Electromechanical Performance of Biocompatible Piezoelectric Thin-Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Governing Equations
2.2. Validation
3. Results
3.1. Transverse Vibrations
3.2. Axial Loading
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Arshad, A.; Irfan, H.; Iftikhar, S.; Yameen, B.; Arshad, A.; Irfan, H.; Iftikhar, S.; Yameen, B. Conductive Polymers for Cardiovascular Applications. In Nanoscale Engineering of Biomaterials: Properties and Applications; Springer: Singapore, 2022; pp. 319–347. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, L.; Liu, C.; Gao, X.; Zhou, Z.; Duan, S.; Deng, Q.; Song, L.; Jiang, H.; Yu, L.; et al. Self-Powered Pacemaker Based on All-in-One Flexible Piezoelectric Nanogenerator. Nano Energy 2022, 99, 107420. [Google Scholar] [CrossRef]
- Sgreccia, D.; Mauro, E.; Vitolo, M.; Manicardi, M.; Valenti, A.C.; Imberti, J.F.; Ziacchi, M.; Boriani, G. Implantable Cardioverter Defibrillators and Devices for Cardiac Resynchronization Therapy: What Perspective for Patients’ Apps Combined with Remote Monitoring? Expert Rev. Med. Devices 2022, 19, 155–160. [Google Scholar] [CrossRef]
- Li, H.; Lu, J.; Myjak, M.J.; Liss, S.A.; Brown, R.S.; Tian, C.; Deng, Z.D. An Implantable Biomechanical Energy Harvester for Animal Monitoring Devices. Nano Energy 2022, 98, 107290. [Google Scholar] [CrossRef]
- Todaro, M.T.; Guido, F.; Algieri, L.; Mastronardi, V.M.; Desmaele, D.; Epifani, G.; De Vittorio, M. Biocompatible, Flexible, and Compliant Energy Harvesters Based on Piezoelectric Thin Films. IEEE Trans. Nanotechnol. 2018, 17, 220–230. [Google Scholar] [CrossRef]
- Jeong, C.K. Toward Bioimplantable and Biocompatible Flexible Energy Harvesters Using Piezoelectric Ceramic Materials. MRS Commun. 2020, 10, 365–378. [Google Scholar] [CrossRef]
- Shin, D.M.; Hong, S.W.; Hwang, Y.H. Recent Advances in Organic Piezoelectric Biomaterials for Energy and Biomedical Applications. Nanomaterials 2020, 10, 123. [Google Scholar] [CrossRef] [Green Version]
- Chorsi, M.T.; Curry, E.J.; Chorsi, H.T.; Das, R.; Baroody, J.; Purohit, P.K.; Ilies, H.; Nguyen, T.D. Piezoelectric Biomaterials for Sensors and Actuators. Adv. Mater. 2019, 31, 1802084. [Google Scholar] [CrossRef] [Green Version]
- Horlbeck, F.W.; Mellert, F.; Kreuz, J.; Nickenig, G.; Schwab, J.O. Real-World Data on the Lifespan of Implantable Cardioverter-Defibrillators Depending on Manufacturers and the Amount of Ventricular Pacing. J. Cardiovasc. Electrophysiol. 2012, 23, 1336–1342. [Google Scholar] [CrossRef]
- Mallela, V.S.; Ilankumaran, V.; Rao, S.N. Trends in Cardiac Pacemaker Batteries. Indian Pacing Electrophysiol. J. 2004, 4, 201. [Google Scholar]
- Chu, T.F.; Lin, F.Y.; Kuznetsova, I.; Wang, G.J. A Novel Neutral Non-Enzymatic Glucose Biofuel Cell Based on a Pt/Au Nano-Alloy Anode. J. Power Sources 2021, 486, 229374. [Google Scholar] [CrossRef]
- Rawat, S.; Savlab, N.; Quraishi, M.; Shah, M.Z.; Dange, P.; Roy, A.S.; Bharadwaj, T.; Agasam, T.; Gupta, P.K.; Pandit, S. Bioelectricity Recovery from Food Waste Using Microbial Fuel Cell: Recent Advances. Bioprospecting Microb. Divers. Chall. Appl. Biochem. Ind. Agric. Environ. Prot. 2022, 297–323. [Google Scholar] [CrossRef]
- Ibrahim, R.; Shaari, N.; Mohd Aman, A.H. Bio-Fuel Cell for Medical Device Energy System: A Review. Int. J. Energy Res. 2021, 45, 14245–14273. [Google Scholar] [CrossRef]
- Mahmoud, R.H.; Gomaa, O.M.; Hassan, R.Y.A. Bio-Electrochemical Frameworks Governing Microbial Fuel Cell Performance: Technical Bottlenecks and Proposed Solutions. RSC Adv. 2022, 12, 5749–5764. [Google Scholar] [CrossRef] [PubMed]
- Vijay, A.; Sonawane, J.M.; Chhabra, M. Denitrification Process in Microbial Fuel Cell: A Comprehensive Review. Bioresour. Technol. Rep. 2022, 17, 100991. [Google Scholar] [CrossRef]
- Xiao, Z.; Yu, S.; Li, Y.; Ruan, S.; Kong, L.B.; Huang, Q.; Huang, Z.; Zhou, K.; Su, H.; Yao, Z.; et al. Materials Development and Potential Applications of Transparent Ceramics: A Review. Mater. Sci. Eng. R Rep. 2020, 139, 100518. [Google Scholar] [CrossRef]
- Park, K.I.; Lee, M.; Liu, Y.; Moon, S.; Hwang, G.T.; Zhu, G.; Kim, J.E.; Kim, S.O.; Kim, D.K.; Wang, Z.L.; et al. Flexible Nanocomposite Generator Made of BaTiO₃ Nanoparticles and Graphitic Carbons. Adv. Mater. 2012, 24, 2999–3004. [Google Scholar] [CrossRef]
- Najjari, A.; Mehdinavaz Aghdam, R.; Ebrahimi, S.A.S.; Suresh, K.S.; Krishnan, S.; Shanthi, C.; Ramalingam, M. Smart Piezoelectric Biomaterials for Tissue Engineering and Regenerative Medicine: A Review. Biomed. Eng./Biomed. Tech. 2022, 67, 71–88. [Google Scholar] [CrossRef]
- Sheikh, T.; Sampath, S.; Bhattacharya, B. Analytical Study on the Effects of Geometrical Parameters on the Bimorph Sensor Performance to Detect Surface Defects in Gas Pipelines. In Proceedings of the ACAM10: 10th Australasian Congress on Applied Mechanics, Virtual, 1–3 December 2021; Engineering Australia: Barton, Australia; pp. 322–332. [Google Scholar]
- Mehta, A.; Sachdev, S.; Kumar, P.; Sharma, P.; Prakash, C. Structural, Dielectric, Ferroelectric and Piezoelectric Properties of La and Fe Substituted Barium Titanate Ceramics. Phase Transit. 2022, 1–8. [Google Scholar] [CrossRef]
- Habib, M.; Akram, F.; Ahmad, P.; Al-Harbi, F.F.; Ud Din, I.; Iqbal, Q.; Ahmed, T.; Khan, S.A.; Hussain, A.; Song, T.K.; et al. Donor Multiple Effects on the Ferroelectric and Piezoelectric Performance of Lead-Free BiFeO3-BaTiO3 Ceramics. Mater. Lett. 2022, 315, 131950. [Google Scholar] [CrossRef]
- Singhal, A.; Sedighi, H.M.; Ebrahimi, F.; Kuznetsova, I. Comparative Study of the Flexoelectricity Effect with a Highly/Weakly Interface in Distinct Piezoelectric Materials (PZT-2, PZT-4, PZT-5H, LiNbO 3, BaTiO3). Waves Random Complex Media 2019, 31, 1780–1798. [Google Scholar] [CrossRef]
- Cheng, L.C.; Brahma, S.; Huang, J.L.; Liu, C.P. Enhanced Piezoelectric Coefficient and the Piezoelectric Nanogenerator Output Performance in Y-Doped ZnO Thin Films. Mater. Sci. Semicond. Process. 2022, 146, 106703. [Google Scholar] [CrossRef]
- Khan, A.; Abas, Z.; Soo Kim, H.; Oh, I.K. Piezoelectric Thin Films: An Integrated Review of Transducers and Energy Harvesting. Smart Mater. Struct. 2016, 25, 053002. [Google Scholar] [CrossRef]
- Pinto, R.M.R.; Gund, V.; Calaza, C.; Nagaraja, K.K.; Vinayakumar, K.B. Piezoelectric Aluminum Nitride Thin-Films: A Review of Wet and Dry Etching Techniques. Microelectron. Eng. 2022, 257, 111753. [Google Scholar] [CrossRef]
- Yue, R.; Ramaraj, S.G.; Liu, H.; Elamaran, D.; Elamaran, V.; Gupta, V.; Arya, S.; Verma, S.; Satapathi, S.; Hayawaka, Y.; et al. A Review of Flexible Lead-Free Piezoelectric Energy Harvester. J. Alloys Compd. 2022, 918, 165653. [Google Scholar] [CrossRef]
- Hwang, G.T.; Byun, M.; Jeong, C.K.; Lee, K.J. Flexible Piezoelectric Thin-Film Energy Harvesters and Nanosensors for Biomedical Applications. Adv. Healthc. Mater. 2015, 4, 646–658. [Google Scholar] [CrossRef]
- Todaro, M.T.; Guido, F.; Mastronardi, V.; Desmaele, D.; Epifani, G.; Algieri, L.; De Vittorio, M. Piezoelectric MEMS Vibrational Energy Harvesters: Advances and Outlook. Microelectron. Eng. 2017, 183–184, 23–36. [Google Scholar] [CrossRef]
- Fraga, M.A.; Furlan, H.; Pessoa, R.S.; Massi, M. Wide Bandgap Semiconductor Thin Films for Piezoelectric and Piezoresistive MEMS Sensors Applied at High Temperatures: An Overview. Microsyst. Technol. 2014, 20, 9–21. [Google Scholar] [CrossRef]
- Suwa, E.; Tsujiura, Y.; Kurokawa, F.; Hida, H.; Kanno, I. Fabrication of High-Efficiency Piezoelectric Energy Harvesters of Epitaxial Pb(Zr,Ti)O3Thin Films by Laser Lift-Off. Energy Harvest. Syst. 2016, 3, 61–67. [Google Scholar] [CrossRef]
- Yeo, H.G.; Ma, X.; Rahn, C.; Trolier-McKinstry, S. Efficient Piezoelectric Energy Harvesters Utilizing (001) Textured Bimorph PZT Films on Flexible Metal Foils. Adv. Funct. Mater. 2016, 26, 5940–5946. [Google Scholar] [CrossRef]
- Luo, J.; Cao, Z.; Yuan, M.; Liang, Y.; Xu, X.; Li, M. Fabrication and Characterization of Miniature Nonlinear Piezoelectric Harvester Applied for Low Frequency and Weak Vibration. Results Phys. 2018, 11, 237–242. [Google Scholar] [CrossRef]
- Yang, B.; Zhu, Y.; Wang, X.; Liu, J.Q.; Chen, X.; Yang, C. High Performance PZT Thick Films Based on Bonding Technique for D31 Mode Harvester with Integrated Proof Mass. Sens. Actuators A Phys. 2014, 214, 88–94. [Google Scholar] [CrossRef]
- Pariy, I.O.; Ivanova, A.A.; Shvartsman, V.V.; Lupascu, D.C.; Sukhorukov, G.B.; Ludwig, T.; Bartasyte, A.; Mathur, S.; Surmeneva, M.A.; Surmenev, R.A. Piezoelectric Response in Hybrid Micropillar Arrays of Poly(Vinylidene Fluoride) and Reduced Graphene Oxide. Polymers 2019, 11, 1065. [Google Scholar] [CrossRef] [Green Version]
- Surmenev, R.A.; Chernozem, R.V.; Pariy, I.O.; Surmeneva, M.A. A Review on Piezo- and Pyroelectric Responses of Flexible Nano- and Micropatterned Polymer Surfaces for Biomedical Sensing and Energy Harvesting Applications. Nano Energy 2021, 79, 105442. [Google Scholar] [CrossRef]
- Mukhortova, Y.R.; Pryadko, A.S.; Chernozem, R.V.; Pariy, I.O.; Akoulina, E.A.; Demianova, I.V.; Zharkova, I.I.; Ivanov, Y.F.; Wagner, D.V.; Bonartsev, A.P.; et al. Fabrication and Characterization of a Magnetic Biocomposite of Magnetite Nanoparticles and Reduced Graphene Oxide for Biomedical Applications. Nano-Struct. Nano-Objects 2022, 29, 100843. [Google Scholar] [CrossRef]
- Pariy, I.O.; Ivanova, A.A.; Shvartsman, V.V.; Lupascu, D.C.; Sukhorukov, G.B.; Surmeneva, M.A.; Surmenev, R.A. Poling and Annealing of Piezoelectric Poly(Vinylidene Fluoride) Micropillar Arrays. Mater. Chem. Phys. 2020, 239, 122035. [Google Scholar] [CrossRef]
- Pillatsch, P.; Yeatman, E.M.; Holmes, A.S. A Scalable Piezoelectric Impulse-Excited Energy Harvester for Human Body Excitation. Smart Mater. Struct. 2012, 21, 115018. [Google Scholar] [CrossRef]
- Halim, M.A.; Park, J.Y. A Non-Resonant, Frequency up-Converted Electromagnetic Energy Harvester from Human-Body-Induced Vibration for Hand-Held Smart System Applications. J. Appl. Phys. 2014, 115, 094901. [Google Scholar] [CrossRef]
- Fei, C.; Liu, X.; Zhu, B.; Li, D.; Yang, X.; Yang, Y.; Zhou, Q. AlN Piezoelectric Thin Films for Energy Harvesting and Acoustic Devices. Nano Energy 2018, 51, 146–161. [Google Scholar] [CrossRef]
- He, X.; Wen, Q.; Lu, Z.; Shang, Z.; Wen, Z. A Micro-Electromechanical Systems Based Vibration Energy Harvester with Aluminum Nitride Piezoelectric Thin Film Deposited by Pulsed Direct-Current Magnetron Sputtering. Appl. Energy 2018, 228, 881–890. [Google Scholar] [CrossRef]
- Zhao, X.; Shang, Z.; Luo, G.; Deng, L. A Vibration Energy Harvester Using AlN Piezoelectric Cantilever Array. Microelectron. Eng. 2015, 142, 47–51. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, J.; Kuwano, H. Design and Characterization of Miniature Piezoelectric Generators with Low Resonant Frequency. Sens. Actuators A Phys. 2012, 179, 178–184. [Google Scholar] [CrossRef]
- Sharma, A.; Olszewski, O.Z.; Torres, J.; Mathewson, A.; Houlihan, R. Fabrication, Simulation and Characterisation of MEMS Piezoelectric Vibration Energy Harvester for Low Frequency. Procedia Eng. 2015, 120, 645–650. [Google Scholar] [CrossRef] [Green Version]
- Pillatsch, P.; Yeatman, E.M.; Holmes, A.S.; Wright, P.K. Wireless Power Transfer System for a Human Motion Energy Harvester. Sens. Actuators A Phys. 2016, 244, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Fan, K.; Cai, M.; Liu, H.; Zhang, Y. Capturing Energy from Ultra-Low Frequency Vibrations and Human Motion through a Monostable Electromagnetic Energy Harvester. Energy 2019, 169, 356–368. [Google Scholar] [CrossRef]
- Gao, F.; Liu, G.; Fu, X.; Li, L.; Liao, W.H. Lightweight Piezoelectric Bending Beam-Based Energy Harvester for Capturing Energy from Human Knee Motion. IEEE/ASME Trans. Mechatron. 2021, 27, 1256–1266. [Google Scholar] [CrossRef]
- Liang, H.; Hao, G.; Olszewski, O.Z. A Review on Vibration-Based Piezoelectric Energy Harvesting from the Aspect of Compliant Mechanisms. Sens. Actuators A Phys. 2021, 331, 112743. [Google Scholar] [CrossRef]
- Golovanov, E.; Kolesov, V.; Anisimkin, V.; Osipenko, V.; Kuznetsova, I. ZnO Piezoelectric Films for Acoustoelectronic and Microenergetic Applications. Coatings 2022, 12, 709. [Google Scholar] [CrossRef]
- Suhaimi, M.I.; Nordin, A.N.; Md Ralib, A.A.; Lim, L.M.; Samsudin, Z. Flexible, Piezoelectric Aluminum-Doped Zinc Oxide Energy Harvesters with Printed Electrodes for Wearable Applications. Int. J. Sens. Wirel. Commun. Control 2021, 12, 48–68. [Google Scholar] [CrossRef]
- Zaki, N.A.F.; Aziz, A.A.; Khairudin, N.; Burham, N. Simulation of Zinc Oxide, Barium Sodium Niobate, and Barium Titanate as Lead-Free Piezoelectric Materials. In Proceedings of the 2021 IEEE Regional Symposium on Micro and Nanoelectronics (RSM), Kuala Lumpur, Malaysia, 2–4 August 2021; pp. 38–41. [Google Scholar] [CrossRef]
- Zhu, L.; Pi, Z.; Zhang, W.; Wu, D. Simulation Analysis of Transient Piezoelectric Properties of PvDF Structure for Energy Conversion Applications. In Proceedings of the 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Suzhou, China, 7–10 April 2013; pp. 1030–1033. [Google Scholar] [CrossRef]
- Petroni, S.; Guido, F.; Torre, B.; Falqui, A.; Todaro, M.T.; Cingolani, R.; De Vittorio, M. Tactile Multisensing on Flexible Aluminum Nitride. Analyst 2012, 137, 5260–5264. [Google Scholar] [CrossRef]
- Sivakumar, N.; Kanagasabapathy, H.; Srikanth, H.P. Analysis Of Perforated Piezoelectric Sandwich Smart Structure Cantilever Beam Using COMSOL. Mater. Today Proc. 2018, 5, 12025–12034. [Google Scholar] [CrossRef]
- Ohbayashi, K. Piezoelectric Properties and Microstructure of (K,Na)NbO3– KTiNbO5 Composite Lead-Free Piezoelectric Ceramic. Piezoelectr. Mater. 2016. [Google Scholar] [CrossRef] [Green Version]
- Erturk, A.; Inman, D.J. A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters. J. Vib. Acoust. 2008, 130, 041002. [Google Scholar] [CrossRef]
- Erturk, A. Electromechanical Modeling of Piezoelectric Energy Harvesters. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2009. [Google Scholar]
- Meschino, M.; Wang, L.; Xu, H.; Moradi-Dastjerdi, R.; Behdinan, K. Low-Frequency Nanocomposite Piezoelectric Energy Harvester with Embedded Zinc Oxide Nanowires. Polym. Compos. 2021, 42, 4573–4585. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, L.; Jiang, Z.; Luo, G.; Yang, P.; Han, X.; Li, X.; Maeda, R. High Accuracy Comsol Simulation Method of Bimorph Cantilever for Piezoelectric Vibration Energy Harvesting. AIP Adv. 2019, 9, 095067. [Google Scholar] [CrossRef]
Property | AlN | BaTiO3 | ZnO | PVDF | PZT-5H | PMN-PT | KNN-NTK |
---|---|---|---|---|---|---|---|
Density (kg/m3) | 3300 | 6020 | 5680 | 1780 | 7500 | 8100 | 4540 |
Eq. Young’s Modulus (GPa) | 410 | 275 | 209 | 3.8 | 127 | 112 | 8.3 |
d31 (pC/m2) | 1.91 | 34.5 | 5.4 | 30 | 274 | 760 | 10.4 |
d33 (pC/m2) | 4.95 | 85.6 | 11.6 | 25 | 593 | 1620 | 24 |
Relative Permittivity | 9 | 1976 | 8.54 | 12.5 | 1704.4 | 1368 | 1600 |
Material | Resonant Frequency | Peak Voltage | Peak Power |
---|---|---|---|
Hz | mV | μW | |
AlN | 34.359 + 0.16921i | 0.4 | 6.00 × 10−8 |
BaTiO3 | 16.222 + 0.073209i | 2 | 1.80 × 10−6 |
ZnO | 16.284 + 0.078430i | 0.5 | 1.50 × 10−7 |
PZT-5H | 10.477 + 0.047132i | 1.6 | 1.10 × 10−6 |
PVDF | 4.9222 + 0.023746i | 0.1 | 5.00 × 10−9 |
PMN-PT | 6.2402 + 0.026850i | 2.3 | 2.60 × 10−6 |
KNN NTK | 2.5657 + 0.012734i | 0.9 | 4.20 × 10−9 |
Material | Displacement | Peak Voltage | Peak Power |
---|---|---|---|
mm | V | μW | |
AlN | 0.053 | 0.75 | 0.28 |
BaTiO3 | 0.043 | 0.60 | 0.18 |
ZnO | 0.18 | 2.60 | 3.60 |
PZT-5H | 0.1 | 30.00 | 430.00 |
PVDF | 0.71 | 10.00 | 50.00 |
PMN-PT | 0.14 | 22.00 | 250.00 |
KNN NTK | 0.07 | 0.05 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, S.R.; Hassani Fard, S.; Sheikh, T.; Behdinan, K. Electromechanical Performance of Biocompatible Piezoelectric Thin-Films. Actuators 2022, 11, 171. https://doi.org/10.3390/act11060171
Mishra SR, Hassani Fard S, Sheikh T, Behdinan K. Electromechanical Performance of Biocompatible Piezoelectric Thin-Films. Actuators. 2022; 11(6):171. https://doi.org/10.3390/act11060171
Chicago/Turabian StyleMishra, S. Ranjan, Soran Hassani Fard, Taha Sheikh, and Kamran Behdinan. 2022. "Electromechanical Performance of Biocompatible Piezoelectric Thin-Films" Actuators 11, no. 6: 171. https://doi.org/10.3390/act11060171
APA StyleMishra, S. R., Hassani Fard, S., Sheikh, T., & Behdinan, K. (2022). Electromechanical Performance of Biocompatible Piezoelectric Thin-Films. Actuators, 11(6), 171. https://doi.org/10.3390/act11060171