Design of a Movable Tensegrity Arm with Springs Modeling an Upper and Lower Arm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Developed Tensegrity Arm
- 1.
- 2.
- The short tensile materials around the elbow (from No. 9 to No. 18 in Figure 8) were made about 15 cm long by a string.
- 3.
- After assembly, the slack in each string was contracted and adjusted so that the entire piece was taut.
- 4.
- The total balance was adjusted through trial and error.
2.2. Measurement of Range of Motion for the Tip of the Lower Arm
2.3. Lifting Ability
2.4. Control by Electric Winches
3. Results
3.1. Lengths of Strings and Springs
3.2. Measurement of Range of Motion for the Tip of the Lower Arm
3.2.1. Upward Range of Motion
3.2.2. Downward Range of Motion
3.3. Lifting Ability
3.4. Control by Electric Winches
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Pfeifer, R.; Scheier, C. Understanding Intelligence; MIT Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Clark, A. Being There—Putting Brain, Body, and World Together Again; MIT Press: Cambridge, MA, USA, 1996. [Google Scholar]
- Ogai, Y.; Ikegami, T. Microslip as a Simulated Artificial Mind. Adapt. Behav. 2008, 16, 129–147. [Google Scholar] [CrossRef]
- Froese, T.; Suzuki, K.; Ogai, Y.; Ikegami, T. Using Human–Computer Interfaces to Investigate ’Mind-As-It-Could-Be’ from the First-Person Perspective. Cogn. Comput. 2012, 4, 365–382. [Google Scholar] [CrossRef]
- Skelton, E.R.; de Oliveira, M.C. Tensegrity Systems; Springer: New York, NY, USA, 2009. [Google Scholar]
- Fuller, R.B. Tensile-Integrity Structures. U.S. Patent 3,063,521, 13 November 1962. [Google Scholar]
- Heartney, E.; Snelson, K. Kenneth Snelson: Forces Made Visible; Hudson Hills Press: Manchester, CA, USA, 2009. [Google Scholar]
- Rayner, C. Kurilpa Bridge: Brisbane’s New Bridge; Images Publishing: Melbourne, Australia, 2012. [Google Scholar]
- Bansod, D.Y.; Nandanwar, D.; Bursa, J. Overview of tensegrity—I: Basic structures. Eng. Mech. 2014, 21, 355–367. [Google Scholar]
- Skelton, E.R.; Adhikari, R.; Pinaud, J.; Waileung, C.; Helton, W.J. An introduction to the mechanics of tensegrity structures. In Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, USA, 4–7 December 2001; Volume 5, pp. 4254–4259. [Google Scholar] [CrossRef]
- Burkhardt, R.W. A Practical Guide to Tensegrity Design, 2nd ed. Available online: https://bobwb.tripod.com/tenseg/book/cover.html (accessed on 19 November 2022).
- Kurilpa Bridge—Wikipedia. Available online: https://en.wikipedia.org/wiki/Kurilpa_Bridge (accessed on 8 December 2022).
- Shah, S.D.; Booth, W.J.; Robert L., B.; Wang, K.; Vespignani, M.; Bekris, K.; Kramer-Bottiglio, R. Tensegrity Robotics. Soft Robot. 2022, 9, 639–656. [Google Scholar] [CrossRef] [PubMed]
- SunSpiral, V.; Agogino, A.; Atkinson, D. Super Ball Bot—Structures for Planetary Landing and Exploration; NIAC Phase 2 Final Report; 2015. Available online: https://www.nasa.gov/sites/default/files/atoms/files/niac_sunspiral_superballbot_phaseii_finalreport_tagged.pdf (accessed on 26 December 2022).
- Zhang, M.; Geng, X.; Bruce, J.; Caluwaerts, K.; Vespignani, M.; SunSpiral, V.; Abbeel, P.; Levine, S. Deep reinforcement learning for tensegrity robot locomotion. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 634–641. [Google Scholar] [CrossRef] [Green Version]
- Rieffel, A.J.; Valero-Cuevas, J.F.; Lipson, H. Morphological communication: Exploiting coupled dynamics in a complex mechanical structure to achieve locomotion. J. R. Soc. Interface 2010, 7, 613–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fadeyev, D.; Zhakatayev, A.; Kuzdeuov, A.; Varol, A.H. Generalized Dynamics of Stacked Tensegrity Manipulators. IEEE Access 2019, 7, 63472–63484. [Google Scholar] [CrossRef]
- Ikemoto, S.; Tsukamoto, K.; Yoshimitsu, Y. Development of a Modular Tensegrity Robot Arm Capable of Continuous Bending. Front. Robot. AI 2021, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Geometry of Anatomy, Intension Designs. Available online: http://intensiondesigns.ca/geometry-of-anatomy/ (accessed on 30 September 2022).
- Ingber, D.E. The architecture of life. Sci. Am. 1998, 278, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Scarr, G. Biotensegrity: The Structural Basis of Life, 2nd ed.; Handspring Publishing Limited: Edinburgh, Scotland, 2018. [Google Scholar]
- Levin, M.S.; Martin, D. Biotensegrity—The Mechanics of Fascia. In Fascia: The Tensional Network of the Human Body; Schleip, R., Findley, W.T., Chaitow, L., Huijing, A.P., Eds.; Churchill Livingstone: London, UK, 2012; pp. 137–142. [Google Scholar] [CrossRef]
- Lessard, S.; Castro, D.; Asper, W.; Chopra, D.S.; Baltaxe-Admony, B.L.; Teodorescu, M.; SunSpiral, V.; Agogino, A. A bio-inspired tensegrity manipulator with multi-DOF, structurally compliant joints. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 5515–5520. [Google Scholar] [CrossRef] [Green Version]
- Tensegrity Research Group, School of Computing at Queen’s University, Arm Images. Available online: https://flux.cs.queensu.ca/tensegrity/biotensegrity/images/arm_images/ (accessed on 30 September 2022).
- Iida, F. Cheap Design and Behavioral Diversity for Autonomous Adaptive Robots. Ph.D. Thesis, The University of Zurich, Zurich, Switzerland, 2006. [Google Scholar]
- Pitti, A.; Lungarella, M.; Kuniyoshi, Y. Exploration of Natural Dynamics through Resonance and Chaos. In Proceedings of the International Conference on Intelligent Autonomous Systems (IAS-9), Singapore, 22–25 June 2006; pp. 558–565. [Google Scholar] [CrossRef]
- Pitti, A.; Niiyama, R.; Kuniyoshi, Y. Creating and modulating rhythms by controlling the physics of the body. Auton. Robots 2010, 28, 317–329. [Google Scholar] [CrossRef] [Green Version]
- Melnyk, A.; Pitti, A. Synergistic control of a multi-segments vertebral column robot based on tensegrity for postural balance. Adv. Robot. 2018, 32, 850–864. [Google Scholar] [CrossRef] [Green Version]
- Caluwaerts, K.; D’Haene, M.; Verstraeten, D.; Schrauwen, B. Locomotion Without a Brain: Physical Reservoir Computing in Tensegrity Structures. Artif. Life 2013, 19, 35–66. [Google Scholar] [CrossRef] [PubMed]
Position | Material | Size | Quantity |
---|---|---|---|
R1 | Round wooden stick | 1.2 cm, length 40 cm | 1 |
R2 | Round wooden stick | 1.2 cm, length 30 cm | 2 |
R3 | Round wooden stick | 1.2 cm, length 10 cm | 2 |
Material | Detail | Quantity |
---|---|---|
Polyester string | 0.15 cm | 24 |
Pan head screw | M4, pitch 0.07 cm, length 4 cm | 10 |
Hexagonal nut | M4, pitch 0.07 cm, thickness 0.5 cm | 10 |
Flat washer | M4, thickness 0.1 cm | 20 |
Compression spring | natural length 5 cm, spring constant 0.985 | 16 |
Wire | 0.08 cm | 5 |
Tensile Member No. | Total Length (cm) | Two Springs Length (cm) | One String Length (cm) |
---|---|---|---|
1 | 29.2 | 13.4 | 7.90 |
2 | 27.5 | 13.5 | 7.00 |
3 | 31.2 | 14.1 | 8.55 |
4 | 30.7 | 13.7 | 8.50 |
5 | 29.0 | 14.3 | 7.35 |
6 | 29.8 | 14.2 | 7.80 |
7 | 26.9 | 15.5 | 5.70 |
8 | 26.7 | 15.1 | 5.80 |
Tensile Member No. | Length (cm) |
---|---|
9 | 15.4 |
10 | 15.5 |
11 | 8.8 |
12 | 8.8 |
13 | 8.9 |
14 | 8.8 |
15 | 11.0 |
16 | 11.6 |
17 | 6.5 |
18 | 7.2 |
19 | 6.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawahara, K.; Shin, D.; Ogai, Y. Design of a Movable Tensegrity Arm with Springs Modeling an Upper and Lower Arm. Actuators 2023, 12, 18. https://doi.org/10.3390/act12010018
Kawahara K, Shin D, Ogai Y. Design of a Movable Tensegrity Arm with Springs Modeling an Upper and Lower Arm. Actuators. 2023; 12(1):18. https://doi.org/10.3390/act12010018
Chicago/Turabian StyleKawahara, Kihiro, Duk Shin, and Yuta Ogai. 2023. "Design of a Movable Tensegrity Arm with Springs Modeling an Upper and Lower Arm" Actuators 12, no. 1: 18. https://doi.org/10.3390/act12010018
APA StyleKawahara, K., Shin, D., & Ogai, Y. (2023). Design of a Movable Tensegrity Arm with Springs Modeling an Upper and Lower Arm. Actuators, 12(1), 18. https://doi.org/10.3390/act12010018