Preparation of Ionic Polymer–Metal Composites Using Copper Electrodes via Magnetron Sputtering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Pretreatment of the Substrate Membrane
2.1.2. Preparation of Cu-IPMCs via the Magnetron Sputtering Method
2.2. Cu-IPMC Test Methods and Principles
3. Orthogonal Experiments
4. Results and Discussion
4.1. Effect of Sputtering Parameters on the Deformation Angle of Cu-IPMC
4.2. Effect of Sputtering Parameters on the Surface Resistance of Cu-IPMC
4.3. Copper Electrode Deposition on the Surface of the Best Sample 5
4.4. Multi-Point Displacement Surface Fitting
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, L.; Wang, H.; Zhang, D.; Yang, Y.; Leng, D. Large deformation, high energy density dielectric elastomer actuators: Principles, factors, optimization, applications, and prospects. Chem. Eng. J. 2024, 489, 151402. [Google Scholar] [CrossRef]
- Nabae, H.; Kubo, K.; Shishikura, K.; Horiuchi, T.; Asaka, K.; Endo, G.; Suzumori, K. Design and Fabrication of 3D Papercraft IPMC Robots. In Proceedings of the 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), Edinburgh, UK, 4–8 April 2022; pp. 95–102. [Google Scholar] [CrossRef]
- Li, J.; Tian, A.; Sun, Y.; Feng, B.; Wang, H.; Zhang, X. The Development of a Venus Flytrap Inspired Soft Robot Driven by IPMC. J. Bionic Eng. 2023, 20, 406–415. [Google Scholar] [CrossRef]
- Arnold, A.; Su, J.; Sabolsky, E.M. Nafion-Pt IPMC electroactive behavior changes in response to environmental nonequilibrium conditions. Smart Mater. Struct. 2023, 32, 055014. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, X. Ionic Polymer–Metal Composites: From Material Engineering to Flexible Applications. Acc. Chem. Res. 2024, 57, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Fu, R.; Yang, Y.; Lu, C.; Ming, Y.; Zhao, X.; Hu, Y.; Zhao, L.; Hao, J.; Chen, W. Large-Scale Fabrication of High-Performance Ionic Polymer–Metal Composite Flexible Sensors by in Situ Plasma Etching and Magnetron Sputtering. ACS Omega 2018, 3, 9146–9154. [Google Scholar] [CrossRef]
- Ekbatani, R.Z.; Shao, K.; Khawwaf, J.; Wang, H.; Zheng, J.; Chen, X.; Nikzad, M. Control of an IPMC Soft Actuator Using Adaptive Full-Order Recursive Terminal Sliding Mode. Actuators 2021, 10, 33. [Google Scholar] [CrossRef]
- Chang, X.L.; Chee, P.S.; Lim, E.H. Ionic Polymer Actuator With Crenellated Structures for MEMs Application. In Proceedings of the 2020 IEEE International Conference on Semiconductor Electronics (ICSE), Kuala Lumpur, Malaysia, 28–29 July 2020; pp. 160–163. [Google Scholar] [CrossRef]
- Motreuil Ragot, P.; Hunt, A.; Sacco, L.N.; Sarro, P.M.; Mastrangeli, M. Manufacturing thin ionic polymer metal composite for sensing at the microscale. Smart Mater. Struct. 2023, 32, 035006. [Google Scholar] [CrossRef]
- Boldini, A.; Bardella, L.; Porfiri, M. On Structural Theories for Ionic Polymer Metal Composites: Balancing Between Accuracy and Simplicity. J. Elast. 2020, 141, 227–272. [Google Scholar] [CrossRef]
- Nasrollah, A.; Soleimanimehr, H.; Bafandeh Haghighi, S. IPMC-based actuators: An approach for measuring a linear form of its static equation. Heliyon 2024, 10, e24687. [Google Scholar] [CrossRef]
- Wang, G.; Sun, Y.; Ji, A.; Yin, G.; Ge, H.; Liu, X.; Tong, X.; Yu, M. Review on the Research Progress and Application of IPMC Sensors. J. Bionic Eng. 2024, 21, 2687–2716. [Google Scholar] [CrossRef]
- Shen, Q.; Palmre, V.; Stalbaum, T.; Kim, K.J. A comprehensive physics-based model encompassing variable surface resistance and underlying physics of ionic polymer–metal composite actuators. J. Appl. Phys. 2015, 118, 124904. [Google Scholar] [CrossRef]
- Pugal, D.; Jung, K.; Aabloo, A.; Kim, K.J. Ionic polymer–metal composite mechanoelectrical transduction: Review and perspectives. Polym. Int. 2010, 59, 279–289. [Google Scholar] [CrossRef]
- Tsugawa, M.A.; Palmre, V.; Carrico, J.D.; Kim, K.J.; Leang, K.K. Slender tube-shaped and square rod-shaped IPMC actuators with integrated sensing for soft mechatronics. Meccanica 2015, 50, 2781–2795. [Google Scholar] [CrossRef]
- Bernat, J.; Kolota, J. Adaptive observer-based control for an IPMC actuator under varying humidity conditions. Smart Mater. Struct. 2018, 27, 055004. [Google Scholar] [CrossRef]
- Shahinpoor, M.; Kim, K.J. Ionic polymer–metal composites: I. Fundam. Smart Mater Struct. 2001, 10, 819–833. [Google Scholar] [CrossRef]
- Lee, J.W.; Kim, J.H.; Chun, Y.S.; Yoo, Y.T.; Hong, S.M. The performance of Nafion-based IPMC actuators containing polypyrrole/alumina composite fillers. Macromol. Res. 2009, 17, 1032–1038. [Google Scholar] [CrossRef]
- Park, I.S.; Kim, S.M.; Pugal, D.; Huang, L.; Tam-Chang, S.W.; Kim, K.J. Visualization of the cation migration in ionic polymer–metal composite under an electric field. Appl. Phys. Lett. 2010, 96, 043301. [Google Scholar] [CrossRef]
- Jo, C.; Pugal, D.; Oh, I.K.; Kim, K.J.; Asaka, K. Recent advances in ionic polymer–metal composite actuators and their modeling and applications. Prog. Polym. Sci. 2013, 38, 1037–1066. [Google Scholar] [CrossRef]
- Yang, L.; Wang, H. High-performance electrically responsive artificial muscle materials for soft robot actuation. Acta Biomater. 2024, 185, 24–40. [Google Scholar] [CrossRef]
- Wang, H.; Yang, L.; Yang, Y.; Zhang, D.; Tian, A. Highly flexible, large-deformation ionic polymer metal composites for artificial muscles: Fabrication, properties, applications, and prospects. Chem. Eng. J. 2023, 469, 143976. [Google Scholar] [CrossRef]
- Naji, L.; Chudek, J.A.; Abel, E.W.; Baker, R.T. Electromechanical behaviour of Nafion-based soft actuators. J. Mater. Chem. B 2013, 1, 2502. [Google Scholar] [CrossRef] [PubMed]
- Shahinpoor, M.; Kim, K.J. The effect of surface-electrode resistance on the performance of ionic polymer–metal composite (IPMC) artificial muscles. Smart Mater. Struct 2000, 9, 543–551. [Google Scholar] [CrossRef]
- Hao, L.N.; Chen, Y.; Zhao, Y.S. Research on enhanced performance of ionic polymer metal composite by multiwalled carbon nanotubes. Mater. Res. Innov. 2015, 19 (Suppl. S1), S477–S481. [Google Scholar] [CrossRef]
- Chung, C.K.; Fung, P.K.; Hong, Y.Z.; Ju, M.S.; Lin, C.C.K.; Wu, T.C. A novel fabrication of ionic polymer–metal composites (IPMC) actuator with silver nano-powders. Sens. Actuators B Chem. 2006, 117, 367–375. [Google Scholar] [CrossRef]
- Kim, S.M.; Kim, K.J. Palladium buffer-layered high performance ionic polymer–metal composites. Smart Mater. Struct. 2008, 17, 035011. [Google Scholar] [CrossRef]
- He, Q.; Yin, G.; Vokoun, D.; Shen, Q.; Lu, J.; Liu, X.; Xu, X.; Yu, M.; Dai, Z. Review on Improvement, Modeling, and Application of Ionic Polymer Metal Composite Artificial Muscle. J. Bionic Eng. 2022, 19, 279–298. [Google Scholar] [CrossRef]
- Kelly, P.J.; Arnell, R.D. Magnetron sputtering: A review of recent developments and applications. Vacuum 2000, 56, 159–172. [Google Scholar] [CrossRef]
- Bian, C.; Zhu, Z.; Bai, W.; Chen, H. Highly efficient structure design of bending stacking actuators based on IPMC with large output force. Smart Mater. Struct. 2021, 30, 075033. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, D.; Zhang, X.; Tian, A. Fabrication and Actuation of Cu-Ionic Polymer Metal Composite. Polymers 2020, 12, 460. [Google Scholar] [CrossRef]
EXP. | A sccm | B Pa | C W | D min | Deformation Angle ° | Surface Resistance Ω/cm |
---|---|---|---|---|---|---|
1 | 1 (20) | 1 (0.5) | 3 (150) | 2 (25) | 16.1 | 34.0 |
2 | 2 (30) | 1 (0.5) | 1 (50) | 1 (15) | 30.3 | 17.1 |
3 | 3 (40) | 1 (0.5) | 2 (100) | 3 (35) | 8.4 | 83.9 |
4 | 1 (20) | 2 (0.9) | 2 (100) | 1 (15) | 34.1 | 3.8 |
5 | 2 (30) | 2 (0.9) | 3 (150) | 3 (35) | 90.0 | 2.2 |
6 | 3 (40) | 2 (0.9) | 1 (50) | 2 (25) | 17.3 | 31.1 |
7 | 1 (20) | 3 (1.3) | 1 (50) | 3 (35) | 30.1 | 17.6 |
8 | 2 (30) | 3 (1.3) | 2 (100) | 2 (25) | 10.6 | 44.8 |
9 | 3 (40) | 3 (1.3) | 3 (150) | 1 (15) | 25.7 | 25.5 |
Level | A | B | C | D |
---|---|---|---|---|
Ij | 80.3 | 54.8 | 77.7 | 90.1 |
IIj | 130.9 | 141.4 | 53.1 | 44.0 |
IIIj | 51.4 | 66.4 | 131.8 | 128.5 |
kj | 3 | 3 | 3 | 3 |
E1 | 26.8 | 18.3 | 25.9 | 30.0 |
E2 | 43.6 | 47.1 | 17.7 | 14.7 |
E3 | 17.1 | 22.1 | 43.9 | 42.8 |
Fj | 26.5 | 28.9 | 26.2 | 28.2 |
Rank | 3 | 1 | 4 | 2 |
Level | A | B | C | D |
---|---|---|---|---|
Ij | 55.4 | 135.0 | 65.7 | 46.3 |
IIj | 64.1 | 37.1 | 132.5 | 109.8 |
IIIj | 140.5 | 87.8 | 61.7 | 103.8 |
kj | 3 | 3 | 3 | 3 |
E1 | 18.5 | 45.0 | 21.9 | 15.4 |
E2 | 21.6 | 12.4 | 44.2 | 36.6 |
E3 | 46.8 | 29.3 | 20.6 | 34.6 |
Fj | 28.4 | 32.6 | 23.6 | 21.2 |
Rank | 2 | 1 | 3 | 4 |
Elemental | Selected Area 1 | Selected Area 2 | Selected Area 3 | |||
---|---|---|---|---|---|---|
Mass /% | Atomic Number /% | Mass /% | Atomic Number /% | Mass /% | Atomic Number /% | |
C | 1.4 | 6.2 | 1.5 | 6.9 | 1.2 | 5.4 |
O | 1.2 | 4.0 | 0.5 | 1.6 | 0.4 | 1.4 |
F | 4.5 | 12.5 | 3.6 | 10.3 | 4.2 | 12.0 |
S | 0.4 | 0.7 | 0.3 | 0.6 | 0.3 | 0.5 |
Cu | 92.5 | 76.7 | 94.1 | 80.6 | 94.0 | 80.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, Z.; Li, J.; Wu, C.; Guo, M.; Zhu, H.; Li, J.; Zhang, C. Preparation of Ionic Polymer–Metal Composites Using Copper Electrodes via Magnetron Sputtering. Actuators 2024, 13, 503. https://doi.org/10.3390/act13120503
Li H, Wang Z, Li J, Wu C, Guo M, Zhu H, Li J, Zhang C. Preparation of Ionic Polymer–Metal Composites Using Copper Electrodes via Magnetron Sputtering. Actuators. 2024; 13(12):503. https://doi.org/10.3390/act13120503
Chicago/Turabian StyleLi, Hui, Zhifeng Wang, Jinping Li, Chunmeng Wu, Minghuan Guo, Huibin Zhu, Jing Li, and Cheng Zhang. 2024. "Preparation of Ionic Polymer–Metal Composites Using Copper Electrodes via Magnetron Sputtering" Actuators 13, no. 12: 503. https://doi.org/10.3390/act13120503
APA StyleLi, H., Wang, Z., Li, J., Wu, C., Guo, M., Zhu, H., Li, J., & Zhang, C. (2024). Preparation of Ionic Polymer–Metal Composites Using Copper Electrodes via Magnetron Sputtering. Actuators, 13(12), 503. https://doi.org/10.3390/act13120503