crushing due to doubling the number of knives, but the power consumption was increased by 13.8%. The operating effect of the vertical rotary tillage machine was negatively related to the forward speed of the knives and positively related to the rotation speed of the knives; increasing the contact area between the knives and the soil improved the crushing effect on the soil. Increasing the contact area between the tool and the soil to improve the crushing effect on the soil by increasing the bending angle of the tool also improved the crushing effect on the soil.
- With the forward speed of the tool, tool speed, and tool bending angle as three factors, and the torque, power consumption, and soil crushing effect of the vertical rotary tillage knife as the test indexes, orthogonal tests were conducted and the best operating and structural parameters were determined via extreme difference analysis: forward speed, 1.5 m·s−1; tool speed, 340 r·min−1; and tool bending angle, 8°.
- The soil tank test showed that the average tillage depth of vertical rotary tiller operation under the optimal parameter combination was 15.02 cm and the average soil breaking rate was 80.8%, which meets agronomic tillage requirements; the actual measured power consumption was 7% higher than the simulated value, which is close, verifying the validity of the simulation results and laying the foundation for subsequent research on and optimization of the whole machine.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nie, S.; Zhang, H.; Zhang, Q.; Xu, J.; Zhang, Y. Effect of vertical rototilling on soil firmness and yield of wheat during the growing season. J. Agric. Resour. Environ. 2021, 38, 36–42. [Google Scholar]
- Du, Z.; Chen, Y.; Zhang, J.; Han, X.; Geng, A.; Zhang, Z. Domestic and foreign rotary tillage machinery development status and prospects. J. Chin. Agric. Mech. 2019, 40, 43–47. [Google Scholar]
- Lin, H.; He, J.; Li, H.; Li, H.; Wang, Q.; Lu, C.; Li, Y.; Jiang, S. A Review of Research Progress on Soil Organic Cover Machinery in China. Agriculture 2022, 12, 1311. [Google Scholar] [CrossRef]
- Pikul, L.; Aase, K. Water Infiltration and storage affected by subsoiling and subsequent tillage. Soil. Soc. Am. J. 2003, 67, 859–866. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, C.; Chen, C. Design of vertical rotary tiller transmission system and analysis of rotary knife movement. J. Chin. Agric. Mech. 2013, 34, 66–69. [Google Scholar]
- Liu, F.; Mi, Y.; Liao, N.; Di, M.; Liu, Y.; Liu, H. Research, design and testing of vertical rotary tiller. J. Agric. Mech. Res. 2017, 39, 81–84. [Google Scholar]
- Tanaka, H.; Oida, A.; Daikoku, M. The effect of design parameters of vibrating wide subsoiler in its performance simulated by the distinct element method. In Proceedings of the 15th International Conference of the ISTVS, International Society of Terrain-Vehicle Systems, Hayama, Japan, 25–29 September 2005. [Google Scholar]
- Hofstetter, K. Analytic method to predict the dynamic interaction of dozer blade with earthen material. In Proceedings of the 14th International Conference of the ISTVS, Vicksburg, MS, USA, 6–7 October 2002. [Google Scholar]
- Zhang, R.; Li, J. Simulation on mechanical behavior of cohesive soil by distinct element method. J. Terramech. 2006, 43, 303–316. [Google Scholar] [CrossRef]
- Momozu, M.; Oida, A.; Yamazaki, M. Simulation of a soil loosening process by means of the modified distinct element method. J. Terramech. 2003, 39, 207–220. [Google Scholar] [CrossRef]
- Yu, J.; Qian, L.; Yu, W.; Pan, S.; Fang, Y.; Fu, H. DEM analysis of the resistance applied on furrow openers. Trans. Chin. Soc. Agric. Mach. 2009, 40, 53–57. [Google Scholar]
- Chen, Y.; Munkholm, J.; Nyord, T. A discrete element model for soil-sweep interaction in three different soils. Soil Tillage Res. 2013, 126, 34–41. [Google Scholar] [CrossRef]
- Tamás, K.; Jóri, J.; Mouazen, M. Modelling soil-sweep interaction with discrete element method. Soil Tillage Res. 2013, 134, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Ji, C.; Tagar, A.; Zhang, Q.; Guo, J. Analysis of straw movement in straw-soil-rotary blade system. Trans. Chin. Soc. Agric. Mach. 2016, 47, 60–67. [Google Scholar]
- Ucgul, M.; Fielke, M.; Saunders, C. Three-dimensional discrete element modelling of tillage: Determination of a suitable contact model and parameters for a cohesionless soil. Biosyst. Eng. 2014, 121, 105–117. [Google Scholar] [CrossRef]
- Ucgul, M.; Fielke, M.; Saunders, C. 3D DEM tillage simulation: Validation of a hysteretic spring(plastic)contact model for a sweep tool operating in a cohesionless soil. Soil Tillage Res. 2014, 144, 220–227. [Google Scholar] [CrossRef]
- Marenya, O. Performance Characteristics of a Deep Tilling Rotavator; University of Pretori: Pretoria, South Africa, 2009. [Google Scholar]
- Salokhe, M.; Ramalingam, N. Effect of rotation direction of a rotary tiller on draft and power requirements in a Bangkok clay soil. J. Terramech. 2003, 39, 195–205. [Google Scholar] [CrossRef]
- Iwasaki, K.; Miyabe, Y.; Kashiwagi, S. Tillage resistance on tip and straight portion of a rotary blade. Mem. Fac. Agric. Kagoshima Univ. 1992, 28, 143–151. [Google Scholar]
- Asl, H.; Singh, S. Optimization and evaluation of rotary tiller blades: Computer solution of mathematical relations. Soil Tillage Res. 2009, 106, 1–7. [Google Scholar] [CrossRef]
- Tang, W.; Liu, E.; He, C.; Jin, C.; Liu, C. Design and testing of vertical rotary tiller. J. Agric. Mech. Res. 2022, 44, 77–81+87. [Google Scholar]
- Xu, Y.; Li, H.; Huang, W. Three-dimensional discrete element modeling and simulation scenario planning for tilled soil dynamics. Trans. Chin. Soc. Agric. Eng. 2003, 2003, 34–38. [Google Scholar]
- Mak, J.; Chen, Y.; Sadek, M. Determining parameters of a discrete element model for soil-tool interaction. Soil Tillage Res. 2012, 118, 117–122. [Google Scholar] [CrossRef]
- Ting, M.; Corkum, T.; Kauffman, R. Discrete numerical model for soil mechanics. J. Geotech. Eng. 1989, 115, 379–398. [Google Scholar] [CrossRef]
- Da, Q.; Li, D.; Zhang, X.; Guo, W.; He, D.; Huang, Y.; He, G. Research on Performance Evaluation Method of Rice Thresher Based on Neural Network. Actuators 2022, 11, 257. [Google Scholar] [CrossRef]
- Potyondy, D.; Cundall, P. A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 2004, 41, 1329–1364. [Google Scholar] [CrossRef]
- Zhao, Z.; He, X.; Shang, S.; Hou, J.; Zhu, H.; Wang, H.; Wang, Y.; Li, D.; Chang, Z.; Xia, C.; et al. Design and Testing of Discrete Element-Based Counter-Rotating Excavation Device for Cyperus esculentus. Agriculture 2022, 12, 1608. [Google Scholar] [CrossRef]
- Hu, G. Analysis and Simulation of Particle System by Discrete Element Method Using EDEM; Wuhan University of Technology Press: Wuhan, China, 2010. [Google Scholar]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Sakaguchi, H.; Ozaki, E.; Igarashi, T. Plugging of the flow of granular materials during the discharge from a silo. Int. J. Mod. Phys. B 2012, 7, 1949–1963. [Google Scholar] [CrossRef]
- Wu, Z.; Xie, F.; Wang, X.; Liu, D.; Looh, A.; Zhang, Z.; Tang, Q. Calibration of discrete element parameters and experimental verification for modelling subsurface soils. Biosyst. Eng. 2021, 212, 215–227. [Google Scholar] [CrossRef]
- Zhu, Z. Soil Science Volume I; Beijing China Agricultural Publishing House: Beijing, China, 1983. [Google Scholar]
- Xie, F.; Wu, Z.; Wang, X.; Liu, D.; Wu, B.; Zhag, Z. Calibration of discrete element parameters of soils based on unconfined compressive strength test. Trans. Chin. Soc. Agric. Eng. 2020, 36, 39–47. [Google Scholar]
- Yang, W.; Wu, B.; Peng, Z.; Tang, Z. Evaluation of trenching quality of vertical screw trencher based on discrete element method. J. Southwest Univ. (Nat. Sci. Ed.) 2019, 12, 1. [Google Scholar]
- Anonymous. Dahua Baolai JBQ series heavy-duty drive rake. Agric. Mach. 2020, 29. [Google Scholar] [CrossRef]
- Gai, C.; Dong, Y. COSMOS-based optimization of bending angle of rotary tillage cutter for return machine. J. Agric. Mech. Res. 2011, 33, 30–33. [Google Scholar]
- He, Z.; Xin, H. Exploration of the rules of rotary tiller blade arrangement. Contemp. Farm Mach. 2000, 2000, 20–21. [Google Scholar]
Parameters | Material Science | |
---|---|---|
65 Mn | Soil | |
Density | 7820 | 2660 |
Poisson’s ratio | 0.282 | 0.38 |
Shear modulus | 7.86 × 1010 | 1.8 × 106 |
Parameters | Material | Tillage Layer Particles | Plow Bottom Layer Particles | Core Soil Layer Particles |
---|---|---|---|---|
Coefficient of Restitution X1 | Tillage layer particles | 0.35 | 0.3 | 0.3 |
Plow bottom layer particles | - | 0.35 | 0.3 | |
Core soil layer particles | - | - | 0.4 | |
Rotary cutter | 0.50 | 0.6 | 0.5 | |
Coefficient of Static Friction X2 | Tillage layer particles | 0.29 | 0.5 | 0.5 |
Plow bottom layer particles | - | 0.29 | 0.5 | |
Core soil layer particles | - | - | 0.25 | |
Rotary cutter | 0.50 | 0.6 | 0.5 | |
Coefficient of Rolling Friction X3 | Tillage layer particles | 0.1 | 0.3 | 0.3 |
Plow bottom layer particles | - | 0.1 | 0.3 | |
Core soil layer particles | - | - | 0.14 | |
Rotary cutter | 0.15 | 0.3 | 0.25 |
Contact Parameters | Numerical Value |
---|---|
Normal stiffness per unit area X4/(N·m−3) | 1.725 × 108 |
Shear stiffness per unit area X5/(N·m−3) | 9.072 × 107 |
Critical normal stress X6/Pa | 2.216 × 105 |
Critical shear stress X7/Pa | 2.216 × 105 |
Level | Forward Speed v/m·s−1 | Tool Rotation Speed ω/r·min−1 | Tool Bending Angle/(°) |
---|---|---|---|
1 | 1 | 260 | 0 |
2 | 1.5 | 300 | 4 |
3 | 2 | 340 | 8 |
Serial Number | Forward Speed A/m·s−1 | Tool Rotation Speed B/r·min−1 | Tool Bending Angle C/(°) | Number of Broken Bonding Bonds N/units | Torque T/N·m | Power P/kW | |
---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 246,690 | 498.69 | 13.6 | |
2 | 1 | 2 | 2 | 284,805 | 624.25 | 19.6 | |
3 | 1 | 3 | 3 | 292,805 | 725.40 | 25.8 | |
4 | 2 | 1 | 2 | 269,637 | 766.99 | 20.8 | |
5 | 2 | 2 | 3 | 292,237 | 821.74 | 25.7 | |
6 | 2 | 3 | 1 | 268,709 | 663.42 | 23.6 | |
7 | 3 | 1 | 3 | 261,245 | 934.77 | 25.4 | |
8 | 3 | 2 | 1 | 233,572 | 803.95 | 25.3 | |
9 | 3 | 3 | 2 | 282,031 | 895.35 | 31.8 | |
N | k11 | 274,766.7 | 259,190.7 | 249,657 | |||
k12 | 276,861 | 270,204.7 | 278,824.3 | ||||
k13 | 258,949.3 | 281,181.7 | 282,095.7 | ||||
R1 | 17,911.67 | 21,991 | 32,438.67 | ||||
T | k21 | 616.1133 | 733.4833 | 655.3533 | |||
k22 | 750.7166 | 749.98 | 762.1967 | ||||
k23 | 878.0234 | 761.3901 | 827.3033 | ||||
R2 | 261.91 | 27.9067 | 171.95 | ||||
P | k31 | 19.6667 | 19.9333 | 20.8333 | |||
k32 | 23.3667 | 23.5333 | 24.0667 | ||||
k33 | 27.5 | 27.0667 | 25.6333 | ||||
R3 | 7.8333 | 7.1333 | 4.8 |
Test No. | Power/(kW) | Crushing Rate/(%) | Plowing Depth/(cm) |
---|---|---|---|
1 | 26.3 | 74 | 13.8 |
2 | 28.6 | 86 | 15.9 |
3 | 27.8 | 81 | 15.2 |
4 | 28.3 | 83 | 15.5 |
5 | 28 | 80 | 14.7 |
Average | 27.8 | 80.8 | 15.02 |
Test No. | Power/(kW) | Crushing Rate/(%) | Plowing Depth/(cm) |
---|---|---|---|
1 | 14.7 | 77 | 14.5 |
2 | 11.8 | 71 | 12.8 |
3 | 13.9 | 73 | 13.6 |
4 | 14.5 | 74 | 15.8 |
5 | 15.2 | 81 | 14.7 |
Average | 14.02 | 75.2 | 14.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, S.; Shi, Y.; Zhou, J.; Liu, J.; Huang, D.; Zou, A.; Jiang, P. Simulation Optimization and Experimental Study of the Working Performance of a Vertical Rotary Tiller Based on the Discrete Element Method. Actuators 2022, 11, 342. https://doi.org/10.3390/act11120342
Zhai S, Shi Y, Zhou J, Liu J, Huang D, Zou A, Jiang P. Simulation Optimization and Experimental Study of the Working Performance of a Vertical Rotary Tiller Based on the Discrete Element Method. Actuators. 2022; 11(12):342. https://doi.org/10.3390/act11120342
Chicago/Turabian StyleZhai, Shike, Yixin Shi, Junchi Zhou, Jianfei Liu, Defan Huang, Airu Zou, and Ping Jiang. 2022. "Simulation Optimization and Experimental Study of the Working Performance of a Vertical Rotary Tiller Based on the Discrete Element Method" Actuators 11, no. 12: 342. https://doi.org/10.3390/act11120342
APA StyleZhai, S., Shi, Y., Zhou, J., Liu, J., Huang, D., Zou, A., & Jiang, P. (2022). Simulation Optimization and Experimental Study of the Working Performance of a Vertical Rotary Tiller Based on the Discrete Element Method. Actuators, 11(12), 342. https://doi.org/10.3390/act11120342