Optimal Design and Control Performance Evaluation of a Magnetorheological Fluid Brake Featuring a T-Shape Grooved Disc
Abstract
:1. Introduction
2. Development of a Proposed MR Brake
2.1. Structure Configuration of Proposed MR Brake
2.2. Mathematical Modeling of Torque for T-SGDMRB
2.3. Finite Element Simulation and Analysis of T-SGDMRB
2.4. Design Optimization of the T-SGDMRFB
3. Control Performance Evaluation of T-SGDMRB
3.1. System Identification of Brake Actuation and Wheel Slip Control
3.2. Road Characteristic
3.3. MR Braking Torque with Dynamic Constraints
3.4. Motorcycle Wheel Dynamic Model
3.5. Controller Modeling
3.6. Stopping Distance and Stopping Time
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sohn, J.W.; Jeon, J.; Nguyen, Q.H.; Choi, S.B. Optimal design of disc-type magneto-rheological brake for mid-sized motorcycle: Experimental evaluation. Smart Mater. Struct. 2015, 24, 085009. [Google Scholar] [CrossRef]
- Wang, N.; Wang, S.; Peng, Z.; Song, W.; Xue, X.; Choi, S.B. Braking control performances of a disk-type magneto-rheological brake via hardware-in-the-loop simulation. J. Intell. Mater. Syst. Struct. 2018, 29, 3937–3948. [Google Scholar] [CrossRef]
- Yalcintas, M.; Dai, H. Magnetorheological and electrorheological materials in adaptive structures and their performance comparison. Smart Mater. Struct. 1999, 8, 560–573. [Google Scholar] [CrossRef]
- Sohn, J.W.; Oh, J.-S.; Choi, S.-B. Design of MR brake featuring tapered inner magnetic core. Act. Passiv. Smart Struct. Integr. Syst. 2015, 9431, 943133. [Google Scholar] [CrossRef]
- Hu, G.; Wu, L.; Li, L. Torque characteristics analysis of a magnetorheological brake with double brake disc. Actuators 2021, 10, 23. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Choi, S.B. Selection of magnetorheological brake types via optimal design considering maximum torque and constrained volume. Smart Mater. Struct. 2012, 21, 015012. [Google Scholar] [CrossRef]
- Oh, J.S.; Sohn, J.W.; Choi, S.B. Applications of Magnetorheological Fluid Actuator to Multi-DOF Systems: State-of-the-Art from 2015 to 2021. Actuators 2022, 11, 44. [Google Scholar] [CrossRef]
- Qin, H.; Song, A.; Zeng, X.; Hu, S. Design and evaluation of a small-scale multi-drum magnetorheological brake. J. Intell. Mater. Syst. Struct. 2018, 29, 2607–2618. [Google Scholar] [CrossRef]
- Chen, S.; Li, R.; Du, P.; Zheng, H.; Li, D. Parametric modeling of a magnetorheological engine mount based on a modified polynomial bingham model. Front. Mater. 2019, 6, 68. [Google Scholar] [CrossRef]
- Pisetskiy, S.; Kermani, M. High-performance magneto-rheological clutches for direct-drive actuation: Design and development. J. Intell. Mater. Syst. Struct. 2021, 32, 2582–2600. [Google Scholar] [CrossRef]
- Munyaneza, O.; Turabimana, P.; Oh, J.S.; Choi, S.B.; Sohn, J.W. Design and Analysis of a Hybrid Annular Radial Magnetorheological Damper for Semi-Active In-Wheel Motor Suspension. Sensors 2022, 22, 3689. [Google Scholar] [CrossRef]
- Ma, L.; Yu, L.; Song, J.; Xuan, W.; Liu, X. Design, Testing and Analysis of a Novel Multiple-Disc Magnetorheological Braking Applied in Vehicles. In SAE Technical Paper 2015-01-0724; SAE International: Warrendale, PA, USA, 2015. [Google Scholar] [CrossRef]
- Jinaga, R.; Thimmaiah, J.; Kolekar, S.; Choi, S.B. Design, fabrication and testing of a magnetorheologic fluid braking system for machine tool application. SN Appl. Sci. 2019, 1, 328. [Google Scholar] [CrossRef] [Green Version]
- Attia, E.M.; Elsodany, N.M.; El-Gamal, H.A.; Elgohary, M.A. Theoretical and experimental study of magneto-rheological fluid disc brake. Alexandria Eng. J. 2017, 56, 189–200. [Google Scholar] [CrossRef]
- Nya’Ubit, I.R.; Priyandoko, G.; Imaduddin, F.; Adiputra, D.; Ubaidillah, U. Characterization of T-shaped magneto-rheological brake. J. Adv. Res. Mater. Sci. 2020, 71, 1–11. [Google Scholar] [CrossRef]
- Le-Duc, T.; Ho-Huu, V.; Nguyen-Thoi, T.; Nguyen-Quoc, H. A new design approach based on differential evolution algorithm for geometric optimization of magnetorheological brakes. Smart Mater. Struct. 2016, 25, 125020. [Google Scholar] [CrossRef]
- Shamieh, H.; Sedaghati, R. Multi-objective design optimization and control of magnetorheological fluid brakes for automotive applications. Smart Mater. Struct. 2017, 26, 125012. [Google Scholar] [CrossRef]
- Nguyen, Q.-H.; Jeon, J.; Choi, S.-B. Optimal design of a disc-type MR brake for middle-sized motorcycle. Act. Passiv. Smart Struct. Integr. Syst. 2011, 7977, 797717. [Google Scholar] [CrossRef]
- Hung, N.Q.; Bok, C.S. Optimal design of a T-shaped drum-type brake for motorcycle utilizing magnetorheological fluid. Mech. Based Des. Struct. Mach. 2012, 40, 153–162. [Google Scholar] [CrossRef]
- Le, D.T.; Nguyen, N.D.; Le, D.T.; Nguyen, N.T.; Pham, V.V.; Nguyen, Q.H. Development of Magnetorheological Brake with Tooth-Shaped Disc for Small Size Motorcycle. Appl. Mech. Mater. 2019, 889, 508–517. [Google Scholar] [CrossRef]
- Wang, Z.; Choi, S.B. A fuzzy sliding mode control of anti-lock system featured by magnetorheological brakes: Performance evaluation via the hardware-in-the-loop simulation. J. Intell. Mater. Syst. Struct. 2021, 32, 1580–1590. [Google Scholar] [CrossRef]
- Satria, R.R.; Ubaidillah, U.; Imaduddin, F. Analytical approach of a pure flow mode serpentine path rotary magnetorheological damper. Actuators 2020, 9, 56. [Google Scholar] [CrossRef]
- Acharya, S.; Tak, R.S.S.; Singh, S.B.; Kumar, H. Characterization of magnetorheological brake utilizing synthesized and commercial fluids. Mater. Today Proc. 2019, 46, 9419–9424. [Google Scholar] [CrossRef]
- Kumbhar, B.K.; Patil, S.R.; Sawant, S.M. Synthesis and characterization of magneto-rheological (MR) fluids for MR brake application. Eng. Sci. Technol. Int. J. 2015, 18, 432–438. [Google Scholar] [CrossRef] [Green Version]
- Quoc, N.V.; Tuan, L.D.; Hiep, L.D.; Quoc, H.N.; Choi, S.B. Material characterization of MR fluid on performance of MRF based brake. Front. Mater. 2019, 6, 125. [Google Scholar] [CrossRef]
- Dai, L.; Lu, H.; Hua, D.; Liu, X.; Wang, L.; Li, Q. Research on Control Strategy of a Magnetorheological Fluid Brake Based on an Enhanced Gray Wolf Optimization Algorithm. Appl. Sci. 2022, 12, 12617. [Google Scholar] [CrossRef]
- Wu, J.; Hu, H.; Li, Q.; Wang, S.; Liang, J. Simulation and experimental investigation of a multi-pole multi-layer magnetorheological brake with superimposed magnetic fields. Mechatronics 2020, 65, 102314. [Google Scholar] [CrossRef]
- Lutanto, A.; Ubaidillah, U.; Imaduddin, F.; Choi, S. Development of Tiny Vane-Type Magnetorheological Brake Considering Quality Function Deployment. Micromachines 2023, 14, 26. [Google Scholar] [CrossRef] [PubMed]
- Konak, A.; Coit, D.W.; Smith, A.E. Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 2006, 91, 992–1007. [Google Scholar] [CrossRef]
- Ren, J.; Zhou, F.; Wang, N.; Hu, G. Multi-Objective Optimization Design and Dynamic Performance Analysis of an Enhanced Radial Magnetorheological Valve with Both Annular and Radial Flow Paths. Actuators 2022, 11, 120. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Choi, S.B. Optimal design of a novel hybrid MR brake for motorcycles considering axial and radial magnetic flux. Smart Mater. Struct. 2012, 21, 055003. [Google Scholar] [CrossRef]
- Ultimate, T.; Machine, R. Rider’s Manual R 1200 RT. Order A J. Theory Ordered Sets Its Appl 2016, 6, 229. [Google Scholar]
- Skrucany, T.; Vrabel, J.; Kazimir, P. The influence of the cargo weight and its position on the braking characteristics of light commercial vehicles. Open Eng. 2020, 10, 154–165. [Google Scholar] [CrossRef] [Green Version]
- Oroumiyeh, F.; Zhu, Y. Brake and tire particles measured from on-road vehicles: Effects of vehicle mass and braking intensity. Atmos. Environ. X 2021, 12, 100121. [Google Scholar] [CrossRef]
- Ivanov, V.; Mikhaltsevich, M.; Shyrokau, B. Simulation of Brake Control for Motorcycles. 2004-01-2061; SAE: Warrendale, PA, USA, 2004. [Google Scholar] [CrossRef]
- Falcgo, L.; Park, E.J.; Suleman, A. Design and Modelling of a Magnetorheological Brake System. In Proceedings of the 7th Cansmart Meeting International Workshop on Smart Materials and Structures, Montreal, QC, Canada, 21–22 October 2004. [Google Scholar]
- Versaci, M.; Cutrupi, A.; Palumbo, A. A Magneto-Thermo-Static Study of a Magneto-Rheological Fluid Damper: A Finite Element Analysis. IEEE Trans. Magn. 2021, 57, 4600210. [Google Scholar] [CrossRef]
- Lord Corporation. MRF-132DG Magneto-Rheological Fluid. Lord Prod. Sel. Guid. 2011, 54, 11. [Google Scholar]
- Nguyen, H.Q.; Le, T.D.; Nguyen, D.N.; Le, T.D.; Lang, T.V.; Ngo, T.V. Development of 3-DOF force feedback system using spherical arm mechanism and mr brakes. Int. J. Mech. Eng. Robot. Res. 2020, 9, 170–176. [Google Scholar] [CrossRef]
- Meléndez-Useros, M.; Jiménez-Salas, M.; Viadero-Monasterio, F.; Boada, B.L. Tire Slip H∞ Control for Optimal Braking Depending on Road Condition. Sensors 2023, 23, 1417. [Google Scholar] [CrossRef]
- Turabimana, P.; Sosthene, K.; Musabyimana, J. Modeling and Simulation of Anti-Skid Control System of Railway Vehicle in Curved Track. Eur. Mech. Sci. 2020, 4, 158–165. [Google Scholar] [CrossRef]
- Extended Kalman Filter (EKF). Encyclopedia of Ocean Engineering; Springer: Singapore, 2022; p. 517. [Google Scholar] [CrossRef]
- Dardanelli, A.; Alli, G.; Savaresi, S.M. Modeling and control of an electro-mechanical brake-by-wire actuator for a sport motorbike. IFAC Proc. Vol. 2010, 43, 524–531. [Google Scholar] [CrossRef]
- Manan, M.M.A.; Várhelyi, A.; Çelik, A.K.; Hashim, H.H. Road characteristics and environment factors associated with motorcycle fatal crashes in Malaysia. IATSS Res. 2018, 42, 207–220. [Google Scholar] [CrossRef]
- Besselink, I.J.M.; Schmeitz, A.J.C.; Pacejka, H.B. An improved Magic Formula/Swift tyre model that can handle inflation pressure changes. Veh. Syst. Dyn. 2010, 48 (Suppl. S1), 337–352. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Li, H.Q.; Lin, F.; Wang, J.; Ji, X.W. Estimation of Road Friction Coefficient in Different Road Conditions Based on Vehicle Braking Dynamics. Chin. J. Mech. Eng. 2017, 30, 982–990. [Google Scholar] [CrossRef]
- Cabrera, J.A.; Castillo, J.J.; Pérez, J.; Velasco, J.M.; Guerra, A.J.; Hernández, P. A procedure for determining tire-road friction characteristics using a modification of the magic formula based on experimental results. Sensors 2018, 18, 896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiao, Y.; Nguyen, Q.A. Structural analysis and validation of the multi-pole magnetorheological brake for motorcycles. Procedia Eng. 2014, 76, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Grewal, M.S.; Andrews, A.P. Kalman Filtering: Theory and Practice Using MATLAB®, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Shiao, Y.; Nguyen, Q.A.; Lin, J.W. A study of novel hybrid antilock braking system employing magnetorheological brake. Adv. Mech. Eng. 2014, 6, 617584. [Google Scholar] [CrossRef]
- Guiggiani, M. The Science of Vehicle Dynamics: Handling, Braking, and Ride of Road and Race Cars; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–550. [Google Scholar] [CrossRef]
Component | Material | |
---|---|---|
Bobbin | Aluminum | |
Coil | Copper | |
Disc | Low carbon steel 1010 | |
Disc hub | Stainless steel 316 | |
MR fluid | MRF-132 DG | |
Stator | Low carbon steel 1008 |
Input Parameter | Value |
---|---|
Wheel base () | 1507 (mm) |
Horizontal position from the center of gravity to the front wheel () | 878.9 (mm) |
Horizontal position from the center of gravity to the rear wheel () | 628.1 (mm) |
Height to the center of gravity () | 380 (mm) |
Wheel radius () | 267 (mm) |
MR Brake Component | Geometric Parameter | Dimension (mm) Initial Optimal | MR Brake Component | Geometric Parameter | Dimension (mm) Initial Optimal | ||
---|---|---|---|---|---|---|---|
Disc hub | Inner radius () | 37 | 37 | Stator | Fillet length() | 2 | 2 |
Thickness () | 4 | 4 | Inner radius () | 83 | 108 | ||
Outer radius () | 47 | 47 | Outer radius () | 136.5 | 133 | ||
Outer radius () | 69 | 92 | Thickness () | 41 | 36.6 | ||
Disc flange | Inner radius () | 90 | 113.2 | Bobbin | Length () | 4.5 | 5.5 |
Outer radius () | 100 | 120.8 | Width () | 2 | 3 | ||
Bottom width2() | 10 | 12 | Length () | 5.5 | 5 | ||
Upper width 2() | 12 | 12.2 | Width () | 30 | 30.6 | ||
Thickness () | 6 | 5 | |||||
Disc leg | Inner radius () | 69 | 92 | Coil | Length () | 3 | 4.5 |
Outer radius () | 90 | 113.2 | Width () | 24 | 27.5 | ||
Thickness () | 6 | 5 | Number of turns | 175 | 300 | ||
Groove | Radius () | 96 | 116 | MR fluid gap | Annular gaps () | 1.5 | 0.8 |
Thickness () | 5 | 4.6 | Radial gaps () | 1 | 0.8 |
Input Parameter | Value |
---|---|
Permissible gross weight () | 495 (kg) |
Wheel radius () | 0.267 (m) |
Motorcycle front cross-sectional area () | ) |
Air density () | ) |
Drag coefficient () | 0.75 |
Mass of the wheel () | 6.08 kg |
Initial braking speed () | ) |
Type of Road | ||||
---|---|---|---|---|
Wet asphalt | 0.857 | 33.82 | 0.35 | 0.80 |
Dry asphalt | 1.280 | 23.99 | 0.52 | 1.17 |
Wet cobble | 0.400 | 33.71 | 0.12 | 0.38 |
Dry cobble | 1.371 | 6.46 | 0.67 | 1 |
Dry cement | 1.197 | 25.17 | 0.54 | 1.09 |
Snow | 0.195 | 94 | 0.065 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turabimana, P.; Sohn, J.W. Optimal Design and Control Performance Evaluation of a Magnetorheological Fluid Brake Featuring a T-Shape Grooved Disc. Actuators 2023, 12, 315. https://doi.org/10.3390/act12080315
Turabimana P, Sohn JW. Optimal Design and Control Performance Evaluation of a Magnetorheological Fluid Brake Featuring a T-Shape Grooved Disc. Actuators. 2023; 12(8):315. https://doi.org/10.3390/act12080315
Chicago/Turabian StyleTurabimana, Pacifique, and Jung Woo Sohn. 2023. "Optimal Design and Control Performance Evaluation of a Magnetorheological Fluid Brake Featuring a T-Shape Grooved Disc" Actuators 12, no. 8: 315. https://doi.org/10.3390/act12080315
APA StyleTurabimana, P., & Sohn, J. W. (2023). Optimal Design and Control Performance Evaluation of a Magnetorheological Fluid Brake Featuring a T-Shape Grooved Disc. Actuators, 12(8), 315. https://doi.org/10.3390/act12080315