Dual-Sliding-Surface Robust Control for the PEMFC Air-Feeding System Based on Terminal Sliding Mode Algorithm
Abstract
:1. Introduction
2. Four-State PEMFC System Model
- (1)
- All gases follow the ideal gas law.
- (2)
- The PEMFC’s thermal subsystem maintains stack temp. at 80 °C.
- (3)
- The PEMFC model is 1D lumped-parameter.
- (4)
- Air’s N2:O2 ratio is 79:21.
- (5)
- Intake air relative humidity is constant.
2.1. PEMFC Voltage Model
2.2. Model Validation
2.3. Establishment of System State Equations
2.4. Control Target
3. Control System Design
3.1. Controller Design
3.2. Controller Stability Validation
3.3. Observer Design
4. Results and Discussion
4.1. Simulation Verification Under Simple Step Signals
4.2. Simulation Verification Under Step Signals with Noise Interference
5. Conclusions
- (i)
- Our proposed controller exhibits finite-time convergence, which is much better than the conventional sliding mode controller that can only achieve asymptotic stability. The performance improvement is 63% compared to TSMC, and several times that of SMC.
- (ii)
- Owing to its superior robustness and resilience to interference, the novel controller outperforms other controllers in critical performance indicators, particularly in response to abrupt changes and noise rejection. These advantages are attributed to the incorporation of a new sliding mode structure and an observer with a more robust sliding mode surface than conventional approaches.
- (iii)
- The integration of observers allows the system to adapt to unknown parameters, thereby enhancing efficiency and accuracy. Furthermore, the controller’s dual sliding mode surface structure reinforces the system’s robustness.
- (iv)
- In summary, the proposed advanced air management technique tailored for PEMFCs enhances tracking performance and response speed by over 70% compared to existing methodologies. The reduction in overshoot and the improvement in system stability contribute to the PEMFC’s efficiency, while the robust noise suppression capability minimizes disturbances.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Gao, X.; An, R. Research on the Coordinated Development Capacity of China’s Hydrogen Energy Industry Chain. J. Clean. Prod. 2022, 377, 134177. [Google Scholar] [CrossRef]
- Chen, L.; Ma, R. Clean Energy Synergy with Electric Vehicles: Insights into Carbon Footprint. Energy Strategy Rev. 2024, 53, 101394. [Google Scholar] [CrossRef]
- Zou, T.; Guo, P.; Li, F.; Wu, Q. Research Topic Identification and Trend Prediction of China’s Energy Policy: A Combined LDA-ARIMA Approach. Renew. Energy 2024, 220, 119619. [Google Scholar] [CrossRef]
- Jiang, B.; Raza, M.Y. Research on China’s Renewable Energy Policies under the Dual Carbon Goals: A Political Discourse Analysis. Energy Strategy Rev. 2023, 48, 101118. [Google Scholar] [CrossRef]
- Hu, D.; Wang, Y.; Li, J.; Yang, Q.; Wang, J. Investigation of Optimal Operating Temperature for the PEMFC and Its Tracking Control for Energy Saving in Vehicle Applications. Energy Convers. Manag. 2021, 249, 114842. [Google Scholar] [CrossRef]
- Salam, M.A.; Shaikh, M.A.A.; Ahmed, K. Green Hydrogen Based Power Generation Prospect for Sustainable Development of Bangladesh Using PEMFC and Hydrogen Gas Turbine. Energy Rep. 2023, 9, 3406–3416. [Google Scholar] [CrossRef]
- Xiao, C.; Wang, B.; Wang, C.; Yan, Y. Design of a Novel Fully-Active PEMFC-Lithium Battery Hybrid Power System Based on Two Automatic ON/OFF Switches for Unmanned Aerial Vehicle Applications. Energy Convers. Manag. 2023, 292, 117417. [Google Scholar] [CrossRef]
- Shahverdian, M.H.; Sohani, A.; Pedram, M.Z.; Sayyaadi, H. An Optimal Strategy for Application of Photovoltaic-Wind Turbine with PEMEC-PEMFC Hydrogen Storage System Based on Techno-Economic, Environmental, and Availability Indicators. J. Clean. Prod. 2023, 384, 135499. [Google Scholar] [CrossRef]
- Chen, D.; Xu, Y.; Tade, M.O.; Shao, Z. General Regulation of Air Flow Distribution Characteristics within Planar Solid Oxide Fuel Cell Stacks. ACS Energy Lett. 2017, 2, 319–326. [Google Scholar] [CrossRef]
- Qian, P.; Liu, L.; Pu, C.; Meng, D.; Páez, L.M.R. Methods to Improve Motion Servo Control Accuracy of Pneumatic Cylinders—Review and Prospect. Int. J. Hydromechatronics 2023, 6, 274–310. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y. Pressure and Oxygen Excess Ratio Control of PEMFC Air Management System Based on Neural Network and Prescribed Performance. Eng. Appl. Artif. Intell. 2023, 121, 105850. [Google Scholar] [CrossRef]
- Jung, S.Y.; Nguyen, T.V. An Along-the-Channel Model for Proton Exchange Membrane Fuel Cells. J. Electrochem. Soc. 1998, 145, 1149. [Google Scholar]
- Wang, F.-C.; Yang, Y.-P.; Huang, C.-W.; Chang, H.-P.; Chen, H.-T. System Identification and Robust Control of a Portable Proton Exchange Membrane Full-Cell System. J. Power Sources 2007, 164, 704–712. [Google Scholar] [CrossRef]
- Fathollahi, A.; Gheisarnejad, M.; Andresen, B.; Farsizadeh, H.; Khooban, M.-H. Robust Artificial Intelligence Controller for Stabilization of Full-Bridge Converters Feeding Constant Power Loads. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 3504–3508. [Google Scholar] [CrossRef]
- Baroud, Z.; Benmiloud, M.; Benalia, A.; Ocampo-Martinez, C. Novel Hybrid Fuzzy-PID Control Scheme for Air Supply in PEM Fuel-Cell-Based Systems. Int. J. Hydrogen Energy 2017, 42, 10435–10447. [Google Scholar] [CrossRef]
- Zhao, D.; Li, F.; Ma, R.; Zhao, G.; Huangfu, Y. An Unknown Input Nonlinear Observer Based Fractional Order PID Control of Fuel Cell Air Supply System. IEEE Trans. Ind. Appl. 2020, 56, 5523–5532. [Google Scholar] [CrossRef]
- Yue, H.; He, H.; Han, M.; Gong, S. Active Disturbance Rejection Control Strategy for PEMFC Oxygen Excess Ratio Based on Adaptive Internal State Estimation Using Unscented Kalman Filter. Fuel 2024, 356, 129619. [Google Scholar] [CrossRef]
- Lu, Y.; Tan, C.; Ge, W.; Li, B.; Lu, J. Improved Sliding Mode-Active Disturbance Rejection Control of Electromagnetic Linear Actuator for Direct-Drive System. Actuators 2021, 10, 138. [Google Scholar] [CrossRef]
- Tan, C.; Ren, H.; Li, B.; Lu, J.; Li, D.; Tao, W. Design and Analysis of a Novel Cascade Control Algorithm for Braking-by-Wire System Based on Electromagnetic Direct-Drive Valves. J. Frankl. Inst. 2022, 359, 8497–8521. [Google Scholar] [CrossRef]
- Aykut Korkmaz, S.; Ayten Çetinkaya, S.; Yuksel, O.; Konur, O.; Emrah Erginer, K.; Ozgur Colpan, C. Fixed Time Adaptive Fault Tolerant Sliding Mode Control of PEMFC Air Supply System. Int. J. Hydrogen Energy 2024, 51, 1402–1420. [Google Scholar] [CrossRef]
- Silaa, M.Y.; Bencherif, A.; Barambones, O. A Novel Robust Adaptive Sliding Mode Control Using Stochastic Gradient Descent for PEMFC Power System. Int. J. Hydrogen Energy 2023, 48, 17277–17292. [Google Scholar] [CrossRef]
- Abbaker, A.M.O.; Wang, H.; Tian, Y. Adaptive Integral Type-terminal Sliding Mode Control for PEMFC Air Supply System Using Time Delay Estimation Algorithm. Asian J. Control 2022, 24, 217–226. [Google Scholar] [CrossRef]
- Fang, S.; Zhang, R.; Maltsev, S.; Chen, D.; Fan, X.; Levtsev, A. A Novel Adaptive Fast Sliding Mode Control Method Based on Fuzzy Algorithm for the Air Management System of Fuel Cell Stack. Process Saf. Environ. Prot. 2024, 187, 506–517. [Google Scholar] [CrossRef]
- Liu, Z.; Chang, G.; Yuan, H.; Tang, W.; Xie, J.; Wei, X.; Dai, H. Adaptive Look-Ahead Model Predictive Control Strategy of Vehicular PEMFC Thermal Management. Energy 2023, 285, 129176. [Google Scholar] [CrossRef]
- Yang, D.; Pan, R.; Wang, Y.; Chen, Z. Modeling and Control of PEMFC Air Supply System Based on T-S Fuzzy Theory and Predictive Control. Energy 2019, 188, 116078. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Feng, H.; Han, K.; He, S.; Gao, M. Simulation Study on the PEMFC Oxygen Starvation Based on the Coupling Algorithm of Model Predictive Control and PID. Energy Convers. Manag. 2021, 249, 114851. [Google Scholar] [CrossRef]
- Huo, W.; Li, W.; Zhang, Z.; Sun, C.; Zhou, F.; Gong, G. Performance Prediction of Proton-Exchange Membrane Fuel Cell Based on Convolutional Neural Network and Random Forest Feature Selection. Energy Convers. Manag. 2021, 243, 114367. [Google Scholar] [CrossRef]
- Zhu, Y.; Zou, J.; Li, S.; Peng, C. An Adaptive Sliding Mode Observer Based Near-Optimal OER Tracking Control Approach for PEMFC under Dynamic Operation Condition. Int. J. Hydrogen Energy 2022, 47, 1157–1171. [Google Scholar] [CrossRef]
- Feng, Y.; Yu, X.; Man, Z. Non-Singular Terminal Sliding Mode Control of Rigid Manipulators. Automatica 2002, 38, 2159–2167. [Google Scholar] [CrossRef]
- Pukrushpan, J.T. Modeling and Control of PEM Fuel Cell Systems and Fuel Processors. Ph.D. Dissertation, University of Michigan, Ann Arbor, MI, USA, 2003. [Google Scholar]
- Chen, X.; Fang, Y.; Liu, Q.; He, L.; Zhao, Y.; Huang, T.; Wan, Z.; Wang, X. Temperature and Voltage Dynamic Control of PEMFC Stack Using MPC Method. Energy Rep. 2022, 8, 798–808. [Google Scholar] [CrossRef]
- Yang, Y.; Bai, M.; Zhou, Z.; Wu, W.-T.; Zhao, J.; Wei, L.; Li, Y.; Li, Y.; Song, Y. A 3D PtCo Degradation Model for Long-Term Performance Prediction of a Scaled-up PEMFC under Constant Voltage Operation. Energy Convers. Manag. 2024, 300, 117918. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.-Y. Dynamics of Polymer Electrolyte Fuel Cells Undergoing Load Changes. Electrochim. Acta 2006, 51, 3924–3933. [Google Scholar] [CrossRef]
- Gruber, J.K.; Bordons, C.; Dorado, F. Nonlinear Control of the Air Feed of a Fuel Cell. In Proceedings of the 2008 American Control Conference, Seattle, WA, USA, 11–13 June 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1121–1126. [Google Scholar]
- Fathollahi, A.; Andresen, B. Adaptive Fixed-Time Control Strategy of Generator Excitation and Thyristor-Controlled Series Capacitor in Multi-Machine Energy Systems. IEEE Access 2024, 12, 100316–100327. [Google Scholar] [CrossRef]
Parameter | Description | Value | Unit |
---|---|---|---|
Motor mechanical efficiency | 0.98 | % | |
Compressor efficiency | 0.80 | % | |
Compressor motor resistance | 0.82 | ||
Compressor inertia | 5 × 10−5 | ||
Vapor molar mass | 18 × 10−3 | ||
Air molar mass | 29 × 10−3 | ||
Oxygen molar mass | 32 × 10−3 | ||
Nitrogen molar mass | 28 × 10−3 | ||
Motor electric constant | 0.0153 | V rad−1 s | |
Motor torque constant | 0.0153 | (N m)/A | |
Cathode inlet orifice constant | 0.36 × 10−5 | kg s−1 pa−1 | |
Oxygen mole fraction | 0.21 | - | |
Cathode volume | 0.01 | ||
Supply manifold volume | 0.02 | ||
Atmospheric pressure | 101,325 | pa | |
Saturation pressure | 465,327.41 | pa | |
Atmospheric temperature | 298.15 | K | |
Stack temperature | 353.15 | K | |
Universal gas constant | 8.31 | J mol−1 K−1 | |
Cathode outlet throttle discharge coefficient | 0.012 | - | |
Constant pressure specific heat of air | 1004 | J mol−1 K−1 | |
Faraday number | 96,485 | ||
Number of cells in fuel cell stack | 381 | - | |
Cathode outlet throttle area | 0.002 | ||
Ratio of specific heat of air | 1.40 | - | |
Average ambient air relative humidity | 0.50 | - |
Controller | Start-Up Time | Rising Time | Overshoot |
---|---|---|---|
SMC | 0.72 s | 0.71 s | 100% |
TSMC | 0.37 s | 0.33 s | 103% |
SMO-NTSMC | 0.14 s | 0.08 s | 98% |
Controller | Average Respond Delay | Max Error | Average Overshoot |
---|---|---|---|
SMC | 0.80 s | 0.029 | 100% |
TSMC | 0.45 s | 0.026 | 104% |
SMO-NTSMC | 0.17 s | 0.025 | 96% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, S.; Feng, J.; Fan, X.; Chen, D.; Tan, C. Dual-Sliding-Surface Robust Control for the PEMFC Air-Feeding System Based on Terminal Sliding Mode Algorithm. Actuators 2024, 13, 459. https://doi.org/10.3390/act13110459
Fang S, Feng J, Fan X, Chen D, Tan C. Dual-Sliding-Surface Robust Control for the PEMFC Air-Feeding System Based on Terminal Sliding Mode Algorithm. Actuators. 2024; 13(11):459. https://doi.org/10.3390/act13110459
Chicago/Turabian StyleFang, Shiyi, Jianan Feng, Xinyu Fan, Daifen Chen, and Cao Tan. 2024. "Dual-Sliding-Surface Robust Control for the PEMFC Air-Feeding System Based on Terminal Sliding Mode Algorithm" Actuators 13, no. 11: 459. https://doi.org/10.3390/act13110459
APA StyleFang, S., Feng, J., Fan, X., Chen, D., & Tan, C. (2024). Dual-Sliding-Surface Robust Control for the PEMFC Air-Feeding System Based on Terminal Sliding Mode Algorithm. Actuators, 13(11), 459. https://doi.org/10.3390/act13110459