Mechanical Design of a New Hybrid 3R-DoF Bioinspired Robotic Fin Based on Kinematics Modeling and Analysis
Abstract
:1. Introduction
Morphology Selection
2. Kinematic Analysis
2.1. Two-Degrees of Freedom Spatial Mechanism Direct Kinematics
2.1.1. Constraint Vector
2.1.2. Jacobian Matrix
2.1.3. Position Analysis
2.2. One-Degree of Freedom Serial Mechanism Direct Kinematics
2.3. Inverse Kinematics
3. Kinematic Analysis Simulation
3.1. Simulations Using a Sinusoidal CPG Approach
3.2. Simulations Using a Natural Manta Ray Movement Approximation Approach
4. Three-Dimensional Prototype of the Robotic Fin
4.1. Prototype of 2 DoF Spatial Mechanism
4.2. Prototype of 1 DoF Mechanism
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DoF | Degree of freedom |
MPF | median and paired pectoral fin |
SMA | shape memory alloy wire |
SPM | spatial parallel mechanism |
HTM | homogeneous transformation matrix |
CM | global position |
CPG | Central Pattern Generator |
ASA | acrylonitrile styrene acrylate |
FDM | Fused Deposition Modeling |
CAD | Computer-Aided Design |
PETG | polyethylene terephthalate glycol |
References
- Lam, K.; Tsui, T.; Nakano, K.; Randall, D.J. Physiological Adaptations of Fishes to Tropical Intertidal Environments. In The Physiology of Tropical Fishes; Fish Physiology; Academic Press: Cambridge, MA, USA, 2005; Volume 21, pp. 501–581. [Google Scholar] [CrossRef]
- Wright, M.; Xiao, Q.; Dai, S.; Post, M.; Yue, H.; Sarkar, B. Design and development of modular magnetic bio-inspired autonomous underwater robot—MMBAUV. Ocean Eng. 2023, 273, 113968. [Google Scholar] [CrossRef]
- Moored, K.W.; Fish, F.E.; Kemp, T.H.; Bart-Smith, H. Batoid fishes: Inspiration for the next generation of underwater robots. Mar. Technol. Soc. J. 2011, 45, 99–109. [Google Scholar] [CrossRef]
- Burgess, K.B.; Couturier, L.I.; Marshall, A.D.; Richardson, A.J.; Weeks, S.J.; Bennett, M.B. Manta birostris, predator of the deep? Insight into the diet of the giant manta ray through stable isotope analysis. R. Soc. Open Sci. 2016, 3, 160717. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Bi, S.; Cai, Y.; Qiu, H. Design and Hydrodynamic Experiment Research on Novel Biomimetic Pectoral Fins of a Ray-Inspired Robotic Fish. Machines 2022, 10, 606. [Google Scholar] [CrossRef]
- Zhou, C.; Low, K.H. Design and locomotion control of a biomimetic underwater vehicle with fin propulsion. IEEE/ASME Trans. Mechatron. 2012, 17, 25–35. [Google Scholar] [CrossRef]
- Chen, L.; Bi, S.; Cai, Y.; Cao, Y.; Pan, G. Design and Experimental Research on a Bionic Robot Fish with Tri-Dimensional Soft Pectoral Fins Inspired by Cownose Ray. J. Mar. Sci. Eng. 2022, 10, 537. [Google Scholar] [CrossRef]
- Low, K.H.; Seet, G.L.; Zhou, C. Biomimetic design and workspace study of compact and modular undulating fin body segments. In Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, ICMA 2007, Harbin, China, 5–8 August 2007; pp. 129–134. [Google Scholar] [CrossRef]
- Cloitre, A.; Arensen, B.; Patrikalakis, N.M.; Youcef-Toumi, K.; Valdivia Y Alvarado, P. Propulsive performance of an underwater soft biomimetic batoid robot. In Proceedings of the International Offshore and Polar Engineering Conference, Busan, Republic of Korea, 15–20 June 2014; pp. 326–333. [Google Scholar]
- Menzer, A.; Gong, Y.; Fish, F.E.; Dong, H. Bio-Inspired Propulsion: Towards Understanding the Role of Pectoral Fin Kinematics in Manta-like Swimming. Biomimetics 2022, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Yurugi, M.; Shimanokami, M.; Nagai, T.; Shintake, J.; Ikemoto, Y. Cartilage structure increases swimming efficiency of underwater robots. Sci. Rep. 2021, 11, 11288. [Google Scholar] [CrossRef] [PubMed]
- Takagi, K.; Yamamura, M.; Luo, Z.w.; Onishi, M.; Hirano, S.; Asaka, K.; Hayakawa, Y. Development of a Rajiform Swimming Robot using Ionic Polymer Artificial Muscles. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 1861–1866. [Google Scholar] [CrossRef]
- Shin, S.R.; Migliori, B.; Miccoli, B.; Li, Y.C.; Mostafalu, P.; Seo, J.; Mandla, S.; Enrico, A.; Antona, S.; Sabarish, R.; et al. Electrically Driven Microengineered Bioinspired Soft Robots. Adv. Mater. 2018, 30, 1704189. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Li, G.; Liang, Y.; Cheng, T.; Dai, J.; Yang, X.; Liu, B.; Zeng, Z.; Huang, Z.; Luo, Y.; et al. Fast-moving soft electronic fish. Sci. Adv. 2017, 3, e1602045. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Y.; Li, J.; Hang, G. A micro biomimetic manta ray robot fish actuated by SMA. In Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), Guilin, China, 19–23 December 2009; pp. 1809–1813. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Z.; Chen, C.; Wang, T.; Tian, G.; Ji, S. Design of Bionic Manta Ray Driven by SMA. In Proceedings of the 2022 7th International Conference on Control and Robotics Engineering (ICCRE), Beijing, China, 15–17 April 2022; pp. 56–61. [Google Scholar] [CrossRef]
- He, J.; Cao, Y.; Huang, Q.; Pan, G.; Dong, X.; Cao, Y. Effects of bionic pectoral fin rays’ spanwise flexibility on forwarding propulsion performance. J. Mar. Sci. Eng. 2022, 10, 783. [Google Scholar] [CrossRef]
- Sapmaz, A.R.; Dilibal, S.; Ozbaran, C.; Gercek, M. Development of Bioinspired Robotic Pectoral Fin Structure Using Radial Scissor Mechanism. In Proceedings of the HORA 2021—3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications, Ankara, Turkey, 11–13 June 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Zhang, Y.; He, J.; Low, K.H. Parametric Study of an Underwater Finned Propulsor Inspired by Bluespotted Ray. J. Bionic Eng. 2012, 9, 166–176. [Google Scholar] [CrossRef]
- Meng, Y.; Wu, Z.; Yu, J. Mechatronic Design of a Novel Robotic Manta with Pectoral Fins. In Proceedings of the 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Suzhou, China, 29 July–2 August 2019; pp. 439–444. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Wang, X.; Geng, Y. Design and Control of Bionic Manta Ray Robot with Flexible Pectoral Fin. In Proceedings of the IEEE International Conference on Control and Automation, ICCA, Anchorage, AK, USA, 12–15 June 2018; IEEE Computer Society: Washington, DC, USA, 2018; Volume 2018, pp. 1034–1039. [Google Scholar] [CrossRef]
- Fisheries, N. Giant Manta Ray. 2023. Available online: https://www.fisheries.noaa.gov/species/giant-manta-ray (accessed on 10 July 2024).
- Marinewise. Giant Manta Ray-Manta Birostris. 2022. Available online: https://marinewise.com.au/shark-and-ray-species/giant-manta-ray/ (accessed on 10 July 2024).
- Lu, Y.; Meng, S.; Xing, C.; Hao, Y.; Cao, Y.; Pan, G.; Cao, Y. Effect of Active–Passive Deformation on the Thrust by the Pectoral Fins of Bionic Manta Robot. J. Bionic Eng. 2024, 21, 718–728. [Google Scholar] [CrossRef]
- Yime, E.; Saltarén, R.J.; Mckinley, J.A.R. Análisis dinámico inverso de robots paralelos: Un tutorial con álgebra de Lie. Rev. Iberoam. Automática E Informática Ind. 2023, 20, 327–346. [Google Scholar] [CrossRef]
- van den Berg, S.C.; Scharff, R.B.; Rusák, Z.; Wu, J. OpenFish: Biomimetic design of a soft robotic fish for high speed locomotion. HardwareX 2022, 12, e00320. [Google Scholar] [CrossRef]
Link | Length (mm) |
---|---|
104 | |
104 | |
172 |
Joint | Max. Displacement (mm) |
---|---|
38 | |
40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortés Torres, E.d.J.; García Gonzales, L.E.; Villamizar Marin, L.E.; García Cena, C.E. Mechanical Design of a New Hybrid 3R-DoF Bioinspired Robotic Fin Based on Kinematics Modeling and Analysis. Actuators 2024, 13, 353. https://doi.org/10.3390/act13090353
Cortés Torres EdJ, García Gonzales LE, Villamizar Marin LE, García Cena CE. Mechanical Design of a New Hybrid 3R-DoF Bioinspired Robotic Fin Based on Kinematics Modeling and Analysis. Actuators. 2024; 13(9):353. https://doi.org/10.3390/act13090353
Chicago/Turabian StyleCortés Torres, Eliseo de J., Luis E. García Gonzales, Luis E. Villamizar Marin, and Cecilia E. García Cena. 2024. "Mechanical Design of a New Hybrid 3R-DoF Bioinspired Robotic Fin Based on Kinematics Modeling and Analysis" Actuators 13, no. 9: 353. https://doi.org/10.3390/act13090353
APA StyleCortés Torres, E. d. J., García Gonzales, L. E., Villamizar Marin, L. E., & García Cena, C. E. (2024). Mechanical Design of a New Hybrid 3R-DoF Bioinspired Robotic Fin Based on Kinematics Modeling and Analysis. Actuators, 13(9), 353. https://doi.org/10.3390/act13090353