Multiphysical Simulation, Model Order Reduction (ECSW) and Experimental Validation of an Active Magnetic Bearing
Abstract
:1. Introduction
2. Monitoring Approach
3. Multiphysical Simulation
3.1. Governing Equations
3.2. Fem-Discretization
3.3. Time Integration
3.4. Geometry and Mesh
3.5. Force Computation
4. Model Order Reduction
4.1. Thermal Model
4.2. Magnetodynamic Model
4.3. ECSW-Method
4.4. Setup of the Reduced Model
4.5. Validation of the Model
4.6. Intermediate Conclusion
5. Experimental Validation
5.1. Test Rig Overview
5.2. Model Calibration Strategy
5.3. Static Model Parameters
5.3.1. Heat Coefficients
5.3.2. Permeability
5.3.3. Effective Thickness
5.4. Dynamic Model Parameters
5.4.1. Heat Capacitance
5.4.2. Electrical Conductivity
5.5. Final Parameter Check
6. Summary and Conclusions
6.1. Summary
6.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Faraji, F.; Majazi, A.; Al-Haddad, K. A comprehensive review of Flywheel Energy Storage System technology. Renew. Sustain. Energy Rev. 2017, 67, 477–490. [Google Scholar] [CrossRef]
- Schweitzer, G.; Traxler, A.; Bleuler, H. Magnetlager: Grundlagen, Eigenschaften und Anwendungen Berührungsfreier, Elektromagnetischer Lager; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Shi, W.; Dustdar, S. The Promise of Edge Computing. Computer 2016, 49, 78–81. [Google Scholar] [CrossRef]
- Varghese, B.; Wang, N.; Barbhuiya, S.; Kilpatrick, P.; Nikolopoulos, D.S. Challenges and Opportunities in Edge Computing. In Proceedings of the 2016 IEEE International Conference on Smart Cloud (SmartCloud), New York, NY, USA, 18–20 November 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar] [CrossRef] [Green Version]
- Maierhofer, J.; Rixen, D.J. Model Order Reduction using Hyperreduction Methods (DEIM, ECSW) for Magnetodynamic FEM Problems. Finite Elem. Anal. Des. 2022, in press. [Google Scholar]
- Vong, P.; Rodger, D. Coupled electromagnetic-thermal modeling of electrical machines. IEEE Trans. Magn. 2003, 39, 1614–1617. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, D.; Zhang, Q.; Chen, J. Electromagnetic-Thermal Coupling Simulation by ANSYS Multiphysics of Induction Heater. Appl. Mech. Mater. 2014, 701–702, 820–825. [Google Scholar] [CrossRef]
- Smallman, R.; Ngan, A. Physical Properties. In Modern Physical Metallurgy; Elsevier: Amsterdam, The Netherlands, 2014; pp. 317–356. [Google Scholar] [CrossRef]
- Rudolph, M.; Schaefer, H. Elektrothermische Verfahren: Grundlagen, Technologien, Anwendungen; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Lide, D. CRC Handbook of Chemistry and Physics, 86th ed.; Taylor & Francis: Abingdon, UK, 2005. [Google Scholar]
- Biro, O.; Preis, K. On the use of the magnetic vector potential in the finite-element analysis of three-dimensional eddy currents. IEEE Trans. Magn. 1989, 25, 3145–3159. [Google Scholar] [CrossRef]
- Fetzer, J.; Haas, M.; Kurz, S. Numerische Berechnung Elektromagnetischer Felder, 1st ed.; Renningen: Malmsheim, Germany, 2002. [Google Scholar]
- Farhat, C.; Avery, P.; Chapman, T.; Cortial, J. Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency. Int. J. Numer. Methods Eng. 2014, 98, 625–662. [Google Scholar] [CrossRef]
- Kosky, P.G.; Balmer, R.T.; Keat, W.; Wise, G. Exploring Engineering an Introduction to Engineering and Design; Academic Press: Cambridge, MA, USA, 2013; p. 462. [Google Scholar]
- Hahne, P.; Dietz, R.; Rieth, B.; Weiland, T. Determination of anisotropic equivalent conductivity of laminated cores for numerical computation. IEEE Trans. Magn. 1996, 32, 1184–1187. [Google Scholar] [CrossRef]
- Hollaus, K.; Hannukainen, A.; Schoberl, J. Two-Scale Homogenization of the Nonlinear Eddy Current Problem with FEM. IEEE Trans. Magn. 2014, 50, 413–416. [Google Scholar] [CrossRef]
j/A/mm | f/HZ | ms | |
---|---|---|---|
1 | 10 | 10 | 10 |
1 | 100 | 1 | 10 |
4 | 10 | 10 | 10 |
4 | 100 | 1 | 10 |
Processor | Intel(R) Core(TM) i7-8850H @ 2.60 GHz |
RAM | 16 GB |
OS | macOS 12.4 |
Python | 3.8.10 |
NGSolve | 6.2201 |
Full | ECSW | |||
---|---|---|---|---|
No. of Elements | 27,466 | 60 | 139 | 273 |
Element Selection Time | - | 11 s | 39 s | 111 s |
Residual | 45 ms | 6 ms | 7 ms | 7 ms |
Tangent Matrix | 95 ms | 2 ms | 3 ms | 3 ms |
Linear Solve | 62 ms | 0.1 ms | 0.1 ms | 0.1 ms |
Total Simulation Time | 150 s | 38 s | 39 s | 40 s |
Full | POD | ECSW | |||
---|---|---|---|---|---|
# dof | 13,566 | 10 | 10 | 10 | 10 |
# els | 27,466 | 27,466 | 60 | 139 | 273 |
f | |
---|---|
10 Hz | 1 mm |
100 Hz | 0.3 mm |
1 kHz | 0.1 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maierhofer, J.; Dietz, C.; Zobel, O.M.; Rixen, D.J. Multiphysical Simulation, Model Order Reduction (ECSW) and Experimental Validation of an Active Magnetic Bearing. Actuators 2022, 11, 169. https://doi.org/10.3390/act11060169
Maierhofer J, Dietz C, Zobel OM, Rixen DJ. Multiphysical Simulation, Model Order Reduction (ECSW) and Experimental Validation of an Active Magnetic Bearing. Actuators. 2022; 11(6):169. https://doi.org/10.3390/act11060169
Chicago/Turabian StyleMaierhofer, Johannes, Christoph Dietz, Oliver M. Zobel, and Daniel J. Rixen. 2022. "Multiphysical Simulation, Model Order Reduction (ECSW) and Experimental Validation of an Active Magnetic Bearing" Actuators 11, no. 6: 169. https://doi.org/10.3390/act11060169
APA StyleMaierhofer, J., Dietz, C., Zobel, O. M., & Rixen, D. J. (2022). Multiphysical Simulation, Model Order Reduction (ECSW) and Experimental Validation of an Active Magnetic Bearing. Actuators, 11(6), 169. https://doi.org/10.3390/act11060169