Design and Experiment of a Multi-DOF Shaker Based on Rotationally Symmetric Stewart Platforms with an Insensitive Condition Number
Abstract
:1. Introduction
- The ICN condition is provided, improving the insensitivity of the CN and decreasing the error amplification of the RSSPs when moves in larger space;
- The analytical form of the CN is given by involving the ICN condition, which makes it possible to minimizing the CN by an analytical method and improves the design efficiency and effectiveness;
- A multi-DOF shaker is developed, and the experimental results indicate that the multi-DOF shaker designed using the method is effective for high-accuracy vibration waveform reproduction.
2. Mathematical Foundation
2.1. Problem Description
- MP radius: ;
- BP radius: ;
- Upper-joint distribution angle: ;
- Lower-joint distribution angle: ;
- Architecture height: .
2.2. Transfer Coefficients
2.2.1. Decoupling Conditions
2.2.2. Simplification
3. ICN Condition
3.1. Eigenvalues of the Transfer Coefficient Matrix
3.2. ICN Condition
3.3. Area of ICN (AICN)
4. Design and Numerical Verification
4.1. RSSP for Comparison
4.2. Design Example of ICN-RSSP
4.3. Numerical Verification
5. Development and Experiment of the Multi-DOF Shaker
5.1. Development of the Multi-DOF Shaker
5.2. Experiment Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DOF | Degree-of-freedom |
CN | Condition number |
ICN | Insensitive CN |
AICN | Area of the ICN |
SSP | Standard Stewart platform |
GSP | Generalized Stewart platform |
RSSP | Rotationally symmetric Stewart platform |
KI-RSSP | RSSP with kinematic isotropy |
ICN-RSSP | RSSP with an ICN |
MP | Mobile plate |
BP | Base plate |
ADC | Adaptive disturbance cancellation |
References
- Hatamleh, K.S.; Ma, O.; Flores-Abad, A.; Xie, P. Development of a Special Inertial Measurement Unit for UAV Applications. J. Dyn. Syst. Meas. Control. 2013, 135, 011003. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, L.; Guan, N.; Zhou, Y.; Zhang, D.; Shu, X.; Liu, C. Angle Error from Vibrating in Tri-Axial Interferometric Fiber Optic Gyroscopes and the Evaluation with Dual-Laser Doppler Vibrometers. Opt. Fiber Technol. 2020, 54, 102071. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Y.; Chen, J.; Nian, L.; Zhang, H. Research on Six Degrees of Freedom Compound Control Technology for Improving Photoelectric Pod Pointing Accuracy. Opt. Rev. 2017, 24, 579–589. [Google Scholar] [CrossRef]
- Capriglione, D.; Carratù, M.; Catelani, M.; Ciani, L.; Patrizi, G.; Singuaroli, R.; Pietrosanto, A.; Sommella, P. Development of a Test Plan and a Testbed for Performance Analysis of MEMS-Based IMUs under Vibration Conditions. Meas. J. Int. Meas. Confed. 2020, 158, 107734. [Google Scholar] [CrossRef]
- Tao, Y.; Rui, X.; Yang, F.; Zhang, J. Study on the Dynamics of IMU Isolation System Based on Transfer Matrix Method for Multibody Systems. In Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Quebec City, QC, Canada, 26–29 August 2018; Volume 6, pp. 1–8. [Google Scholar] [CrossRef]
- Ma, L.; Jiang, X.; Dong, L.; Cao, J.; Jin, Y.; Shi, G. Vibration Effects Rectification of IMU Attitude Based on Gradient Descent Algorithm. In Proceedings of the 2017 IEEE International Conference on Real-time Computing and Robotics (RCAR), Okinawa, Japan, 14–18 July 2017; Volume 2017, pp. 167–171. [Google Scholar]
- Zaiss, C.; Spiewak, S. Vibration Rectification and Thermal Disturbances in Ultra Precision Inertial Sensors. In Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, Denver, CO, USA, 11–17 November 2011; Volume 11, pp. 531–538. [Google Scholar] [CrossRef]
- de Pasquale, G.; Somà, A. Reliability Testing Procedure for MEMS IMUs Applied to Vibrating Environments. Sensors 2010, 10, 456–474. [Google Scholar] [CrossRef]
- Capriglione, D.; Carratu, M.; Catelani, M.; Ciani, L.; Patrizi, G.; Pietrosanto, A.; Sommella, P. Experimental Analysis of Filtering Algorithms for IMU-Based Applications under Vibrations. IEEE Trans. Instrum. Meas. 2021, 70, 3507410. [Google Scholar] [CrossRef]
- Gregory, D.; Bitsie, F.; Smallwood, D.O. Comparison of the Response of a Simple Structure to Single Axis and Multiple Axis Random Vibration Inputs; Sandia National Laboratory: Albuquerque, NM, USA, 2008; p. 87185. [Google Scholar]
- He, G.; Chen, H.; Sun, J. Dynamic Responses of Structures under Multiaxial and Uniaxial Random Excitations. Zhendong Yu Chongji/J. Vib. Shock 2017, 36, 194–201. [Google Scholar] [CrossRef]
- Ernst, M.; Habtour, E.; Dasgupta, A.; Pohland, M.; Robeson, M.; Paulus, M. Comparison of Electronic Component Durability under Uniaxial and Multiaxial Random Vibrations. J. Electron. Packag. Trans. 2015, 137, 011009. [Google Scholar] [CrossRef]
- Chen, M.; Wilson, D. The New Triaxial Shock and Vibration Test System at Hill Air Force Base. J. IEST 1998, 41, 27–32. [Google Scholar] [CrossRef]
- Stewart, D. A Platform with Six Degrees of Freedom. Proc. Inst. Mech. Eng. 1965, 180, 371–386. [Google Scholar] [CrossRef]
- Furqan, M.; Suhaib, M.; Ahmad, N. Studies on Stewart Platform Manipulator: A Review. J. Mech. Sci. Technol. 2017, 31, 4459–4470. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, J.; Yu, D.; Hong, J.; Liu, Z. A Novel Approach of Input Tolerance Design for Parallel Mechanisms Using the Level Set Method. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2020, 234, 371–381. [Google Scholar] [CrossRef]
- Li, F.; Zeng, Q.; Ehmann, K.F.; Cao, J.; Li, T. A Calibration Method for Overconstrained Spatial Translational Parallel Manipulators. Robot. Comput. Integr. Manuf. 2019, 57, 241–254. [Google Scholar] [CrossRef]
- Karimi, D.; Nategh, M.J. Contour Maps for Developing Optimal Toolpath and Workpiece Setup in Hexapod Machine Tools by Considering the Kinematics Nonlinearity. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2016, 230, 1572–1583. [Google Scholar] [CrossRef]
- Merlet, J.P. Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots. J. Mech. Des. 2006, 128, 199–206. [Google Scholar] [CrossRef]
- Pulloquinga, J.L.; Mata, V.; Valera, Á.; Zamora-Ortiz, P.; Díaz-Rodríguez, M.; Zambrano, I. Experimental Analysis of Type II Singularities and Assembly Change Points in a 3UPS+RPU Parallel Robot. Mech. Mach. Theory 2021, 158, 104242. [Google Scholar] [CrossRef]
- Pittens, K.H.; Podhorodeski, R.P. A Family of Stewart Platforms with Optimal Dexterity. J. Robot. Syst. 1993, 10, 463–479. [Google Scholar] [CrossRef]
- Mehta, V.K.; Dasgupta, B. A General Approach for Optimal Kinematic Design of 6-DOF Parallel Manipulators. Sadhana Acad. Proc. Eng. Sci. 2011, 36, 977–994. [Google Scholar] [CrossRef]
- Peng, L.; Tong, Z.; Li, C.; Jiang, H.; He, J. Optimal Design of an Orthogonal Generalized Parallel Manipulator Based on Swarm Particle Optimization Algorithm. In Proceedings of the Intelligent Robotics and Applications: 10th International Conference, ICIRA 2017, Wuhan, China, 16–18 August 2017; pp. 334–345. [Google Scholar] [CrossRef]
- McInroy, J.E.; Obrien, J.F.; Allais, A.A. Designing Micromanipulation Systems for Decoupled Dynamics and Control. IEEE/ASME Trans. Mechatron. 2015, 20, 553–563. [Google Scholar] [CrossRef]
- Klein, C.A.; Miklos, T.A. Spatial Robotic Isotropy. Int. J. Rob. Res. 1991, 10, 426–437. [Google Scholar] [CrossRef]
- Yi, Y.; McInroy, J.E.; Jafari, F. Generating Classes of Orthogonal Gough-Stewart Platforms. In Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 26 April–1 May 2004; Volume 2004, pp. 4969–4974. [Google Scholar] [CrossRef]
- Jiang, H.Z.; Tong, Z.Z.; He, J.F. Dynamic Isotropic Design of a Class of Gough-Stewart Parallel Manipulators Lying on a Circular Hyperboloid of One Sheet. Mech. Mach. Theory 2011, 46, 358–374. [Google Scholar] [CrossRef]
- Ben-horin, R.; Shoham, M.; Dayan, J. On the Isotropic Configurations of Six Degrees-of-Freedom Parallel Manipulators. IFAC Proc. Vol. 1997, 30, 235–238. [Google Scholar] [CrossRef]
- Li, W.; Angeles, J. The Design for Isotropy of a Class of Six-Dof Parallel-Kinematics Machines. Mech. Mach. Theory 2018, 126, 34–48. [Google Scholar] [CrossRef]
- Abdel-Malek, K. Criterion for the Locality of a Manipulator Arm with Respect to an Operating Point. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 1996, 210, 385–394. [Google Scholar] [CrossRef]
- Legnani, G.; Tosi, D.; Fassi, I.; Giberti, H.; Cinquemani, S. The “Point of Isotropy” and Other Properties of Serial and Parallel Manipulators. Mech. Mach. Theory 2010, 45, 1407–1423. [Google Scholar] [CrossRef]
- Zlatkin, Y.M.; Kalnoguz, A.N.; Voronchenko, V.G.; Lykholit, N.I.; Vakhlakov, A.Y.; Sladky, A.M.; Slyusar, V.M. Laser SINS for Cyclone-4 Launch Vehicle. Gyroscopy Navig. 2013, 4, 156–163. [Google Scholar] [CrossRef]
- Wang, L.; Wu, W.; Pan, X. Dynamic Error Compensation and Parameter Optimization for RLG SINS in Vibration Environments. 2017 24th Saint Petersbg. In Proceedings of the 2017 24th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS), St. Petersburg, Russia, 29–31 May 2017. [Google Scholar] [CrossRef]
- Salisbury, J.K.; Craig, J.J. Articulated Hands: Force Control and Kinematic Issues. Int. J. Rob. Res. 1982, 1, 4–17. [Google Scholar] [CrossRef]
- McInroy, J.E.; Jafari, F. Finding Symmetric Orthogonal Gough-Stewart Platforms. IEEE Trans. Robot. 2006, 22, 880–889. [Google Scholar] [CrossRef]
- Yang, C.; Qu, Z.; Han, J. Decoupled-Space Control and Experimental Evaluation of Spatial Electrohydraulic Robotic Manipulators Using Singular Value Decomposition Algorithms. IEEE Trans. Ind. Electron. 2014, 61, 3427–3438. [Google Scholar] [CrossRef]
- Jiang, H.Z.; He, J.F.; Tong, Z.Z.; Wang, W. Dynamic Isotropic Design for Modified Gough-Stewart Platforms Lying on a Pair of Circular Hyperboloids. Mech. Mach. Theory 2011, 46, 1301–1315. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Ghosal, A. An Algebraic Formulation of Kinematic Isotropy and Design of Isotropic 6-6 Stewart Platform Manipulators. Mech. Mach. Theory 2008, 43, 591–616. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhou, Z.; Huang, H. A Precise Identification and Control Method for the 6D Micro-Vibration Exciting System. J. Vib. Eng. Technol. 2021, 9, 1511–1531. [Google Scholar] [CrossRef]
- Tong, Z.; Gosselin, C.; Jiang, H. Dynamic Decoupling Analysis and Experiment Based on a Class of Modified Gough-Stewart Parallel Manipulators with Line Orthogonality. Mech. Mach. Theory 2020, 143, 103636. [Google Scholar] [CrossRef]
- Guo, J.; Wang, D.; Fan, R.; Chen, W.; Zhao, G. Kinematic Calibration and Error Compensation of a Hexaglide Parallel Manipulator. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 215–225. [Google Scholar] [CrossRef]
- Yun, H.; Liu, L.; Li, Q.; Li, W.; Tang, L. Development of an Isotropic Stewart Platform for Telescope Secondary Mirror. Mech. Syst. Signal Process. 2019, 127, 328–344. [Google Scholar] [CrossRef]
Items | Values |
---|---|
MP radius | 250 mm, 335 mm |
BP radius | 135.410 mm, 981.950 mm |
Upper-joint distribution angle | 15°, −15° |
Lower-joint distribution angle | −82.779°, 2.789° |
Architecture height | 300 mm |
Items | Values |
---|---|
MP radius | 288.675 mm, 326.352 mm |
BP radius | 268.740 mm, 517.152 mm |
Upper-joint distribution angle | 30°, −30° |
Lower-joint distribution angle | 81.524°, −51.091° |
Architecture height | 300 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, C.; Li, W.; Huang, H.; Zheng, Y. Design and Experiment of a Multi-DOF Shaker Based on Rotationally Symmetric Stewart Platforms with an Insensitive Condition Number. Actuators 2023, 12, 368. https://doi.org/10.3390/act12100368
Liang C, Li W, Huang H, Zheng Y. Design and Experiment of a Multi-DOF Shaker Based on Rotationally Symmetric Stewart Platforms with an Insensitive Condition Number. Actuators. 2023; 12(10):368. https://doi.org/10.3390/act12100368
Chicago/Turabian StyleLiang, Chao, Weipeng Li, Hai Huang, and Yan Zheng. 2023. "Design and Experiment of a Multi-DOF Shaker Based on Rotationally Symmetric Stewart Platforms with an Insensitive Condition Number" Actuators 12, no. 10: 368. https://doi.org/10.3390/act12100368
APA StyleLiang, C., Li, W., Huang, H., & Zheng, Y. (2023). Design and Experiment of a Multi-DOF Shaker Based on Rotationally Symmetric Stewart Platforms with an Insensitive Condition Number. Actuators, 12(10), 368. https://doi.org/10.3390/act12100368